Home | History | Annotate | Download | only in softkeymaster
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 #include <errno.h>
     17 #include <string.h>
     18 #include <stdint.h>
     19 
     20 #include <keystore/keystore.h>
     21 #include <keymaster/softkeymaster.h>
     22 
     23 #include <hardware/hardware.h>
     24 #include <hardware/keymaster0.h>
     25 
     26 #include <openssl/evp.h>
     27 #include <openssl/bio.h>
     28 #include <openssl/rsa.h>
     29 #include <openssl/err.h>
     30 #include <openssl/x509.h>
     31 
     32 #include <UniquePtr.h>
     33 
     34 // For debugging
     35 // #define LOG_NDEBUG 0
     36 
     37 #define LOG_TAG "OpenSSLKeyMaster"
     38 #include <cutils/log.h>
     39 
     40 struct BIGNUM_Delete {
     41     void operator()(BIGNUM* p) const { BN_free(p); }
     42 };
     43 typedef UniquePtr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM;
     44 
     45 struct EVP_PKEY_Delete {
     46     void operator()(EVP_PKEY* p) const { EVP_PKEY_free(p); }
     47 };
     48 typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY;
     49 
     50 struct PKCS8_PRIV_KEY_INFO_Delete {
     51     void operator()(PKCS8_PRIV_KEY_INFO* p) const { PKCS8_PRIV_KEY_INFO_free(p); }
     52 };
     53 typedef UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO;
     54 
     55 struct DSA_Delete {
     56     void operator()(DSA* p) const { DSA_free(p); }
     57 };
     58 typedef UniquePtr<DSA, DSA_Delete> Unique_DSA;
     59 
     60 struct EC_KEY_Delete {
     61     void operator()(EC_KEY* p) const { EC_KEY_free(p); }
     62 };
     63 typedef UniquePtr<EC_KEY, EC_KEY_Delete> Unique_EC_KEY;
     64 
     65 struct EC_GROUP_Delete {
     66     void operator()(EC_GROUP* p) const { EC_GROUP_free(p); }
     67 };
     68 typedef UniquePtr<EC_GROUP, EC_GROUP_Delete> Unique_EC_GROUP;
     69 
     70 struct RSA_Delete {
     71     void operator()(RSA* p) const { RSA_free(p); }
     72 };
     73 typedef UniquePtr<RSA, RSA_Delete> Unique_RSA;
     74 
     75 struct Malloc_Free {
     76     void operator()(void* p) const { free(p); }
     77 };
     78 
     79 typedef UniquePtr<keymaster0_device_t> Unique_keymaster_device_t;
     80 
     81 /**
     82  * Many OpenSSL APIs take ownership of an argument on success but
     83  * don't free the argument on failure. This means we need to tell our
     84  * scoped pointers when we've transferred ownership, without
     85  * triggering a warning by not using the result of release().
     86  */
     87 template <typename T, typename Delete_T>
     88 inline void release_because_ownership_transferred(UniquePtr<T, Delete_T>& p) {
     89     T* val __attribute__((unused)) = p.release();
     90 }
     91 
     92 /*
     93  * Checks this thread's OpenSSL error queue and logs if
     94  * necessary.
     95  */
     96 static void logOpenSSLError(const char* location) {
     97     int error = ERR_get_error();
     98 
     99     if (error != 0) {
    100         char message[256];
    101         ERR_error_string_n(error, message, sizeof(message));
    102         ALOGE("OpenSSL error in %s %d: %s", location, error, message);
    103     }
    104 
    105     ERR_clear_error();
    106     ERR_remove_thread_state(NULL);
    107 }
    108 
    109 static int wrap_key(EVP_PKEY* pkey, int type, uint8_t** keyBlob, size_t* keyBlobLength) {
    110     /*
    111      * Find the length of each size. Public key is not needed anymore
    112      * but must be kept for alignment purposes.
    113      */
    114     int publicLen = 0;
    115     int privateLen = i2d_PrivateKey(pkey, NULL);
    116 
    117     if (privateLen <= 0) {
    118         ALOGE("private key size was too big");
    119         return -1;
    120     }
    121 
    122     /* int type + int size + private key data + int size + public key data */
    123     *keyBlobLength = get_softkey_header_size() + sizeof(type) + sizeof(publicLen) + privateLen +
    124                      sizeof(privateLen) + publicLen;
    125 
    126     // derData will be returned to the caller, so allocate it with malloc.
    127     UniquePtr<unsigned char, Malloc_Free> derData(
    128         static_cast<unsigned char*>(malloc(*keyBlobLength)));
    129     if (derData.get() == NULL) {
    130         ALOGE("could not allocate memory for key blob");
    131         return -1;
    132     }
    133     unsigned char* p = derData.get();
    134 
    135     /* Write the magic value for software keys. */
    136     p = add_softkey_header(p, *keyBlobLength);
    137 
    138     /* Write key type to allocated buffer */
    139     for (int i = sizeof(type) - 1; i >= 0; i--) {
    140         *p++ = (type >> (8 * i)) & 0xFF;
    141     }
    142 
    143     /* Write public key to allocated buffer */
    144     for (int i = sizeof(publicLen) - 1; i >= 0; i--) {
    145         *p++ = (publicLen >> (8 * i)) & 0xFF;
    146     }
    147 
    148     /* Write private key to allocated buffer */
    149     for (int i = sizeof(privateLen) - 1; i >= 0; i--) {
    150         *p++ = (privateLen >> (8 * i)) & 0xFF;
    151     }
    152     if (i2d_PrivateKey(pkey, &p) != privateLen) {
    153         logOpenSSLError("wrap_key");
    154         return -1;
    155     }
    156 
    157     *keyBlob = derData.release();
    158 
    159     return 0;
    160 }
    161 
    162 static EVP_PKEY* unwrap_key(const uint8_t* keyBlob, const size_t keyBlobLength) {
    163     long publicLen = 0;
    164     long privateLen = 0;
    165     const uint8_t* p = keyBlob;
    166     const uint8_t* const end = keyBlob + keyBlobLength;
    167 
    168     if (keyBlob == NULL) {
    169         ALOGE("supplied key blob was NULL");
    170         return NULL;
    171     }
    172 
    173     int type = 0;
    174     if (keyBlobLength < (get_softkey_header_size() + sizeof(type) + sizeof(publicLen) + 1 +
    175                          sizeof(privateLen) + 1)) {
    176         ALOGE("key blob appears to be truncated");
    177         return NULL;
    178     }
    179 
    180     if (!is_softkey(p, keyBlobLength)) {
    181         ALOGE("cannot read key; it was not made by this keymaster");
    182         return NULL;
    183     }
    184     p += get_softkey_header_size();
    185 
    186     for (size_t i = 0; i < sizeof(type); i++) {
    187         type = (type << 8) | *p++;
    188     }
    189 
    190     for (size_t i = 0; i < sizeof(type); i++) {
    191         publicLen = (publicLen << 8) | *p++;
    192     }
    193     if (p + publicLen > end) {
    194         ALOGE("public key length encoding error: size=%ld, end=%td", publicLen, end - p);
    195         return NULL;
    196     }
    197 
    198     p += publicLen;
    199     if (end - p < 2) {
    200         ALOGE("private key truncated");
    201         return NULL;
    202     }
    203     for (size_t i = 0; i < sizeof(type); i++) {
    204         privateLen = (privateLen << 8) | *p++;
    205     }
    206     if (p + privateLen > end) {
    207         ALOGE("private key length encoding error: size=%ld, end=%td", privateLen, end - p);
    208         return NULL;
    209     }
    210 
    211     Unique_EVP_PKEY pkey(d2i_PrivateKey(type, nullptr, &p, privateLen));
    212     if (pkey.get() == NULL) {
    213         logOpenSSLError("unwrap_key");
    214         return NULL;
    215     }
    216 
    217     return pkey.release();
    218 }
    219 
    220 static int generate_dsa_keypair(EVP_PKEY* pkey, const keymaster_dsa_keygen_params_t* dsa_params) {
    221     if (dsa_params->key_size < 512) {
    222         ALOGI("Requested DSA key size is too small (<512)");
    223         return -1;
    224     }
    225 
    226     Unique_DSA dsa(DSA_new());
    227 
    228     if (dsa_params->generator_len == 0 || dsa_params->prime_p_len == 0 ||
    229         dsa_params->prime_q_len == 0 || dsa_params->generator == NULL ||
    230         dsa_params->prime_p == NULL || dsa_params->prime_q == NULL) {
    231         if (DSA_generate_parameters_ex(dsa.get(), dsa_params->key_size, NULL, 0, NULL, NULL,
    232                                        NULL) != 1) {
    233             logOpenSSLError("generate_dsa_keypair");
    234             return -1;
    235         }
    236     } else {
    237         dsa->g = BN_bin2bn(dsa_params->generator, dsa_params->generator_len, NULL);
    238         if (dsa->g == NULL) {
    239             logOpenSSLError("generate_dsa_keypair");
    240             return -1;
    241         }
    242 
    243         dsa->p = BN_bin2bn(dsa_params->prime_p, dsa_params->prime_p_len, NULL);
    244         if (dsa->p == NULL) {
    245             logOpenSSLError("generate_dsa_keypair");
    246             return -1;
    247         }
    248 
    249         dsa->q = BN_bin2bn(dsa_params->prime_q, dsa_params->prime_q_len, NULL);
    250         if (dsa->q == NULL) {
    251             logOpenSSLError("generate_dsa_keypair");
    252             return -1;
    253         }
    254     }
    255 
    256     if (DSA_generate_key(dsa.get()) != 1) {
    257         logOpenSSLError("generate_dsa_keypair");
    258         return -1;
    259     }
    260 
    261     if (EVP_PKEY_assign_DSA(pkey, dsa.get()) == 0) {
    262         logOpenSSLError("generate_dsa_keypair");
    263         return -1;
    264     }
    265     release_because_ownership_transferred(dsa);
    266 
    267     return 0;
    268 }
    269 
    270 static int generate_ec_keypair(EVP_PKEY* pkey, const keymaster_ec_keygen_params_t* ec_params) {
    271     Unique_EC_GROUP group;
    272     switch (ec_params->field_size) {
    273     case 224:
    274         group.reset(EC_GROUP_new_by_curve_name(NID_secp224r1));
    275         break;
    276     case 256:
    277         group.reset(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1));
    278         break;
    279     case 384:
    280         group.reset(EC_GROUP_new_by_curve_name(NID_secp384r1));
    281         break;
    282     case 521:
    283         group.reset(EC_GROUP_new_by_curve_name(NID_secp521r1));
    284         break;
    285     default:
    286         break;
    287     }
    288 
    289     if (group.get() == NULL) {
    290         logOpenSSLError("generate_ec_keypair");
    291         return -1;
    292     }
    293 
    294 #if !defined(OPENSSL_IS_BORINGSSL)
    295     EC_GROUP_set_point_conversion_form(group.get(), POINT_CONVERSION_UNCOMPRESSED);
    296     EC_GROUP_set_asn1_flag(group.get(), OPENSSL_EC_NAMED_CURVE);
    297 #endif
    298 
    299     /* initialize EC key */
    300     Unique_EC_KEY eckey(EC_KEY_new());
    301     if (eckey.get() == NULL) {
    302         logOpenSSLError("generate_ec_keypair");
    303         return -1;
    304     }
    305 
    306     if (EC_KEY_set_group(eckey.get(), group.get()) != 1) {
    307         logOpenSSLError("generate_ec_keypair");
    308         return -1;
    309     }
    310 
    311     if (EC_KEY_generate_key(eckey.get()) != 1 || EC_KEY_check_key(eckey.get()) < 0) {
    312         logOpenSSLError("generate_ec_keypair");
    313         return -1;
    314     }
    315 
    316     if (EVP_PKEY_assign_EC_KEY(pkey, eckey.get()) == 0) {
    317         logOpenSSLError("generate_ec_keypair");
    318         return -1;
    319     }
    320     release_because_ownership_transferred(eckey);
    321 
    322     return 0;
    323 }
    324 
    325 static int generate_rsa_keypair(EVP_PKEY* pkey, const keymaster_rsa_keygen_params_t* rsa_params) {
    326     Unique_BIGNUM bn(BN_new());
    327     if (bn.get() == NULL) {
    328         logOpenSSLError("generate_rsa_keypair");
    329         return -1;
    330     }
    331 
    332     if (BN_set_word(bn.get(), rsa_params->public_exponent) == 0) {
    333         logOpenSSLError("generate_rsa_keypair");
    334         return -1;
    335     }
    336 
    337     /* initialize RSA */
    338     Unique_RSA rsa(RSA_new());
    339     if (rsa.get() == NULL) {
    340         logOpenSSLError("generate_rsa_keypair");
    341         return -1;
    342     }
    343 
    344     if (!RSA_generate_key_ex(rsa.get(), rsa_params->modulus_size, bn.get(), NULL) ||
    345         RSA_check_key(rsa.get()) < 0) {
    346         logOpenSSLError("generate_rsa_keypair");
    347         return -1;
    348     }
    349 
    350     if (EVP_PKEY_assign_RSA(pkey, rsa.get()) == 0) {
    351         logOpenSSLError("generate_rsa_keypair");
    352         return -1;
    353     }
    354     release_because_ownership_transferred(rsa);
    355 
    356     return 0;
    357 }
    358 
    359 __attribute__((visibility("default"))) int openssl_generate_keypair(
    360     const keymaster0_device_t*, const keymaster_keypair_t key_type, const void* key_params,
    361     uint8_t** keyBlob, size_t* keyBlobLength) {
    362     Unique_EVP_PKEY pkey(EVP_PKEY_new());
    363     if (pkey.get() == NULL) {
    364         logOpenSSLError("openssl_generate_keypair");
    365         return -1;
    366     }
    367 
    368     if (key_params == NULL) {
    369         ALOGW("key_params == null");
    370         return -1;
    371     } else if (key_type == TYPE_DSA) {
    372         const keymaster_dsa_keygen_params_t* dsa_params =
    373             (const keymaster_dsa_keygen_params_t*)key_params;
    374         generate_dsa_keypair(pkey.get(), dsa_params);
    375     } else if (key_type == TYPE_EC) {
    376         const keymaster_ec_keygen_params_t* ec_params =
    377             (const keymaster_ec_keygen_params_t*)key_params;
    378         generate_ec_keypair(pkey.get(), ec_params);
    379     } else if (key_type == TYPE_RSA) {
    380         const keymaster_rsa_keygen_params_t* rsa_params =
    381             (const keymaster_rsa_keygen_params_t*)key_params;
    382         generate_rsa_keypair(pkey.get(), rsa_params);
    383     } else {
    384         ALOGW("Unsupported key type %d", key_type);
    385         return -1;
    386     }
    387 
    388     if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), keyBlob, keyBlobLength)) {
    389         return -1;
    390     }
    391 
    392     return 0;
    393 }
    394 
    395 __attribute__((visibility("default"))) int openssl_import_keypair(const keymaster0_device_t*,
    396                                                                   const uint8_t* key,
    397                                                                   const size_t key_length,
    398                                                                   uint8_t** key_blob,
    399                                                                   size_t* key_blob_length) {
    400     if (key == NULL) {
    401         ALOGW("input key == NULL");
    402         return -1;
    403     } else if (key_blob == NULL || key_blob_length == NULL) {
    404         ALOGW("output key blob or length == NULL");
    405         return -1;
    406     }
    407 
    408     Unique_PKCS8_PRIV_KEY_INFO pkcs8(d2i_PKCS8_PRIV_KEY_INFO(NULL, &key, key_length));
    409     if (pkcs8.get() == NULL) {
    410         logOpenSSLError("openssl_import_keypair");
    411         return -1;
    412     }
    413 
    414     /* assign to EVP */
    415     Unique_EVP_PKEY pkey(EVP_PKCS82PKEY(pkcs8.get()));
    416     if (pkey.get() == NULL) {
    417         logOpenSSLError("openssl_import_keypair");
    418         return -1;
    419     }
    420 
    421     if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), key_blob, key_blob_length)) {
    422         return -1;
    423     }
    424 
    425     return 0;
    426 }
    427 
    428 __attribute__((visibility("default"))) int openssl_get_keypair_public(const keymaster0_device_t*,
    429                                                                       const uint8_t* key_blob,
    430                                                                       const size_t key_blob_length,
    431                                                                       uint8_t** x509_data,
    432                                                                       size_t* x509_data_length) {
    433     if (x509_data == NULL || x509_data_length == NULL) {
    434         ALOGW("output public key buffer == NULL");
    435         return -1;
    436     }
    437 
    438     Unique_EVP_PKEY pkey(unwrap_key(key_blob, key_blob_length));
    439     if (pkey.get() == NULL) {
    440         return -1;
    441     }
    442 
    443     int len = i2d_PUBKEY(pkey.get(), NULL);
    444     if (len <= 0) {
    445         logOpenSSLError("openssl_get_keypair_public");
    446         return -1;
    447     }
    448 
    449     UniquePtr<uint8_t, Malloc_Free> key(static_cast<uint8_t*>(malloc(len)));
    450     if (key.get() == NULL) {
    451         ALOGE("Could not allocate memory for public key data");
    452         return -1;
    453     }
    454 
    455     unsigned char* tmp = reinterpret_cast<unsigned char*>(key.get());
    456     if (i2d_PUBKEY(pkey.get(), &tmp) != len) {
    457         logOpenSSLError("openssl_get_keypair_public");
    458         return -1;
    459     }
    460 
    461     ALOGV("Length of x509 data is %d", len);
    462     *x509_data_length = len;
    463     *x509_data = key.release();
    464 
    465     return 0;
    466 }
    467 
    468 static int sign_dsa(EVP_PKEY* pkey, keymaster_dsa_sign_params_t* sign_params, const uint8_t* data,
    469                     const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) {
    470     if (sign_params->digest_type != DIGEST_NONE) {
    471         ALOGW("Cannot handle digest type %d", sign_params->digest_type);
    472         return -1;
    473     }
    474 
    475     Unique_DSA dsa(EVP_PKEY_get1_DSA(pkey));
    476     if (dsa.get() == NULL) {
    477         logOpenSSLError("openssl_sign_dsa");
    478         return -1;
    479     }
    480 
    481     unsigned int dsaSize = DSA_size(dsa.get());
    482     UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dsaSize)));
    483     if (signedDataPtr.get() == NULL) {
    484         logOpenSSLError("openssl_sign_dsa");
    485         return -1;
    486     }
    487 
    488     unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get());
    489     if (DSA_sign(0, data, dataLength, tmp, &dsaSize, dsa.get()) <= 0) {
    490         logOpenSSLError("openssl_sign_dsa");
    491         return -1;
    492     }
    493 
    494     *signedDataLength = dsaSize;
    495     *signedData = signedDataPtr.release();
    496 
    497     return 0;
    498 }
    499 
    500 static int sign_ec(EVP_PKEY* pkey, keymaster_ec_sign_params_t* sign_params, const uint8_t* data,
    501                    const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) {
    502     if (sign_params->digest_type != DIGEST_NONE) {
    503         ALOGW("Cannot handle digest type %d", sign_params->digest_type);
    504         return -1;
    505     }
    506 
    507     Unique_EC_KEY eckey(EVP_PKEY_get1_EC_KEY(pkey));
    508     if (eckey.get() == NULL) {
    509         logOpenSSLError("openssl_sign_ec");
    510         return -1;
    511     }
    512 
    513     unsigned int ecdsaSize = ECDSA_size(eckey.get());
    514     UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(ecdsaSize)));
    515     if (signedDataPtr.get() == NULL) {
    516         logOpenSSLError("openssl_sign_ec");
    517         return -1;
    518     }
    519 
    520     unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get());
    521     if (ECDSA_sign(0, data, dataLength, tmp, &ecdsaSize, eckey.get()) <= 0) {
    522         logOpenSSLError("openssl_sign_ec");
    523         return -1;
    524     }
    525 
    526     *signedDataLength = ecdsaSize;
    527     *signedData = signedDataPtr.release();
    528 
    529     return 0;
    530 }
    531 
    532 static int sign_rsa(EVP_PKEY* pkey, keymaster_rsa_sign_params_t* sign_params, const uint8_t* data,
    533                     const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) {
    534     if (sign_params->digest_type != DIGEST_NONE) {
    535         ALOGW("Cannot handle digest type %d", sign_params->digest_type);
    536         return -1;
    537     } else if (sign_params->padding_type != PADDING_NONE) {
    538         ALOGW("Cannot handle padding type %d", sign_params->padding_type);
    539         return -1;
    540     }
    541 
    542     Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey));
    543     if (rsa.get() == NULL) {
    544         logOpenSSLError("openssl_sign_rsa");
    545         return -1;
    546     }
    547 
    548     UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dataLength)));
    549     if (signedDataPtr.get() == NULL) {
    550         logOpenSSLError("openssl_sign_rsa");
    551         return -1;
    552     }
    553 
    554     unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get());
    555     if (RSA_private_encrypt(dataLength, data, tmp, rsa.get(), RSA_NO_PADDING) <= 0) {
    556         logOpenSSLError("openssl_sign_rsa");
    557         return -1;
    558     }
    559 
    560     *signedDataLength = dataLength;
    561     *signedData = signedDataPtr.release();
    562 
    563     return 0;
    564 }
    565 
    566 __attribute__((visibility("default"))) int openssl_sign_data(
    567     const keymaster0_device_t*, const void* params, const uint8_t* keyBlob,
    568     const size_t keyBlobLength, const uint8_t* data, const size_t dataLength, uint8_t** signedData,
    569     size_t* signedDataLength) {
    570     if (data == NULL) {
    571         ALOGW("input data to sign == NULL");
    572         return -1;
    573     } else if (signedData == NULL || signedDataLength == NULL) {
    574         ALOGW("output signature buffer == NULL");
    575         return -1;
    576     }
    577 
    578     Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength));
    579     if (pkey.get() == NULL) {
    580         return -1;
    581     }
    582 
    583     int type = EVP_PKEY_type(pkey->type);
    584     if (type == EVP_PKEY_DSA) {
    585         const keymaster_dsa_sign_params_t* sign_params =
    586             reinterpret_cast<const keymaster_dsa_sign_params_t*>(params);
    587         return sign_dsa(pkey.get(), const_cast<keymaster_dsa_sign_params_t*>(sign_params), data,
    588                         dataLength, signedData, signedDataLength);
    589     } else if (type == EVP_PKEY_EC) {
    590         const keymaster_ec_sign_params_t* sign_params =
    591             reinterpret_cast<const keymaster_ec_sign_params_t*>(params);
    592         return sign_ec(pkey.get(), const_cast<keymaster_ec_sign_params_t*>(sign_params), data,
    593                        dataLength, signedData, signedDataLength);
    594     } else if (type == EVP_PKEY_RSA) {
    595         const keymaster_rsa_sign_params_t* sign_params =
    596             reinterpret_cast<const keymaster_rsa_sign_params_t*>(params);
    597         return sign_rsa(pkey.get(), const_cast<keymaster_rsa_sign_params_t*>(sign_params), data,
    598                         dataLength, signedData, signedDataLength);
    599     } else {
    600         ALOGW("Unsupported key type");
    601         return -1;
    602     }
    603 }
    604 
    605 static int verify_dsa(EVP_PKEY* pkey, keymaster_dsa_sign_params_t* sign_params,
    606                       const uint8_t* signedData, const size_t signedDataLength,
    607                       const uint8_t* signature, const size_t signatureLength) {
    608     if (sign_params->digest_type != DIGEST_NONE) {
    609         ALOGW("Cannot handle digest type %d", sign_params->digest_type);
    610         return -1;
    611     }
    612 
    613     Unique_DSA dsa(EVP_PKEY_get1_DSA(pkey));
    614     if (dsa.get() == NULL) {
    615         logOpenSSLError("openssl_verify_dsa");
    616         return -1;
    617     }
    618 
    619     if (DSA_verify(0, signedData, signedDataLength, signature, signatureLength, dsa.get()) <= 0) {
    620         logOpenSSLError("openssl_verify_dsa");
    621         return -1;
    622     }
    623 
    624     return 0;
    625 }
    626 
    627 static int verify_ec(EVP_PKEY* pkey, keymaster_ec_sign_params_t* sign_params,
    628                      const uint8_t* signedData, const size_t signedDataLength,
    629                      const uint8_t* signature, const size_t signatureLength) {
    630     if (sign_params->digest_type != DIGEST_NONE) {
    631         ALOGW("Cannot handle digest type %d", sign_params->digest_type);
    632         return -1;
    633     }
    634 
    635     Unique_EC_KEY eckey(EVP_PKEY_get1_EC_KEY(pkey));
    636     if (eckey.get() == NULL) {
    637         logOpenSSLError("openssl_verify_ec");
    638         return -1;
    639     }
    640 
    641     if (ECDSA_verify(0, signedData, signedDataLength, signature, signatureLength, eckey.get()) <=
    642         0) {
    643         logOpenSSLError("openssl_verify_ec");
    644         return -1;
    645     }
    646 
    647     return 0;
    648 }
    649 
    650 static int verify_rsa(EVP_PKEY* pkey, keymaster_rsa_sign_params_t* sign_params,
    651                       const uint8_t* signedData, const size_t signedDataLength,
    652                       const uint8_t* signature, const size_t signatureLength) {
    653     if (sign_params->digest_type != DIGEST_NONE) {
    654         ALOGW("Cannot handle digest type %d", sign_params->digest_type);
    655         return -1;
    656     } else if (sign_params->padding_type != PADDING_NONE) {
    657         ALOGW("Cannot handle padding type %d", sign_params->padding_type);
    658         return -1;
    659     } else if (signatureLength != signedDataLength) {
    660         ALOGW("signed data length must be signature length");
    661         return -1;
    662     }
    663 
    664     Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey));
    665     if (rsa.get() == NULL) {
    666         logOpenSSLError("openssl_verify_data");
    667         return -1;
    668     }
    669 
    670     UniquePtr<uint8_t[]> dataPtr(new uint8_t[signedDataLength]);
    671     if (dataPtr.get() == NULL) {
    672         logOpenSSLError("openssl_verify_data");
    673         return -1;
    674     }
    675 
    676     unsigned char* tmp = reinterpret_cast<unsigned char*>(dataPtr.get());
    677     if (!RSA_public_decrypt(signatureLength, signature, tmp, rsa.get(), RSA_NO_PADDING)) {
    678         logOpenSSLError("openssl_verify_data");
    679         return -1;
    680     }
    681 
    682     int result = 0;
    683     for (size_t i = 0; i < signedDataLength; i++) {
    684         result |= tmp[i] ^ signedData[i];
    685     }
    686 
    687     return result == 0 ? 0 : -1;
    688 }
    689 
    690 __attribute__((visibility("default"))) int openssl_verify_data(
    691     const keymaster0_device_t*, const void* params, const uint8_t* keyBlob,
    692     const size_t keyBlobLength, const uint8_t* signedData, const size_t signedDataLength,
    693     const uint8_t* signature, const size_t signatureLength) {
    694     if (signedData == NULL || signature == NULL) {
    695         ALOGW("data or signature buffers == NULL");
    696         return -1;
    697     }
    698 
    699     Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength));
    700     if (pkey.get() == NULL) {
    701         return -1;
    702     }
    703 
    704     int type = EVP_PKEY_type(pkey->type);
    705     if (type == EVP_PKEY_DSA) {
    706         const keymaster_dsa_sign_params_t* sign_params =
    707             reinterpret_cast<const keymaster_dsa_sign_params_t*>(params);
    708         return verify_dsa(pkey.get(), const_cast<keymaster_dsa_sign_params_t*>(sign_params),
    709                           signedData, signedDataLength, signature, signatureLength);
    710     } else if (type == EVP_PKEY_RSA) {
    711         const keymaster_rsa_sign_params_t* sign_params =
    712             reinterpret_cast<const keymaster_rsa_sign_params_t*>(params);
    713         return verify_rsa(pkey.get(), const_cast<keymaster_rsa_sign_params_t*>(sign_params),
    714                           signedData, signedDataLength, signature, signatureLength);
    715     } else if (type == EVP_PKEY_EC) {
    716         const keymaster_ec_sign_params_t* sign_params =
    717             reinterpret_cast<const keymaster_ec_sign_params_t*>(params);
    718         return verify_ec(pkey.get(), const_cast<keymaster_ec_sign_params_t*>(sign_params),
    719                          signedData, signedDataLength, signature, signatureLength);
    720     } else {
    721         ALOGW("Unsupported key type %d", type);
    722         return -1;
    723     }
    724 }
    725 
    726 /* Close an opened OpenSSL instance */
    727 static int openssl_close(hw_device_t* dev) {
    728     delete dev;
    729     return 0;
    730 }
    731 
    732 /*
    733  * Generic device handling
    734  */
    735 __attribute__((visibility("default"))) int openssl_open(const hw_module_t* module, const char* name,
    736                                                         hw_device_t** device) {
    737     if (strcmp(name, KEYSTORE_KEYMASTER) != 0)
    738         return -EINVAL;
    739 
    740     Unique_keymaster_device_t dev(new keymaster0_device_t);
    741     if (dev.get() == NULL)
    742         return -ENOMEM;
    743 
    744     dev->common.tag = HARDWARE_DEVICE_TAG;
    745     dev->common.version = 1;
    746     dev->common.module = (struct hw_module_t*)module;
    747     dev->common.close = openssl_close;
    748 
    749     dev->flags = KEYMASTER_SOFTWARE_ONLY | KEYMASTER_BLOBS_ARE_STANDALONE | KEYMASTER_SUPPORTS_DSA |
    750                  KEYMASTER_SUPPORTS_EC;
    751 
    752     dev->generate_keypair = openssl_generate_keypair;
    753     dev->import_keypair = openssl_import_keypair;
    754     dev->get_keypair_public = openssl_get_keypair_public;
    755     dev->delete_keypair = NULL;
    756     dev->delete_all = NULL;
    757     dev->sign_data = openssl_sign_data;
    758     dev->verify_data = openssl_verify_data;
    759 
    760     ERR_load_crypto_strings();
    761     ERR_load_BIO_strings();
    762 
    763     *device = reinterpret_cast<hw_device_t*>(dev.release());
    764 
    765     return 0;
    766 }
    767 
    768 static struct hw_module_methods_t keystore_module_methods = {
    769     .open = openssl_open,
    770 };
    771 
    772 struct keystore_module softkeymaster_module __attribute__((visibility("default"))) = {
    773     .common =
    774         {
    775          .tag = HARDWARE_MODULE_TAG,
    776          .module_api_version = KEYMASTER_MODULE_API_VERSION_0_2,
    777          .hal_api_version = HARDWARE_HAL_API_VERSION,
    778          .id = KEYSTORE_HARDWARE_MODULE_ID,
    779          .name = "Keymaster OpenSSL HAL",
    780          .author = "The Android Open Source Project",
    781          .methods = &keystore_module_methods,
    782          .dso = 0,
    783          .reserved = {},
    784         },
    785 };
    786