1 // 2 // Copyright (C) 2015 The Android Open Source Project 3 // 4 // Licensed under the Apache License, Version 2.0 (the "License"); 5 // you may not use this file except in compliance with the License. 6 // You may obtain a copy of the License at 7 // 8 // http://www.apache.org/licenses/LICENSE-2.0 9 // 10 // Unless required by applicable law or agreed to in writing, software 11 // distributed under the License is distributed on an "AS IS" BASIS, 12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 // See the License for the specific language governing permissions and 14 // limitations under the License. 15 // 16 17 #include "attestation/common/crypto_utility_impl.h" 18 19 #include <limits> 20 #include <string> 21 22 #include <arpa/inet.h> 23 #include <base/sha1.h> 24 #include <base/stl_util.h> 25 #include <crypto/scoped_openssl_types.h> 26 #include <crypto/secure_util.h> 27 #include <crypto/sha2.h> 28 #include <openssl/bio.h> 29 #include <openssl/err.h> 30 #include <openssl/evp.h> 31 #include <openssl/hmac.h> 32 #include <openssl/rand.h> 33 #include <openssl/rsa.h> 34 #include <openssl/sha.h> 35 #include <openssl/x509.h> 36 37 namespace { 38 39 const size_t kAesKeySize = 32; 40 const size_t kAesBlockSize = 16; 41 42 std::string GetOpenSSLError() { 43 BIO* bio = BIO_new(BIO_s_mem()); 44 ERR_print_errors(bio); 45 char* data = nullptr; 46 int data_len = BIO_get_mem_data(bio, &data); 47 std::string error_string(data, data_len); 48 BIO_free(bio); 49 return error_string; 50 } 51 52 unsigned char* StringAsOpenSSLBuffer(std::string* s) { 53 return reinterpret_cast<unsigned char*>(string_as_array(s)); 54 } 55 56 } // namespace 57 58 namespace attestation { 59 60 CryptoUtilityImpl::CryptoUtilityImpl(TpmUtility* tpm_utility) 61 : tpm_utility_(tpm_utility) { 62 OpenSSL_add_all_algorithms(); 63 ERR_load_crypto_strings(); 64 } 65 66 CryptoUtilityImpl::~CryptoUtilityImpl() { 67 EVP_cleanup(); 68 ERR_free_strings(); 69 } 70 71 bool CryptoUtilityImpl::GetRandom(size_t num_bytes, 72 std::string* random_data) const { 73 // OpenSSL takes a signed integer. 74 if (num_bytes > static_cast<size_t>(std::numeric_limits<int>::max())) { 75 return false; 76 } 77 random_data->resize(num_bytes); 78 unsigned char* buffer = StringAsOpenSSLBuffer(random_data); 79 return (RAND_bytes(buffer, num_bytes) == 1); 80 } 81 82 bool CryptoUtilityImpl::CreateSealedKey(std::string* aes_key, 83 std::string* sealed_key) { 84 if (!GetRandom(kAesKeySize, aes_key)) { 85 LOG(ERROR) << __func__ << ": GetRandom failed."; 86 return false; 87 } 88 if (!tpm_utility_->SealToPCR0(*aes_key, sealed_key)) { 89 LOG(ERROR) << __func__ << ": Failed to seal cipher key."; 90 return false; 91 } 92 return true; 93 } 94 95 bool CryptoUtilityImpl::EncryptData(const std::string& data, 96 const std::string& aes_key, 97 const std::string& sealed_key, 98 std::string* encrypted_data) { 99 std::string iv; 100 if (!GetRandom(kAesBlockSize, &iv)) { 101 LOG(ERROR) << __func__ << ": GetRandom failed."; 102 return false; 103 } 104 std::string raw_encrypted_data; 105 if (!AesEncrypt(data, aes_key, iv, &raw_encrypted_data)) { 106 LOG(ERROR) << __func__ << ": AES encryption failed."; 107 return false; 108 } 109 EncryptedData encrypted_pb; 110 encrypted_pb.set_wrapped_key(sealed_key); 111 encrypted_pb.set_iv(iv); 112 encrypted_pb.set_encrypted_data(raw_encrypted_data); 113 encrypted_pb.set_mac(HmacSha512(iv + raw_encrypted_data, aes_key)); 114 if (!encrypted_pb.SerializeToString(encrypted_data)) { 115 LOG(ERROR) << __func__ << ": Failed to serialize protobuf."; 116 return false; 117 } 118 return true; 119 } 120 121 bool CryptoUtilityImpl::UnsealKey(const std::string& encrypted_data, 122 std::string* aes_key, 123 std::string* sealed_key) { 124 EncryptedData encrypted_pb; 125 if (!encrypted_pb.ParseFromString(encrypted_data)) { 126 LOG(ERROR) << __func__ << ": Failed to parse protobuf."; 127 return false; 128 } 129 *sealed_key = encrypted_pb.wrapped_key(); 130 if (!tpm_utility_->Unseal(*sealed_key, aes_key)) { 131 LOG(ERROR) << __func__ << ": Cannot unseal aes key."; 132 return false; 133 } 134 return true; 135 } 136 137 bool CryptoUtilityImpl::DecryptData(const std::string& encrypted_data, 138 const std::string& aes_key, 139 std::string* data) { 140 EncryptedData encrypted_pb; 141 if (!encrypted_pb.ParseFromString(encrypted_data)) { 142 LOG(ERROR) << __func__ << ": Failed to parse protobuf."; 143 return false; 144 } 145 std::string mac = 146 HmacSha512(encrypted_pb.iv() + encrypted_pb.encrypted_data(), aes_key); 147 if (mac.length() != encrypted_pb.mac().length()) { 148 LOG(ERROR) << __func__ << ": Corrupted data in encrypted pb."; 149 return false; 150 } 151 if (!crypto::SecureMemEqual(mac.data(), encrypted_pb.mac().data(), 152 mac.length())) { 153 LOG(ERROR) << __func__ << ": Corrupted data in encrypted pb."; 154 return false; 155 } 156 if (!AesDecrypt(encrypted_pb.encrypted_data(), aes_key, encrypted_pb.iv(), 157 data)) { 158 LOG(ERROR) << __func__ << ": AES decryption failed."; 159 return false; 160 } 161 return true; 162 } 163 164 bool CryptoUtilityImpl::GetRSASubjectPublicKeyInfo( 165 const std::string& public_key, 166 std::string* public_key_info) { 167 auto asn1_ptr = reinterpret_cast<const unsigned char*>(public_key.data()); 168 crypto::ScopedRSA rsa( 169 d2i_RSAPublicKey(nullptr, &asn1_ptr, public_key.size())); 170 if (!rsa.get()) { 171 LOG(ERROR) << __func__ 172 << ": Failed to decode public key: " << GetOpenSSLError(); 173 return false; 174 } 175 unsigned char* buffer = nullptr; 176 int length = i2d_RSA_PUBKEY(rsa.get(), &buffer); 177 if (length <= 0) { 178 LOG(ERROR) << __func__ 179 << ": Failed to encode public key: " << GetOpenSSLError(); 180 return false; 181 } 182 crypto::ScopedOpenSSLBytes scoped_buffer(buffer); 183 public_key_info->assign(reinterpret_cast<char*>(buffer), length); 184 return true; 185 } 186 187 bool CryptoUtilityImpl::GetRSAPublicKey(const std::string& public_key_info, 188 std::string* public_key) { 189 auto asn1_ptr = 190 reinterpret_cast<const unsigned char*>(public_key_info.data()); 191 crypto::ScopedRSA rsa( 192 d2i_RSA_PUBKEY(NULL, &asn1_ptr, public_key_info.size())); 193 if (!rsa.get()) { 194 LOG(ERROR) << __func__ 195 << ": Failed to decode public key: " << GetOpenSSLError(); 196 return false; 197 } 198 unsigned char* buffer = NULL; 199 int length = i2d_RSAPublicKey(rsa.get(), &buffer); 200 if (length <= 0) { 201 LOG(ERROR) << __func__ 202 << ": Failed to encode public key: " << GetOpenSSLError(); 203 return false; 204 } 205 crypto::ScopedOpenSSLBytes scoped_buffer(buffer); 206 public_key->assign(reinterpret_cast<char*>(buffer), length); 207 return true; 208 } 209 210 bool CryptoUtilityImpl::EncryptIdentityCredential( 211 const std::string& credential, 212 const std::string& ek_public_key_info, 213 const std::string& aik_public_key, 214 EncryptedIdentityCredential* encrypted) { 215 const char kAlgAES256 = 9; // This comes from TPM_ALG_AES256. 216 const char kEncModeCBC = 2; // This comes from TPM_SYM_MODE_CBC. 217 const char kAsymContentHeader[] = {0, 0, 0, kAlgAES256, 218 0, kEncModeCBC, 0, kAesKeySize}; 219 const char kSymContentHeader[12] = {}; 220 221 // Generate an AES key and encrypt the credential. 222 std::string aes_key; 223 if (!GetRandom(kAesKeySize, &aes_key)) { 224 LOG(ERROR) << __func__ << ": GetRandom failed."; 225 return false; 226 } 227 std::string encrypted_credential; 228 if (!TssCompatibleEncrypt(credential, aes_key, &encrypted_credential)) { 229 LOG(ERROR) << __func__ << ": Failed to encrypt credential."; 230 return false; 231 } 232 233 // Construct a TPM_ASYM_CA_CONTENTS structure. 234 std::string asym_header(std::begin(kAsymContentHeader), 235 std::end(kAsymContentHeader)); 236 std::string asym_content = 237 asym_header + aes_key + base::SHA1HashString(aik_public_key); 238 239 // Encrypt the TPM_ASYM_CA_CONTENTS with the EK public key. 240 auto asn1_ptr = 241 reinterpret_cast<const unsigned char*>(ek_public_key_info.data()); 242 crypto::ScopedRSA rsa( 243 d2i_RSA_PUBKEY(NULL, &asn1_ptr, ek_public_key_info.size())); 244 if (!rsa.get()) { 245 LOG(ERROR) << __func__ 246 << ": Failed to decode EK public key: " << GetOpenSSLError(); 247 return false; 248 } 249 std::string encrypted_asym_content; 250 if (!TpmCompatibleOAEPEncrypt(asym_content, rsa.get(), 251 &encrypted_asym_content)) { 252 LOG(ERROR) << __func__ << ": Failed to encrypt with EK public key."; 253 return false; 254 } 255 256 // Construct a TPM_SYM_CA_ATTESTATION structure. 257 uint32_t length = htonl(encrypted_credential.size()); 258 auto length_bytes = reinterpret_cast<const char*>(&length); 259 std::string length_blob(length_bytes, sizeof(uint32_t)); 260 std::string sym_header(std::begin(kSymContentHeader), 261 std::end(kSymContentHeader)); 262 std::string sym_content = length_blob + sym_header + encrypted_credential; 263 264 encrypted->set_asym_ca_contents(encrypted_asym_content); 265 encrypted->set_sym_ca_attestation(sym_content); 266 return true; 267 } 268 269 bool CryptoUtilityImpl::EncryptForUnbind(const std::string& public_key, 270 const std::string& data, 271 std::string* encrypted_data) { 272 // Construct a TPM_BOUND_DATA structure. 273 const char kBoundDataHeader[] = {1, 1, 0, 0, 2 /* TPM_PT_BIND */}; 274 std::string header(std::begin(kBoundDataHeader), std::end(kBoundDataHeader)); 275 std::string bound_data = header + data; 276 277 // Encrypt using the TPM_ES_RSAESOAEP_SHA1_MGF1 scheme. 278 auto asn1_ptr = reinterpret_cast<const unsigned char*>(public_key.data()); 279 crypto::ScopedRSA rsa(d2i_RSA_PUBKEY(NULL, &asn1_ptr, public_key.size())); 280 if (!rsa.get()) { 281 LOG(ERROR) << __func__ 282 << ": Failed to decode public key: " << GetOpenSSLError(); 283 return false; 284 } 285 if (!TpmCompatibleOAEPEncrypt(bound_data, rsa.get(), encrypted_data)) { 286 LOG(ERROR) << __func__ << ": Failed to encrypt with public key."; 287 return false; 288 } 289 return true; 290 } 291 292 bool CryptoUtilityImpl::VerifySignature(const std::string& public_key, 293 const std::string& data, 294 const std::string& signature) { 295 auto asn1_ptr = reinterpret_cast<const unsigned char*>(public_key.data()); 296 crypto::ScopedRSA rsa(d2i_RSA_PUBKEY(NULL, &asn1_ptr, public_key.size())); 297 if (!rsa.get()) { 298 LOG(ERROR) << __func__ 299 << ": Failed to decode public key: " << GetOpenSSLError(); 300 return false; 301 } 302 std::string digest = crypto::SHA256HashString(data); 303 auto digest_buffer = reinterpret_cast<const unsigned char*>(digest.data()); 304 std::string mutable_signature(signature); 305 unsigned char* signature_buffer = StringAsOpenSSLBuffer(&mutable_signature); 306 return (RSA_verify(NID_sha256, digest_buffer, digest.size(), signature_buffer, 307 signature.size(), rsa.get()) == 1); 308 } 309 310 bool CryptoUtilityImpl::AesEncrypt(const std::string& data, 311 const std::string& key, 312 const std::string& iv, 313 std::string* encrypted_data) { 314 if (key.size() != kAesKeySize || iv.size() != kAesBlockSize) { 315 return false; 316 } 317 if (data.size() > static_cast<size_t>(std::numeric_limits<int>::max())) { 318 // EVP_EncryptUpdate takes a signed int. 319 return false; 320 } 321 std::string mutable_data(data); 322 unsigned char* input_buffer = StringAsOpenSSLBuffer(&mutable_data); 323 std::string mutable_key(key); 324 unsigned char* key_buffer = StringAsOpenSSLBuffer(&mutable_key); 325 std::string mutable_iv(iv); 326 unsigned char* iv_buffer = StringAsOpenSSLBuffer(&mutable_iv); 327 // Allocate enough space for the output (including padding). 328 encrypted_data->resize(data.size() + kAesBlockSize); 329 auto output_buffer = 330 reinterpret_cast<unsigned char*>(string_as_array(encrypted_data)); 331 int output_size = 0; 332 const EVP_CIPHER* cipher = EVP_aes_256_cbc(); 333 EVP_CIPHER_CTX encryption_context; 334 EVP_CIPHER_CTX_init(&encryption_context); 335 if (!EVP_EncryptInit_ex(&encryption_context, cipher, nullptr, key_buffer, 336 iv_buffer)) { 337 LOG(ERROR) << __func__ << ": " << GetOpenSSLError(); 338 return false; 339 } 340 if (!EVP_EncryptUpdate(&encryption_context, output_buffer, &output_size, 341 input_buffer, data.size())) { 342 LOG(ERROR) << __func__ << ": " << GetOpenSSLError(); 343 EVP_CIPHER_CTX_cleanup(&encryption_context); 344 return false; 345 } 346 size_t total_size = output_size; 347 output_buffer += output_size; 348 output_size = 0; 349 if (!EVP_EncryptFinal_ex(&encryption_context, output_buffer, &output_size)) { 350 LOG(ERROR) << __func__ << ": " << GetOpenSSLError(); 351 EVP_CIPHER_CTX_cleanup(&encryption_context); 352 return false; 353 } 354 total_size += output_size; 355 encrypted_data->resize(total_size); 356 EVP_CIPHER_CTX_cleanup(&encryption_context); 357 return true; 358 } 359 360 bool CryptoUtilityImpl::AesDecrypt(const std::string& encrypted_data, 361 const std::string& key, 362 const std::string& iv, 363 std::string* data) { 364 if (key.size() != kAesKeySize || iv.size() != kAesBlockSize) { 365 return false; 366 } 367 if (encrypted_data.size() > 368 static_cast<size_t>(std::numeric_limits<int>::max())) { 369 // EVP_DecryptUpdate takes a signed int. 370 return false; 371 } 372 std::string mutable_encrypted_data(encrypted_data); 373 unsigned char* input_buffer = StringAsOpenSSLBuffer(&mutable_encrypted_data); 374 std::string mutable_key(key); 375 unsigned char* key_buffer = StringAsOpenSSLBuffer(&mutable_key); 376 std::string mutable_iv(iv); 377 unsigned char* iv_buffer = StringAsOpenSSLBuffer(&mutable_iv); 378 // Allocate enough space for the output. 379 data->resize(encrypted_data.size()); 380 unsigned char* output_buffer = StringAsOpenSSLBuffer(data); 381 int output_size = 0; 382 const EVP_CIPHER* cipher = EVP_aes_256_cbc(); 383 EVP_CIPHER_CTX decryption_context; 384 EVP_CIPHER_CTX_init(&decryption_context); 385 if (!EVP_DecryptInit_ex(&decryption_context, cipher, nullptr, key_buffer, 386 iv_buffer)) { 387 LOG(ERROR) << __func__ << ": " << GetOpenSSLError(); 388 return false; 389 } 390 if (!EVP_DecryptUpdate(&decryption_context, output_buffer, &output_size, 391 input_buffer, encrypted_data.size())) { 392 LOG(ERROR) << __func__ << ": " << GetOpenSSLError(); 393 EVP_CIPHER_CTX_cleanup(&decryption_context); 394 return false; 395 } 396 size_t total_size = output_size; 397 output_buffer += output_size; 398 output_size = 0; 399 if (!EVP_DecryptFinal_ex(&decryption_context, output_buffer, &output_size)) { 400 LOG(ERROR) << __func__ << ": " << GetOpenSSLError(); 401 EVP_CIPHER_CTX_cleanup(&decryption_context); 402 return false; 403 } 404 total_size += output_size; 405 data->resize(total_size); 406 EVP_CIPHER_CTX_cleanup(&decryption_context); 407 return true; 408 } 409 410 std::string CryptoUtilityImpl::HmacSha512(const std::string& data, 411 const std::string& key) { 412 unsigned char mac[SHA512_DIGEST_LENGTH]; 413 std::string mutable_data(data); 414 unsigned char* data_buffer = StringAsOpenSSLBuffer(&mutable_data); 415 HMAC(EVP_sha512(), key.data(), key.size(), data_buffer, data.size(), mac, 416 nullptr); 417 return std::string(std::begin(mac), std::end(mac)); 418 } 419 420 bool CryptoUtilityImpl::TssCompatibleEncrypt(const std::string& input, 421 const std::string& key, 422 std::string* output) { 423 CHECK(output); 424 CHECK_EQ(key.size(), kAesKeySize); 425 std::string iv; 426 if (!GetRandom(kAesBlockSize, &iv)) { 427 LOG(ERROR) << __func__ << ": GetRandom failed."; 428 return false; 429 } 430 std::string encrypted; 431 if (!AesEncrypt(input, key, iv, &encrypted)) { 432 LOG(ERROR) << __func__ << ": Encryption failed."; 433 return false; 434 } 435 *output = iv + encrypted; 436 return true; 437 } 438 439 bool CryptoUtilityImpl::TpmCompatibleOAEPEncrypt(const std::string& input, 440 RSA* key, 441 std::string* output) { 442 CHECK(output); 443 // The custom OAEP parameter as specified in TPM Main Part 1, Section 31.1.1. 444 const unsigned char oaep_param[4] = {'T', 'C', 'P', 'A'}; 445 std::string padded_input; 446 padded_input.resize(RSA_size(key)); 447 auto padded_buffer = 448 reinterpret_cast<unsigned char*>(string_as_array(&padded_input)); 449 auto input_buffer = reinterpret_cast<const unsigned char*>(input.data()); 450 int result = RSA_padding_add_PKCS1_OAEP(padded_buffer, padded_input.size(), 451 input_buffer, input.size(), 452 oaep_param, arraysize(oaep_param)); 453 if (!result) { 454 LOG(ERROR) << __func__ 455 << ": Failed to add OAEP padding: " << GetOpenSSLError(); 456 return false; 457 } 458 output->resize(padded_input.size()); 459 auto output_buffer = 460 reinterpret_cast<unsigned char*>(string_as_array(output)); 461 result = RSA_public_encrypt(padded_input.size(), padded_buffer, output_buffer, 462 key, RSA_NO_PADDING); 463 if (result == -1) { 464 LOG(ERROR) << __func__ << ": Failed to encrypt OAEP padded input: " 465 << GetOpenSSLError(); 466 return false; 467 } 468 return true; 469 } 470 471 } // namespace attestation 472