Home | History | Annotate | Download | only in bfd
      1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
      2    Copyright (C) 1999-2014 Free Software Foundation, Inc.
      3    Contributed by Stephane Carrez (stcarrez (at) nerim.fr)
      4 
      5    This file is part of BFD, the Binary File Descriptor library.
      6 
      7    This program is free software; you can redistribute it and/or modify
      8    it under the terms of the GNU General Public License as published by
      9    the Free Software Foundation; either version 3 of the License, or
     10    (at your option) any later version.
     11 
     12    This program is distributed in the hope that it will be useful,
     13    but WITHOUT ANY WARRANTY; without even the implied warranty of
     14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15    GNU General Public License for more details.
     16 
     17    You should have received a copy of the GNU General Public License
     18    along with this program; if not, write to the Free Software
     19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     20    MA 02110-1301, USA.  */
     21 
     22 #include "sysdep.h"
     23 #include "alloca-conf.h"
     24 #include "bfd.h"
     25 #include "bfdlink.h"
     26 #include "libbfd.h"
     27 #include "elf-bfd.h"
     28 #include "elf32-m68hc1x.h"
     29 #include "elf/m68hc11.h"
     30 #include "opcode/m68hc11.h"
     31 
     32 
     33 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
     34   ((struct elf32_m68hc11_stub_hash_entry *) \
     35    bfd_hash_lookup ((table), (string), (create), (copy)))
     36 
     37 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
     38   (const char *stub_name,
     39    asection *section,
     40    struct m68hc11_elf_link_hash_table *htab);
     41 
     42 static struct bfd_hash_entry *stub_hash_newfunc
     43   (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
     44 
     45 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
     46                                     const char* name, bfd_vma value,
     47                                     asection* sec);
     48 
     49 static bfd_boolean m68hc11_elf_export_one_stub
     50   (struct bfd_hash_entry *gen_entry, void *in_arg);
     51 
     52 static void scan_sections_for_abi (bfd*, asection*, void *);
     53 
     54 struct m68hc11_scan_param
     55 {
     56    struct m68hc11_page_info* pinfo;
     57    bfd_boolean use_memory_banks;
     58 };
     59 
     60 
     61 /* Destroy a 68HC11/68HC12 ELF linker hash table.  */
     62 
     63 static void
     64 m68hc11_elf_bfd_link_hash_table_free (bfd *obfd)
     65 {
     66   struct m68hc11_elf_link_hash_table *ret
     67     = (struct m68hc11_elf_link_hash_table *) obfd->link.hash;
     68 
     69   bfd_hash_table_free (ret->stub_hash_table);
     70   free (ret->stub_hash_table);
     71   _bfd_elf_link_hash_table_free (obfd);
     72 }
     73 
     74 /* Create a 68HC11/68HC12 ELF linker hash table.  */
     75 
     76 struct m68hc11_elf_link_hash_table*
     77 m68hc11_elf_hash_table_create (bfd *abfd)
     78 {
     79   struct m68hc11_elf_link_hash_table *ret;
     80   bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
     81 
     82   ret = (struct m68hc11_elf_link_hash_table *) bfd_zmalloc (amt);
     83   if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
     84     return NULL;
     85 
     86   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
     87 				      _bfd_elf_link_hash_newfunc,
     88 				      sizeof (struct elf_link_hash_entry),
     89 				      M68HC11_ELF_DATA))
     90     {
     91       free (ret);
     92       return NULL;
     93     }
     94 
     95   /* Init the stub hash table too.  */
     96   amt = sizeof (struct bfd_hash_table);
     97   ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
     98   if (ret->stub_hash_table == NULL)
     99     {
    100       _bfd_elf_link_hash_table_free (abfd);
    101       return NULL;
    102     }
    103   if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
    104 			    sizeof (struct elf32_m68hc11_stub_hash_entry)))
    105     {
    106       free (ret->stub_hash_table);
    107       _bfd_elf_link_hash_table_free (abfd);
    108       return NULL;
    109     }
    110   ret->root.root.hash_table_free = m68hc11_elf_bfd_link_hash_table_free;
    111 
    112   return ret;
    113 }
    114 
    115 /* Assorted hash table functions.  */
    116 
    117 /* Initialize an entry in the stub hash table.  */
    118 
    119 static struct bfd_hash_entry *
    120 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
    121                    const char *string)
    122 {
    123   /* Allocate the structure if it has not already been allocated by a
    124      subclass.  */
    125   if (entry == NULL)
    126     {
    127       entry = bfd_hash_allocate (table,
    128 				 sizeof (struct elf32_m68hc11_stub_hash_entry));
    129       if (entry == NULL)
    130 	return entry;
    131     }
    132 
    133   /* Call the allocation method of the superclass.  */
    134   entry = bfd_hash_newfunc (entry, table, string);
    135   if (entry != NULL)
    136     {
    137       struct elf32_m68hc11_stub_hash_entry *eh;
    138 
    139       /* Initialize the local fields.  */
    140       eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
    141       eh->stub_sec = NULL;
    142       eh->stub_offset = 0;
    143       eh->target_value = 0;
    144       eh->target_section = NULL;
    145     }
    146 
    147   return entry;
    148 }
    149 
    150 /* Add a new stub entry to the stub hash.  Not all fields of the new
    151    stub entry are initialised.  */
    152 
    153 static struct elf32_m68hc11_stub_hash_entry *
    154 m68hc12_add_stub (const char *stub_name, asection *section,
    155                   struct m68hc11_elf_link_hash_table *htab)
    156 {
    157   struct elf32_m68hc11_stub_hash_entry *stub_entry;
    158 
    159   /* Enter this entry into the linker stub hash table.  */
    160   stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
    161                                          TRUE, FALSE);
    162   if (stub_entry == NULL)
    163     {
    164       (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
    165 			     section->owner, stub_name);
    166       return NULL;
    167     }
    168 
    169   if (htab->stub_section == 0)
    170     {
    171       htab->stub_section = (*htab->add_stub_section) (".tramp",
    172                                                       htab->tramp_section);
    173     }
    174 
    175   stub_entry->stub_sec = htab->stub_section;
    176   stub_entry->stub_offset = 0;
    177   return stub_entry;
    178 }
    179 
    180 /* Hook called by the linker routine which adds symbols from an object
    181    file.  We use it for identify far symbols and force a loading of
    182    the trampoline handler.  */
    183 
    184 bfd_boolean
    185 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
    186                                Elf_Internal_Sym *sym,
    187                                const char **namep ATTRIBUTE_UNUSED,
    188                                flagword *flagsp ATTRIBUTE_UNUSED,
    189                                asection **secp ATTRIBUTE_UNUSED,
    190                                bfd_vma *valp ATTRIBUTE_UNUSED)
    191 {
    192   if (sym->st_other & STO_M68HC12_FAR)
    193     {
    194       struct elf_link_hash_entry *h;
    195 
    196       h = (struct elf_link_hash_entry *)
    197 	bfd_link_hash_lookup (info->hash, "__far_trampoline",
    198                               FALSE, FALSE, FALSE);
    199       if (h == NULL)
    200         {
    201           struct bfd_link_hash_entry* entry = NULL;
    202 
    203           _bfd_generic_link_add_one_symbol (info, abfd,
    204                                             "__far_trampoline",
    205                                             BSF_GLOBAL,
    206                                             bfd_und_section_ptr,
    207                                             (bfd_vma) 0, (const char*) NULL,
    208                                             FALSE, FALSE, &entry);
    209         }
    210 
    211     }
    212   return TRUE;
    213 }
    214 
    215 /* Merge non-visibility st_other attributes, STO_M68HC12_FAR and
    216    STO_M68HC12_INTERRUPT.  */
    217 
    218 void
    219 elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h,
    220 				      const Elf_Internal_Sym *isym,
    221 				      bfd_boolean definition,
    222 				      bfd_boolean dynamic ATTRIBUTE_UNUSED)
    223 {
    224   if (definition)
    225     h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
    226 		| ELF_ST_VISIBILITY (h->other));
    227 }
    228 
    229 /* External entry points for sizing and building linker stubs.  */
    230 
    231 /* Set up various things so that we can make a list of input sections
    232    for each output section included in the link.  Returns -1 on error,
    233    0 when no stubs will be needed, and 1 on success.  */
    234 
    235 int
    236 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
    237 {
    238   bfd *input_bfd;
    239   unsigned int bfd_count;
    240   int top_id, top_index;
    241   asection *section;
    242   asection **input_list, **list;
    243   bfd_size_type amt;
    244   asection *text_section;
    245   struct m68hc11_elf_link_hash_table *htab;
    246 
    247   htab = m68hc11_elf_hash_table (info);
    248   if (htab == NULL)
    249     return -1;
    250 
    251   if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
    252     return 0;
    253 
    254   /* Count the number of input BFDs and find the top input section id.
    255      Also search for an existing ".tramp" section so that we know
    256      where generated trampolines must go.  Default to ".text" if we
    257      can't find it.  */
    258   htab->tramp_section = 0;
    259   text_section = 0;
    260   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
    261        input_bfd != NULL;
    262        input_bfd = input_bfd->link.next)
    263     {
    264       bfd_count += 1;
    265       for (section = input_bfd->sections;
    266 	   section != NULL;
    267 	   section = section->next)
    268 	{
    269           const char* name = bfd_get_section_name (input_bfd, section);
    270 
    271           if (!strcmp (name, ".tramp"))
    272             htab->tramp_section = section;
    273 
    274           if (!strcmp (name, ".text"))
    275             text_section = section;
    276 
    277 	  if (top_id < section->id)
    278 	    top_id = section->id;
    279 	}
    280     }
    281   htab->bfd_count = bfd_count;
    282   if (htab->tramp_section == 0)
    283     htab->tramp_section = text_section;
    284 
    285   /* We can't use output_bfd->section_count here to find the top output
    286      section index as some sections may have been removed, and
    287      strip_excluded_output_sections doesn't renumber the indices.  */
    288   for (section = output_bfd->sections, top_index = 0;
    289        section != NULL;
    290        section = section->next)
    291     {
    292       if (top_index < section->index)
    293 	top_index = section->index;
    294     }
    295 
    296   htab->top_index = top_index;
    297   amt = sizeof (asection *) * (top_index + 1);
    298   input_list = (asection **) bfd_malloc (amt);
    299   htab->input_list = input_list;
    300   if (input_list == NULL)
    301     return -1;
    302 
    303   /* For sections we aren't interested in, mark their entries with a
    304      value we can check later.  */
    305   list = input_list + top_index;
    306   do
    307     *list = bfd_abs_section_ptr;
    308   while (list-- != input_list);
    309 
    310   for (section = output_bfd->sections;
    311        section != NULL;
    312        section = section->next)
    313     {
    314       if ((section->flags & SEC_CODE) != 0)
    315 	input_list[section->index] = NULL;
    316     }
    317 
    318   return 1;
    319 }
    320 
    321 /* Determine and set the size of the stub section for a final link.
    322 
    323    The basic idea here is to examine all the relocations looking for
    324    PC-relative calls to a target that is unreachable with a "bl"
    325    instruction.  */
    326 
    327 bfd_boolean
    328 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
    329                           struct bfd_link_info *info,
    330                           asection * (*add_stub_section) (const char*, asection*))
    331 {
    332   bfd *input_bfd;
    333   asection *section;
    334   Elf_Internal_Sym *local_syms, **all_local_syms;
    335   unsigned int bfd_indx, bfd_count;
    336   bfd_size_type amt;
    337   asection *stub_sec;
    338   struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
    339 
    340   if (htab == NULL)
    341     return FALSE;
    342 
    343   /* Stash our params away.  */
    344   htab->stub_bfd = stub_bfd;
    345   htab->add_stub_section = add_stub_section;
    346 
    347   /* Count the number of input BFDs and find the top input section id.  */
    348   for (input_bfd = info->input_bfds, bfd_count = 0;
    349        input_bfd != NULL;
    350        input_bfd = input_bfd->link.next)
    351     bfd_count += 1;
    352 
    353   /* We want to read in symbol extension records only once.  To do this
    354      we need to read in the local symbols in parallel and save them for
    355      later use; so hold pointers to the local symbols in an array.  */
    356   amt = sizeof (Elf_Internal_Sym *) * bfd_count;
    357   all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
    358   if (all_local_syms == NULL)
    359     return FALSE;
    360 
    361   /* Walk over all the input BFDs, swapping in local symbols.  */
    362   for (input_bfd = info->input_bfds, bfd_indx = 0;
    363        input_bfd != NULL;
    364        input_bfd = input_bfd->link.next, bfd_indx++)
    365     {
    366       Elf_Internal_Shdr *symtab_hdr;
    367 
    368       /* We'll need the symbol table in a second.  */
    369       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
    370       if (symtab_hdr->sh_info == 0)
    371 	continue;
    372 
    373       /* We need an array of the local symbols attached to the input bfd.  */
    374       local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
    375       if (local_syms == NULL)
    376 	{
    377 	  local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
    378 					     symtab_hdr->sh_info, 0,
    379 					     NULL, NULL, NULL);
    380 	  /* Cache them for elf_link_input_bfd.  */
    381 	  symtab_hdr->contents = (unsigned char *) local_syms;
    382 	}
    383       if (local_syms == NULL)
    384         {
    385           free (all_local_syms);
    386 	  return FALSE;
    387         }
    388 
    389       all_local_syms[bfd_indx] = local_syms;
    390     }
    391 
    392   for (input_bfd = info->input_bfds, bfd_indx = 0;
    393        input_bfd != NULL;
    394        input_bfd = input_bfd->link.next, bfd_indx++)
    395     {
    396       Elf_Internal_Shdr *symtab_hdr;
    397       struct elf_link_hash_entry ** sym_hashes;
    398 
    399       sym_hashes = elf_sym_hashes (input_bfd);
    400 
    401       /* We'll need the symbol table in a second.  */
    402       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
    403       if (symtab_hdr->sh_info == 0)
    404         continue;
    405 
    406       local_syms = all_local_syms[bfd_indx];
    407 
    408       /* Walk over each section attached to the input bfd.  */
    409       for (section = input_bfd->sections;
    410            section != NULL;
    411            section = section->next)
    412         {
    413           Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
    414 
    415           /* If there aren't any relocs, then there's nothing more
    416              to do.  */
    417           if ((section->flags & SEC_RELOC) == 0
    418               || section->reloc_count == 0)
    419             continue;
    420 
    421           /* If this section is a link-once section that will be
    422              discarded, then don't create any stubs.  */
    423           if (section->output_section == NULL
    424               || section->output_section->owner != output_bfd)
    425             continue;
    426 
    427           /* Get the relocs.  */
    428           internal_relocs
    429             = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
    430 					 (Elf_Internal_Rela *) NULL,
    431 					 info->keep_memory);
    432           if (internal_relocs == NULL)
    433             goto error_ret_free_local;
    434 
    435           /* Now examine each relocation.  */
    436           irela = internal_relocs;
    437           irelaend = irela + section->reloc_count;
    438           for (; irela < irelaend; irela++)
    439             {
    440               unsigned int r_type, r_indx;
    441               struct elf32_m68hc11_stub_hash_entry *stub_entry;
    442               asection *sym_sec;
    443               bfd_vma sym_value;
    444               struct elf_link_hash_entry *hash;
    445               const char *stub_name;
    446               Elf_Internal_Sym *sym;
    447 
    448               r_type = ELF32_R_TYPE (irela->r_info);
    449 
    450               /* Only look at 16-bit relocs.  */
    451               if (r_type != (unsigned int) R_M68HC11_16)
    452                 continue;
    453 
    454               /* Now determine the call target, its name, value,
    455                  section.  */
    456               r_indx = ELF32_R_SYM (irela->r_info);
    457               if (r_indx < symtab_hdr->sh_info)
    458                 {
    459                   /* It's a local symbol.  */
    460                   Elf_Internal_Shdr *hdr;
    461                   bfd_boolean is_far;
    462 
    463                   sym = local_syms + r_indx;
    464                   is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
    465                   if (!is_far)
    466                     continue;
    467 
    468 		  if (sym->st_shndx >= elf_numsections (input_bfd))
    469 		    sym_sec = NULL;
    470 		  else
    471 		    {
    472 		      hdr = elf_elfsections (input_bfd)[sym->st_shndx];
    473 		      sym_sec = hdr->bfd_section;
    474 		    }
    475                   stub_name = (bfd_elf_string_from_elf_section
    476                                (input_bfd, symtab_hdr->sh_link,
    477                                 sym->st_name));
    478                   sym_value = sym->st_value;
    479                   hash = NULL;
    480                 }
    481               else
    482                 {
    483                   /* It's an external symbol.  */
    484                   int e_indx;
    485 
    486                   e_indx = r_indx - symtab_hdr->sh_info;
    487                   hash = (struct elf_link_hash_entry *)
    488                     (sym_hashes[e_indx]);
    489 
    490                   while (hash->root.type == bfd_link_hash_indirect
    491                          || hash->root.type == bfd_link_hash_warning)
    492                     hash = ((struct elf_link_hash_entry *)
    493                             hash->root.u.i.link);
    494 
    495                   if (hash->root.type == bfd_link_hash_defined
    496                       || hash->root.type == bfd_link_hash_defweak
    497                       || hash->root.type == bfd_link_hash_new)
    498                     {
    499                       if (!(hash->other & STO_M68HC12_FAR))
    500                         continue;
    501                     }
    502                   else if (hash->root.type == bfd_link_hash_undefweak)
    503                     {
    504                       continue;
    505                     }
    506                   else if (hash->root.type == bfd_link_hash_undefined)
    507                     {
    508                       continue;
    509                     }
    510                   else
    511                     {
    512                       bfd_set_error (bfd_error_bad_value);
    513                       goto error_ret_free_internal;
    514                     }
    515                   sym_sec = hash->root.u.def.section;
    516                   sym_value = hash->root.u.def.value;
    517                   stub_name = hash->root.root.string;
    518                 }
    519 
    520               if (!stub_name)
    521                 goto error_ret_free_internal;
    522 
    523               stub_entry = m68hc12_stub_hash_lookup
    524                 (htab->stub_hash_table,
    525                  stub_name,
    526                  FALSE, FALSE);
    527               if (stub_entry == NULL)
    528                 {
    529                   if (add_stub_section == 0)
    530                     continue;
    531 
    532                   stub_entry = m68hc12_add_stub (stub_name, section, htab);
    533                   if (stub_entry == NULL)
    534                     {
    535                     error_ret_free_internal:
    536                       if (elf_section_data (section)->relocs == NULL)
    537                         free (internal_relocs);
    538                       goto error_ret_free_local;
    539                     }
    540                 }
    541 
    542               stub_entry->target_value = sym_value;
    543               stub_entry->target_section = sym_sec;
    544             }
    545 
    546           /* We're done with the internal relocs, free them.  */
    547           if (elf_section_data (section)->relocs == NULL)
    548             free (internal_relocs);
    549         }
    550     }
    551 
    552   if (add_stub_section)
    553     {
    554       /* OK, we've added some stubs.  Find out the new size of the
    555          stub sections.  */
    556       for (stub_sec = htab->stub_bfd->sections;
    557            stub_sec != NULL;
    558            stub_sec = stub_sec->next)
    559         {
    560           stub_sec->size = 0;
    561         }
    562 
    563       bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
    564     }
    565   free (all_local_syms);
    566   return TRUE;
    567 
    568  error_ret_free_local:
    569   free (all_local_syms);
    570   return FALSE;
    571 }
    572 
    573 /* Export the trampoline addresses in the symbol table.  */
    574 static bfd_boolean
    575 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
    576 {
    577   struct bfd_link_info *info;
    578   struct m68hc11_elf_link_hash_table *htab;
    579   struct elf32_m68hc11_stub_hash_entry *stub_entry;
    580   char* name;
    581   bfd_boolean result;
    582 
    583   info = (struct bfd_link_info *) in_arg;
    584   htab = m68hc11_elf_hash_table (info);
    585   if (htab == NULL)
    586     return FALSE;
    587 
    588   /* Massage our args to the form they really have.  */
    589   stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
    590 
    591   /* Generate the trampoline according to HC11 or HC12.  */
    592   result = (* htab->build_one_stub) (gen_entry, in_arg);
    593 
    594   /* Make a printable name that does not conflict with the real function.  */
    595   name = alloca (strlen (stub_entry->root.string) + 16);
    596   sprintf (name, "tramp.%s", stub_entry->root.string);
    597 
    598   /* Export the symbol for debugging/disassembling.  */
    599   m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
    600                           stub_entry->stub_offset,
    601                           stub_entry->stub_sec);
    602   return result;
    603 }
    604 
    605 /* Export a symbol or set its value and section.  */
    606 static void
    607 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
    608                         const char *name, bfd_vma value, asection *sec)
    609 {
    610   struct elf_link_hash_entry *h;
    611 
    612   h = (struct elf_link_hash_entry *)
    613     bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
    614   if (h == NULL)
    615     {
    616       _bfd_generic_link_add_one_symbol (info, abfd,
    617                                         name,
    618                                         BSF_GLOBAL,
    619                                         sec,
    620                                         value,
    621                                         (const char*) NULL,
    622                                         TRUE, FALSE, NULL);
    623     }
    624   else
    625     {
    626       h->root.type = bfd_link_hash_defined;
    627       h->root.u.def.value = value;
    628       h->root.u.def.section = sec;
    629     }
    630 }
    631 
    632 
    633 /* Build all the stubs associated with the current output file.  The
    634    stubs are kept in a hash table attached to the main linker hash
    635    table.  This function is called via m68hc12elf_finish in the
    636    linker.  */
    637 
    638 bfd_boolean
    639 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
    640 {
    641   asection *stub_sec;
    642   struct bfd_hash_table *table;
    643   struct m68hc11_elf_link_hash_table *htab;
    644   struct m68hc11_scan_param param;
    645 
    646   m68hc11_elf_get_bank_parameters (info);
    647   htab = m68hc11_elf_hash_table (info);
    648   if (htab == NULL)
    649     return FALSE;
    650 
    651   for (stub_sec = htab->stub_bfd->sections;
    652        stub_sec != NULL;
    653        stub_sec = stub_sec->next)
    654     {
    655       bfd_size_type size;
    656 
    657       /* Allocate memory to hold the linker stubs.  */
    658       size = stub_sec->size;
    659       stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
    660       if (stub_sec->contents == NULL && size != 0)
    661 	return FALSE;
    662       stub_sec->size = 0;
    663     }
    664 
    665   /* Build the stubs as directed by the stub hash table.  */
    666   table = htab->stub_hash_table;
    667   bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
    668 
    669   /* Scan the output sections to see if we use the memory banks.
    670      If so, export the symbols that define how the memory banks
    671      are mapped.  This is used by gdb and the simulator to obtain
    672      the information.  It can be used by programs to burn the eprom
    673      at the good addresses.  */
    674   param.use_memory_banks = FALSE;
    675   param.pinfo = &htab->pinfo;
    676   bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
    677   if (param.use_memory_banks)
    678     {
    679       m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
    680                               htab->pinfo.bank_physical,
    681                               bfd_abs_section_ptr);
    682       m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
    683                               htab->pinfo.bank_virtual,
    684                               bfd_abs_section_ptr);
    685       m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
    686                               htab->pinfo.bank_size,
    687                               bfd_abs_section_ptr);
    688     }
    689 
    690   return TRUE;
    691 }
    692 
    693 void
    694 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
    695 {
    696   unsigned i;
    697   struct m68hc11_page_info *pinfo;
    698   struct bfd_link_hash_entry *h;
    699   struct m68hc11_elf_link_hash_table *htab;
    700 
    701   htab = m68hc11_elf_hash_table (info);
    702   if (htab == NULL)
    703     return;
    704 
    705   pinfo = & htab->pinfo;
    706   if (pinfo->bank_param_initialized)
    707     return;
    708 
    709   pinfo->bank_virtual = M68HC12_BANK_VIRT;
    710   pinfo->bank_mask = M68HC12_BANK_MASK;
    711   pinfo->bank_physical = M68HC12_BANK_BASE;
    712   pinfo->bank_shift = M68HC12_BANK_SHIFT;
    713   pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
    714 
    715   h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
    716                             FALSE, FALSE, TRUE);
    717   if (h != (struct bfd_link_hash_entry*) NULL
    718       && h->type == bfd_link_hash_defined)
    719     pinfo->bank_physical = (h->u.def.value
    720                             + h->u.def.section->output_section->vma
    721                             + h->u.def.section->output_offset);
    722 
    723   h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
    724                             FALSE, FALSE, TRUE);
    725   if (h != (struct bfd_link_hash_entry*) NULL
    726       && h->type == bfd_link_hash_defined)
    727     pinfo->bank_virtual = (h->u.def.value
    728                            + h->u.def.section->output_section->vma
    729                            + h->u.def.section->output_offset);
    730 
    731   h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
    732                             FALSE, FALSE, TRUE);
    733   if (h != (struct bfd_link_hash_entry*) NULL
    734       && h->type == bfd_link_hash_defined)
    735     pinfo->bank_size = (h->u.def.value
    736                         + h->u.def.section->output_section->vma
    737                         + h->u.def.section->output_offset);
    738 
    739   pinfo->bank_shift = 0;
    740   for (i = pinfo->bank_size; i != 0; i >>= 1)
    741     pinfo->bank_shift++;
    742   pinfo->bank_shift--;
    743   pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
    744   pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
    745   pinfo->bank_param_initialized = 1;
    746 
    747   h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
    748                             FALSE, TRUE);
    749   if (h != (struct bfd_link_hash_entry*) NULL
    750       && h->type == bfd_link_hash_defined)
    751     pinfo->trampoline_addr = (h->u.def.value
    752                               + h->u.def.section->output_section->vma
    753                               + h->u.def.section->output_offset);
    754 }
    755 
    756 /* Return 1 if the address is in banked memory.
    757    This can be applied to a virtual address and to a physical address.  */
    758 int
    759 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
    760 {
    761   if (addr >= pinfo->bank_virtual)
    762     return 1;
    763 
    764   if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
    765     return 1;
    766 
    767   return 0;
    768 }
    769 
    770 /* Return the physical address seen by the processor, taking
    771    into account banked memory.  */
    772 bfd_vma
    773 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
    774 {
    775   if (addr < pinfo->bank_virtual)
    776     return addr;
    777 
    778   /* Map the address to the memory bank.  */
    779   addr -= pinfo->bank_virtual;
    780   addr &= pinfo->bank_mask;
    781   addr += pinfo->bank_physical;
    782   return addr;
    783 }
    784 
    785 /* Return the page number corresponding to an address in banked memory.  */
    786 bfd_vma
    787 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
    788 {
    789   if (addr < pinfo->bank_virtual)
    790     return 0;
    791 
    792   /* Map the address to the memory bank.  */
    793   addr -= pinfo->bank_virtual;
    794   addr >>= pinfo->bank_shift;
    795   addr &= 0x0ff;
    796   return addr;
    797 }
    798 
    799 /* This function is used for relocs which are only used for relaxing,
    800    which the linker should otherwise ignore.  */
    801 
    802 bfd_reloc_status_type
    803 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
    804                           arelent *reloc_entry,
    805                           asymbol *symbol ATTRIBUTE_UNUSED,
    806                           void *data ATTRIBUTE_UNUSED,
    807                           asection *input_section,
    808                           bfd *output_bfd,
    809                           char **error_message ATTRIBUTE_UNUSED)
    810 {
    811   if (output_bfd != NULL)
    812     reloc_entry->address += input_section->output_offset;
    813   return bfd_reloc_ok;
    814 }
    815 
    816 bfd_reloc_status_type
    817 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
    818                            arelent *reloc_entry,
    819                            asymbol *symbol,
    820                            void *data ATTRIBUTE_UNUSED,
    821                            asection *input_section,
    822                            bfd *output_bfd,
    823                            char **error_message ATTRIBUTE_UNUSED)
    824 {
    825   if (output_bfd != (bfd *) NULL
    826       && (symbol->flags & BSF_SECTION_SYM) == 0
    827       && (! reloc_entry->howto->partial_inplace
    828 	  || reloc_entry->addend == 0))
    829     {
    830       reloc_entry->address += input_section->output_offset;
    831       return bfd_reloc_ok;
    832     }
    833 
    834   if (output_bfd != NULL)
    835     return bfd_reloc_continue;
    836 
    837   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
    838     return bfd_reloc_outofrange;
    839 
    840   abort();
    841 }
    842 
    843 /* Look through the relocs for a section during the first phase.
    844    Since we don't do .gots or .plts, we just need to consider the
    845    virtual table relocs for gc.  */
    846 
    847 bfd_boolean
    848 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
    849                             asection *sec, const Elf_Internal_Rela *relocs)
    850 {
    851   Elf_Internal_Shdr *           symtab_hdr;
    852   struct elf_link_hash_entry ** sym_hashes;
    853   const Elf_Internal_Rela *     rel;
    854   const Elf_Internal_Rela *     rel_end;
    855 
    856   if (info->relocatable)
    857     return TRUE;
    858 
    859   symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
    860   sym_hashes = elf_sym_hashes (abfd);
    861   rel_end = relocs + sec->reloc_count;
    862 
    863   for (rel = relocs; rel < rel_end; rel++)
    864     {
    865       struct elf_link_hash_entry * h;
    866       unsigned long r_symndx;
    867 
    868       r_symndx = ELF32_R_SYM (rel->r_info);
    869 
    870       if (r_symndx < symtab_hdr->sh_info)
    871         h = NULL;
    872       else
    873 	{
    874 	  h = sym_hashes [r_symndx - symtab_hdr->sh_info];
    875 	  while (h->root.type == bfd_link_hash_indirect
    876 		 || h->root.type == bfd_link_hash_warning)
    877 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    878 
    879 	  /* PR15323, ref flags aren't set for references in the same
    880 	     object.  */
    881 	  h->root.non_ir_ref = 1;
    882 	}
    883 
    884       switch (ELF32_R_TYPE (rel->r_info))
    885         {
    886         /* This relocation describes the C++ object vtable hierarchy.
    887            Reconstruct it for later use during GC.  */
    888         case R_M68HC11_GNU_VTINHERIT:
    889           if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
    890             return FALSE;
    891           break;
    892 
    893         /* This relocation describes which C++ vtable entries are actually
    894            used.  Record for later use during GC.  */
    895         case R_M68HC11_GNU_VTENTRY:
    896           BFD_ASSERT (h != NULL);
    897           if (h != NULL
    898               && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
    899             return FALSE;
    900           break;
    901         }
    902     }
    903 
    904   return TRUE;
    905 }
    906 
    907 /* Relocate a 68hc11/68hc12 ELF section.  */
    908 bfd_boolean
    909 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
    910                                 struct bfd_link_info *info,
    911                                 bfd *input_bfd, asection *input_section,
    912                                 bfd_byte *contents, Elf_Internal_Rela *relocs,
    913                                 Elf_Internal_Sym *local_syms,
    914                                 asection **local_sections)
    915 {
    916   Elf_Internal_Shdr *symtab_hdr;
    917   struct elf_link_hash_entry **sym_hashes;
    918   Elf_Internal_Rela *rel, *relend;
    919   const char *name = NULL;
    920   struct m68hc11_page_info *pinfo;
    921   const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
    922   struct m68hc11_elf_link_hash_table *htab;
    923   unsigned long e_flags;
    924 
    925   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
    926   sym_hashes = elf_sym_hashes (input_bfd);
    927   e_flags = elf_elfheader (input_bfd)->e_flags;
    928 
    929   htab = m68hc11_elf_hash_table (info);
    930   if (htab == NULL)
    931     return FALSE;
    932 
    933   /* Get memory bank parameters.  */
    934   m68hc11_elf_get_bank_parameters (info);
    935 
    936   pinfo = & htab->pinfo;
    937   rel = relocs;
    938   relend = relocs + input_section->reloc_count;
    939 
    940   for (; rel < relend; rel++)
    941     {
    942       int r_type;
    943       arelent arel;
    944       reloc_howto_type *howto;
    945       unsigned long r_symndx;
    946       Elf_Internal_Sym *sym;
    947       asection *sec;
    948       bfd_vma relocation = 0;
    949       bfd_reloc_status_type r = bfd_reloc_undefined;
    950       bfd_vma phys_page;
    951       bfd_vma phys_addr;
    952       bfd_vma insn_addr;
    953       bfd_vma insn_page;
    954       bfd_boolean is_far = FALSE;
    955       bfd_boolean is_xgate_symbol = FALSE;
    956       bfd_boolean is_section_symbol = FALSE;
    957       struct elf_link_hash_entry *h;
    958       bfd_vma val;
    959 
    960       r_symndx = ELF32_R_SYM (rel->r_info);
    961       r_type = ELF32_R_TYPE (rel->r_info);
    962 
    963       if (r_type == R_M68HC11_GNU_VTENTRY
    964           || r_type == R_M68HC11_GNU_VTINHERIT)
    965         continue;
    966 
    967       (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
    968       howto = arel.howto;
    969 
    970       h = NULL;
    971       sym = NULL;
    972       sec = NULL;
    973       if (r_symndx < symtab_hdr->sh_info)
    974 	{
    975 	  sym = local_syms + r_symndx;
    976 	  sec = local_sections[r_symndx];
    977 	  relocation = (sec->output_section->vma
    978 			+ sec->output_offset
    979 			+ sym->st_value);
    980 	  is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
    981 	  is_xgate_symbol = (sym && (sym->st_target_internal));
    982 	  is_section_symbol = ELF_ST_TYPE (sym->st_info) & STT_SECTION;
    983 	}
    984       else
    985 	{
    986 	  bfd_boolean unresolved_reloc, warned, ignored;
    987 
    988 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
    989 				   r_symndx, symtab_hdr, sym_hashes,
    990 				   h, sec, relocation, unresolved_reloc,
    991 				   warned, ignored);
    992 
    993 	  is_far = (h && (h->other & STO_M68HC12_FAR));
    994 	  is_xgate_symbol = (h && (h->target_internal));
    995 	}
    996 
    997       if (sec != NULL && discarded_section (sec))
    998 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
    999 					 rel, 1, relend, howto, 0, contents);
   1000 
   1001       if (info->relocatable)
   1002 	{
   1003 	  /* This is a relocatable link.  We don't have to change
   1004 	     anything, unless the reloc is against a section symbol,
   1005 	     in which case we have to adjust according to where the
   1006 	     section symbol winds up in the output section.  */
   1007 	  if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
   1008 	    rel->r_addend += sec->output_offset;
   1009 	  continue;
   1010 	}
   1011 
   1012       if (h != NULL)
   1013 	name = h->root.root.string;
   1014       else
   1015 	{
   1016 	  name = (bfd_elf_string_from_elf_section
   1017 		  (input_bfd, symtab_hdr->sh_link, sym->st_name));
   1018 	  if (name == NULL || *name == '\0')
   1019 	    name = bfd_section_name (input_bfd, sec);
   1020 	}
   1021 
   1022       if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
   1023 	{
   1024 	  struct elf32_m68hc11_stub_hash_entry* stub;
   1025 
   1026 	  stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
   1027 					   name, FALSE, FALSE);
   1028 	  if (stub)
   1029 	    {
   1030 	      relocation = stub->stub_offset
   1031 		+ stub->stub_sec->output_section->vma
   1032 		+ stub->stub_sec->output_offset;
   1033 	      is_far = FALSE;
   1034 	    }
   1035 	}
   1036 
   1037       /* Do the memory bank mapping.  */
   1038       phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
   1039       phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
   1040       switch (r_type)
   1041         {
   1042         case R_M68HC12_LO8XG:
   1043           /* This relocation is specific to XGATE IMM16 calls and will precede
   1044 	     a HI8. tc-m68hc11 only generates them in pairs.
   1045 	     Leave the relocation to the HI8XG step.  */
   1046           r = bfd_reloc_ok;
   1047           r_type = R_M68HC11_NONE;
   1048           break;
   1049 
   1050         case R_M68HC12_HI8XG:
   1051           /* This relocation is specific to XGATE IMM16 calls and must follow
   1052              a LO8XG. Does not actually check that it was a LO8XG.
   1053 	     Adjusts high and low bytes.  */
   1054           relocation = phys_addr;
   1055           if ((e_flags & E_M68HC11_XGATE_RAMOFFSET)
   1056 	      && (relocation >= 0x2000))
   1057 	    relocation += 0xc000; /* HARDCODED RAM offset for XGATE.  */
   1058 
   1059           /* Fetch 16 bit value including low byte in previous insn.  */
   1060           val = (bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset) << 8)
   1061 	    | bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset - 2);
   1062 
   1063           /* Add on value to preserve carry, then write zero to high byte.  */
   1064           relocation += val;
   1065 
   1066           /* Write out top byte.  */
   1067           bfd_put_8 (input_bfd, (relocation >> 8) & 0xff,
   1068 		     (bfd_byte*) contents + rel->r_offset);
   1069 
   1070           /* Write out low byte to previous instruction.  */
   1071           bfd_put_8 (input_bfd, relocation & 0xff,
   1072 		     (bfd_byte*) contents + rel->r_offset - 2);
   1073 
   1074           /* Mark as relocation completed.  */
   1075           r = bfd_reloc_ok;
   1076           r_type = R_M68HC11_NONE;
   1077           break;
   1078 
   1079         /* The HI8 and LO8 relocs are generated by %hi(expr) %lo(expr)
   1080            assembler directives. %hi does not support carry.  */
   1081         case R_M68HC11_HI8:
   1082         case R_M68HC11_LO8:
   1083           relocation = phys_addr;
   1084           break;
   1085 
   1086         case R_M68HC11_24:
   1087           /* Reloc used by 68HC12 call instruction.  */
   1088           bfd_put_16 (input_bfd, phys_addr,
   1089                       (bfd_byte*) contents + rel->r_offset);
   1090           bfd_put_8 (input_bfd, phys_page,
   1091                      (bfd_byte*) contents + rel->r_offset + 2);
   1092           r = bfd_reloc_ok;
   1093           r_type = R_M68HC11_NONE;
   1094           break;
   1095 
   1096         case R_M68HC11_NONE:
   1097           r = bfd_reloc_ok;
   1098           break;
   1099 
   1100         case R_M68HC11_LO16:
   1101           /* Reloc generated by %addr(expr) gas to obtain the
   1102              address as mapped in the memory bank window.  */
   1103           relocation = phys_addr;
   1104           break;
   1105 
   1106         case R_M68HC11_PAGE:
   1107           /* Reloc generated by %page(expr) gas to obtain the
   1108              page number associated with the address.  */
   1109           relocation = phys_page;
   1110           break;
   1111 
   1112         case R_M68HC11_16:
   1113           /* Get virtual address of instruction having the relocation.  */
   1114           if (is_far)
   1115             {
   1116               const char* msg;
   1117               char* buf;
   1118               msg = _("Reference to the far symbol `%s' using a wrong "
   1119                       "relocation may result in incorrect execution");
   1120               buf = alloca (strlen (msg) + strlen (name) + 10);
   1121               sprintf (buf, msg, name);
   1122 
   1123               (* info->callbacks->warning)
   1124                 (info, buf, name, input_bfd, NULL, rel->r_offset);
   1125             }
   1126 
   1127           /* Get virtual address of instruction having the relocation.  */
   1128           insn_addr = input_section->output_section->vma
   1129             + input_section->output_offset
   1130             + rel->r_offset;
   1131 
   1132           insn_page = m68hc11_phys_page (pinfo, insn_addr);
   1133 
   1134          /* If we are linking an S12 instruction against an XGATE symbol, we
   1135             need to change the offset of the symbol value so that it's correct
   1136 	    from the S12's perspective.  */
   1137           if (is_xgate_symbol)
   1138 	    {
   1139 	      /* The ram in the global space is mapped to 0x2000 in the 16-bit
   1140 		 address space for S12 and 0xE000 in the 16-bit address space
   1141 		 for XGATE.  */
   1142 	      if (relocation >= 0xE000)
   1143 		{
   1144 		  /* We offset the address by the difference
   1145 		     between these two mappings.  */
   1146 		  relocation -= 0xC000;
   1147 		  break;
   1148 		}
   1149 	      else
   1150 		{
   1151 		  const char * msg;
   1152 		  char * buf;
   1153 
   1154 		  msg = _("XGATE address (%lx) is not within shared RAM"
   1155 			  "(0xE000-0xFFFF), therefore you must manually offset "
   1156 			  "the address, and possibly manage the page, in your "
   1157 			  "code.");
   1158 		  buf = alloca (strlen (msg) + 128);
   1159 		  sprintf (buf, msg, phys_addr);
   1160 		  if (!((*info->callbacks->warning) (info, buf, name, input_bfd,
   1161 						     input_section, insn_addr)))
   1162 		    return FALSE;
   1163 		  break;
   1164 		}
   1165 	    }
   1166 
   1167           if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
   1168               && m68hc11_addr_is_banked (pinfo, insn_addr)
   1169               && phys_page != insn_page && !(e_flags & E_M68HC11_NO_BANK_WARNING))
   1170             {
   1171               const char * msg;
   1172               char * buf;
   1173 
   1174               msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
   1175                       "as current banked address [%lx:%04lx] (%lx)");
   1176 
   1177               buf = alloca (strlen (msg) + 128);
   1178               sprintf (buf, msg, phys_page, phys_addr,
   1179                        (long) (relocation + rel->r_addend),
   1180                        insn_page, m68hc11_phys_addr (pinfo, insn_addr),
   1181                        (long) (insn_addr));
   1182               if (!((*info->callbacks->warning)
   1183                     (info, buf, name, input_bfd, input_section,
   1184                      rel->r_offset)))
   1185                 return FALSE;
   1186               break;
   1187             }
   1188 
   1189           if (phys_page != 0 && insn_page == 0)
   1190             {
   1191               const char * msg;
   1192               char * buf;
   1193 
   1194               msg = _("reference to a banked address [%lx:%04lx] in the "
   1195                       "normal address space at %04lx");
   1196 
   1197               buf = alloca (strlen (msg) + 128);
   1198               sprintf (buf, msg, phys_page, phys_addr, insn_addr);
   1199               if (!((*info->callbacks->warning)
   1200                     (info, buf, name, input_bfd, input_section,
   1201                      insn_addr)))
   1202                 return FALSE;
   1203 
   1204               relocation = phys_addr;
   1205               break;
   1206             }
   1207 
   1208           /* If this is a banked address use the phys_addr so that
   1209              we stay in the banked window.  */
   1210           if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
   1211             relocation = phys_addr;
   1212           break;
   1213         }
   1214 
   1215       /* If we are linking an XGATE instruction against an S12 symbol, we
   1216          need to change the offset of the symbol value so that it's correct
   1217 	 from the XGATE's perspective.  */
   1218       if (!strcmp (howto->name, "R_XGATE_IMM8_LO")
   1219           || !strcmp (howto->name, "R_XGATE_IMM8_HI"))
   1220         {
   1221           /* We can only offset S12 addresses that lie within the non-paged
   1222              area of RAM.  */
   1223           if (!is_xgate_symbol && !is_section_symbol)
   1224             {
   1225               /* The ram in the global space is mapped to 0x2000 and stops at
   1226                  0x4000 in the 16-bit address space for S12 and 0xE000 in the
   1227                  16-bit address space for XGATE.  */
   1228               if (relocation >= 0x2000 && relocation < 0x4000)
   1229                  /* We offset the address by the difference
   1230                    between these two mappings.  */
   1231                 relocation += 0xC000;
   1232               else
   1233                 {
   1234                   const char * msg;
   1235                   char * buf;
   1236 
   1237                   /* Get virtual address of instruction having the relocation.  */
   1238                   insn_addr = input_section->output_section->vma
   1239                       + input_section->output_offset + rel->r_offset;
   1240 
   1241                   msg = _("S12 address (%lx) is not within shared RAM"
   1242                       "(0x2000-0x4000), therefore you must manually "
   1243                       "offset the address in your code");
   1244                   buf = alloca (strlen (msg) + 128);
   1245                   sprintf (buf, msg, phys_addr);
   1246                   if (!((*info->callbacks->warning) (info, buf, name, input_bfd,
   1247 						     input_section, insn_addr)))
   1248                     return FALSE;
   1249                   break;
   1250                 }
   1251             }
   1252         }
   1253 
   1254       if (r_type != R_M68HC11_NONE)
   1255         {
   1256           if ((r_type == R_M68HC12_PCREL_9) || (r_type == R_M68HC12_PCREL_10))
   1257             r = _bfd_final_link_relocate (howto, input_bfd, input_section,
   1258                                       contents, rel->r_offset,
   1259                                       relocation - 2, rel->r_addend);
   1260           else
   1261             r = _bfd_final_link_relocate (howto, input_bfd, input_section,
   1262                                           contents, rel->r_offset,
   1263                                           relocation, rel->r_addend);
   1264         }
   1265 
   1266       if (r != bfd_reloc_ok)
   1267 	{
   1268 	  const char * msg = (const char *) 0;
   1269 
   1270 	  switch (r)
   1271 	    {
   1272 	    case bfd_reloc_overflow:
   1273 	      if (!((*info->callbacks->reloc_overflow)
   1274 		    (info, NULL, name, howto->name, (bfd_vma) 0,
   1275 		     input_bfd, input_section, rel->r_offset)))
   1276 		return FALSE;
   1277 	      break;
   1278 
   1279 	    case bfd_reloc_undefined:
   1280 	      if (!((*info->callbacks->undefined_symbol)
   1281 		    (info, name, input_bfd, input_section,
   1282 		     rel->r_offset, TRUE)))
   1283 		return FALSE;
   1284 	      break;
   1285 
   1286 	    case bfd_reloc_outofrange:
   1287 	      msg = _ ("internal error: out of range error");
   1288 	      goto common_error;
   1289 
   1290 	    case bfd_reloc_notsupported:
   1291 	      msg = _ ("internal error: unsupported relocation error");
   1292 	      goto common_error;
   1293 
   1294 	    case bfd_reloc_dangerous:
   1295 	      msg = _ ("internal error: dangerous error");
   1296 	      goto common_error;
   1297 
   1298 	    default:
   1299 	      msg = _ ("internal error: unknown error");
   1300 	      /* fall through */
   1301 
   1302 	    common_error:
   1303 	      if (!((*info->callbacks->warning)
   1304 		    (info, msg, name, input_bfd, input_section,
   1305 		     rel->r_offset)))
   1306 		return FALSE;
   1307 	      break;
   1308 	    }
   1309 	}
   1310     }
   1311 
   1312   return TRUE;
   1313 }
   1314 
   1315 
   1316 
   1317 /* Set and control ELF flags in ELF header.  */
   1319 
   1320 bfd_boolean
   1321 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
   1322 {
   1323   BFD_ASSERT (!elf_flags_init (abfd)
   1324 	      || elf_elfheader (abfd)->e_flags == flags);
   1325 
   1326   elf_elfheader (abfd)->e_flags = flags;
   1327   elf_flags_init (abfd) = TRUE;
   1328   return TRUE;
   1329 }
   1330 
   1331 /* Merge backend specific data from an object file to the output
   1332    object file when linking.  */
   1333 
   1334 bfd_boolean
   1335 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
   1336 {
   1337   flagword old_flags;
   1338   flagword new_flags;
   1339   bfd_boolean ok = TRUE;
   1340 
   1341   /* Check if we have the same endianness */
   1342   if (!_bfd_generic_verify_endian_match (ibfd, obfd))
   1343     return FALSE;
   1344 
   1345   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
   1346       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
   1347     return TRUE;
   1348 
   1349   new_flags = elf_elfheader (ibfd)->e_flags;
   1350   elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
   1351   old_flags = elf_elfheader (obfd)->e_flags;
   1352 
   1353   if (! elf_flags_init (obfd))
   1354     {
   1355       elf_flags_init (obfd) = TRUE;
   1356       elf_elfheader (obfd)->e_flags = new_flags;
   1357       elf_elfheader (obfd)->e_ident[EI_CLASS]
   1358 	= elf_elfheader (ibfd)->e_ident[EI_CLASS];
   1359 
   1360       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
   1361 	  && bfd_get_arch_info (obfd)->the_default)
   1362 	{
   1363 	  if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
   1364 				   bfd_get_mach (ibfd)))
   1365 	    return FALSE;
   1366 	}
   1367 
   1368       return TRUE;
   1369     }
   1370 
   1371   /* Check ABI compatibility.  */
   1372   if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
   1373     {
   1374       (*_bfd_error_handler)
   1375 	(_("%B: linking files compiled for 16-bit integers (-mshort) "
   1376            "and others for 32-bit integers"), ibfd);
   1377       ok = FALSE;
   1378     }
   1379   if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
   1380     {
   1381       (*_bfd_error_handler)
   1382 	(_("%B: linking files compiled for 32-bit double (-fshort-double) "
   1383            "and others for 64-bit double"), ibfd);
   1384       ok = FALSE;
   1385     }
   1386 
   1387   /* Processor compatibility.  */
   1388   if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
   1389     {
   1390       (*_bfd_error_handler)
   1391 	(_("%B: linking files compiled for HCS12 with "
   1392            "others compiled for HC12"), ibfd);
   1393       ok = FALSE;
   1394     }
   1395   new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
   1396                | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
   1397 
   1398   elf_elfheader (obfd)->e_flags = new_flags;
   1399 
   1400   new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
   1401   old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
   1402 
   1403   /* Warn about any other mismatches */
   1404   if (new_flags != old_flags)
   1405     {
   1406       (*_bfd_error_handler)
   1407 	(_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
   1408 	 ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
   1409       ok = FALSE;
   1410     }
   1411 
   1412   if (! ok)
   1413     {
   1414       bfd_set_error (bfd_error_bad_value);
   1415       return FALSE;
   1416     }
   1417 
   1418   return TRUE;
   1419 }
   1420 
   1421 bfd_boolean
   1422 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
   1423 {
   1424   FILE *file = (FILE *) ptr;
   1425 
   1426   BFD_ASSERT (abfd != NULL && ptr != NULL);
   1427 
   1428   /* Print normal ELF private data.  */
   1429   _bfd_elf_print_private_bfd_data (abfd, ptr);
   1430 
   1431   /* xgettext:c-format */
   1432   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
   1433 
   1434   if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
   1435     fprintf (file, _("[abi=32-bit int, "));
   1436   else
   1437     fprintf (file, _("[abi=16-bit int, "));
   1438 
   1439   if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
   1440     fprintf (file, _("64-bit double, "));
   1441   else
   1442     fprintf (file, _("32-bit double, "));
   1443 
   1444   if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
   1445     fprintf (file, _("cpu=HC11]"));
   1446   else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
   1447     fprintf (file, _("cpu=HCS12]"));
   1448   else
   1449     fprintf (file, _("cpu=HC12]"));
   1450 
   1451   if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
   1452     fprintf (file, _(" [memory=bank-model]"));
   1453   else
   1454     fprintf (file, _(" [memory=flat]"));
   1455 
   1456   if (elf_elfheader (abfd)->e_flags & E_M68HC11_XGATE_RAMOFFSET)
   1457     fprintf (file, _(" [XGATE RAM offsetting]"));
   1458 
   1459   fputc ('\n', file);
   1460 
   1461   return TRUE;
   1462 }
   1463 
   1464 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
   1465                                    asection *asect, void *arg)
   1466 {
   1467   struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
   1468 
   1469   if (asect->vma >= p->pinfo->bank_virtual)
   1470     p->use_memory_banks = TRUE;
   1471 }
   1472 
   1473 /* Tweak the OSABI field of the elf header.  */
   1474 
   1475 void
   1476 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
   1477 {
   1478   struct m68hc11_scan_param param;
   1479   struct m68hc11_elf_link_hash_table *htab;
   1480 
   1481   if (link_info == NULL)
   1482     return;
   1483 
   1484   htab = m68hc11_elf_hash_table (link_info);
   1485   if (htab == NULL)
   1486     return;
   1487 
   1488   m68hc11_elf_get_bank_parameters (link_info);
   1489 
   1490   param.use_memory_banks = FALSE;
   1491   param.pinfo = & htab->pinfo;
   1492 
   1493   bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
   1494 
   1495   if (param.use_memory_banks)
   1496     {
   1497       Elf_Internal_Ehdr * i_ehdrp;
   1498 
   1499       i_ehdrp = elf_elfheader (abfd);
   1500       i_ehdrp->e_flags |= E_M68HC12_BANKS;
   1501     }
   1502 }
   1503