1 @c Copyright (C) 1991-2014 Free Software Foundation, Inc. 2 @c This is part of the GAS manual. 3 @c For copying conditions, see the file as.texinfo. 4 @c man end 5 6 @ifset GENERIC 7 @page 8 @node i386-Dependent 9 @chapter 80386 Dependent Features 10 @end ifset 11 @ifclear GENERIC 12 @node Machine Dependencies 13 @chapter 80386 Dependent Features 14 @end ifclear 15 16 @cindex i386 support 17 @cindex i80386 support 18 @cindex x86-64 support 19 20 The i386 version @code{@value{AS}} supports both the original Intel 386 21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture 22 extending the Intel architecture to 64-bits. 23 24 @menu 25 * i386-Options:: Options 26 * i386-Directives:: X86 specific directives 27 * i386-Syntax:: Syntactical considerations 28 * i386-Mnemonics:: Instruction Naming 29 * i386-Regs:: Register Naming 30 * i386-Prefixes:: Instruction Prefixes 31 * i386-Memory:: Memory References 32 * i386-Jumps:: Handling of Jump Instructions 33 * i386-Float:: Floating Point 34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations 35 * i386-LWP:: AMD's Lightweight Profiling Instructions 36 * i386-BMI:: Bit Manipulation Instruction 37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions 38 * i386-16bit:: Writing 16-bit Code 39 * i386-Arch:: Specifying an x86 CPU architecture 40 * i386-Bugs:: AT&T Syntax bugs 41 * i386-Notes:: Notes 42 @end menu 43 44 @node i386-Options 45 @section Options 46 47 @cindex options for i386 48 @cindex options for x86-64 49 @cindex i386 options 50 @cindex x86-64 options 51 52 The i386 version of @code{@value{AS}} has a few machine 53 dependent options: 54 55 @c man begin OPTIONS 56 @table @gcctabopt 57 @cindex @samp{--32} option, i386 58 @cindex @samp{--32} option, x86-64 59 @cindex @samp{--x32} option, i386 60 @cindex @samp{--x32} option, x86-64 61 @cindex @samp{--64} option, i386 62 @cindex @samp{--64} option, x86-64 63 @item --32 | --x32 | --64 64 Select the word size, either 32 bits or 64 bits. @samp{--32} 65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64} 66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size 67 respectively. 68 69 These options are only available with the ELF object file format, and 70 require that the necessary BFD support has been included (on a 32-bit 71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit 72 usage and use x86-64 as target platform). 73 74 @item -n 75 By default, x86 GAS replaces multiple nop instructions used for 76 alignment within code sections with multi-byte nop instructions such 77 as leal 0(%esi,1),%esi. This switch disables the optimization. 78 79 @cindex @samp{--divide} option, i386 80 @item --divide 81 On SVR4-derived platforms, the character @samp{/} is treated as a comment 82 character, which means that it cannot be used in expressions. The 83 @samp{--divide} option turns @samp{/} into a normal character. This does 84 not disable @samp{/} at the beginning of a line starting a comment, or 85 affect using @samp{#} for starting a comment. 86 87 @cindex @samp{-march=} option, i386 88 @cindex @samp{-march=} option, x86-64 89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}] 90 This option specifies the target processor. The assembler will 91 issue an error message if an attempt is made to assemble an instruction 92 which will not execute on the target processor. The following 93 processor names are recognized: 94 @code{i8086}, 95 @code{i186}, 96 @code{i286}, 97 @code{i386}, 98 @code{i486}, 99 @code{i586}, 100 @code{i686}, 101 @code{pentium}, 102 @code{pentiumpro}, 103 @code{pentiumii}, 104 @code{pentiumiii}, 105 @code{pentium4}, 106 @code{prescott}, 107 @code{nocona}, 108 @code{core}, 109 @code{core2}, 110 @code{corei7}, 111 @code{l1om}, 112 @code{k1om}, 113 @code{k6}, 114 @code{k6_2}, 115 @code{athlon}, 116 @code{opteron}, 117 @code{k8}, 118 @code{amdfam10}, 119 @code{bdver1}, 120 @code{bdver2}, 121 @code{bdver3}, 122 @code{bdver4}, 123 @code{btver1}, 124 @code{btver2}, 125 @code{generic32} and 126 @code{generic64}. 127 128 In addition to the basic instruction set, the assembler can be told to 129 accept various extension mnemonics. For example, 130 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and 131 @var{vmx}. The following extensions are currently supported: 132 @code{8087}, 133 @code{287}, 134 @code{387}, 135 @code{no87}, 136 @code{mmx}, 137 @code{nommx}, 138 @code{sse}, 139 @code{sse2}, 140 @code{sse3}, 141 @code{ssse3}, 142 @code{sse4.1}, 143 @code{sse4.2}, 144 @code{sse4}, 145 @code{nosse}, 146 @code{avx}, 147 @code{avx2}, 148 @code{adx}, 149 @code{rdseed}, 150 @code{prfchw}, 151 @code{smap}, 152 @code{mpx}, 153 @code{sha}, 154 @code{prefetchwt1}, 155 @code{clflushopt}, 156 @code{se1}, 157 @code{clwb}, 158 @code{pcommit}, 159 @code{avx512f}, 160 @code{avx512cd}, 161 @code{avx512er}, 162 @code{avx512pf}, 163 @code{avx512vl}, 164 @code{avx512bw}, 165 @code{avx512dq}, 166 @code{avx512ifma}, 167 @code{avx512vbmi}, 168 @code{noavx}, 169 @code{vmx}, 170 @code{vmfunc}, 171 @code{smx}, 172 @code{xsave}, 173 @code{xsaveopt}, 174 @code{xsavec}, 175 @code{xsaves}, 176 @code{aes}, 177 @code{pclmul}, 178 @code{fsgsbase}, 179 @code{rdrnd}, 180 @code{f16c}, 181 @code{bmi2}, 182 @code{fma}, 183 @code{movbe}, 184 @code{ept}, 185 @code{lzcnt}, 186 @code{hle}, 187 @code{rtm}, 188 @code{invpcid}, 189 @code{clflush}, 190 @code{lwp}, 191 @code{fma4}, 192 @code{xop}, 193 @code{cx16}, 194 @code{syscall}, 195 @code{rdtscp}, 196 @code{3dnow}, 197 @code{3dnowa}, 198 @code{sse4a}, 199 @code{sse5}, 200 @code{svme}, 201 @code{abm} and 202 @code{padlock}. 203 Note that rather than extending a basic instruction set, the extension 204 mnemonics starting with @code{no} revoke the respective functionality. 205 206 When the @code{.arch} directive is used with @option{-march}, the 207 @code{.arch} directive will take precedent. 208 209 @cindex @samp{-mtune=} option, i386 210 @cindex @samp{-mtune=} option, x86-64 211 @item -mtune=@var{CPU} 212 This option specifies a processor to optimize for. When used in 213 conjunction with the @option{-march} option, only instructions 214 of the processor specified by the @option{-march} option will be 215 generated. 216 217 Valid @var{CPU} values are identical to the processor list of 218 @option{-march=@var{CPU}}. 219 220 @cindex @samp{-msse2avx} option, i386 221 @cindex @samp{-msse2avx} option, x86-64 222 @item -msse2avx 223 This option specifies that the assembler should encode SSE instructions 224 with VEX prefix. 225 226 @cindex @samp{-msse-check=} option, i386 227 @cindex @samp{-msse-check=} option, x86-64 228 @item -msse-check=@var{none} 229 @itemx -msse-check=@var{warning} 230 @itemx -msse-check=@var{error} 231 These options control if the assembler should check SSE instructions. 232 @option{-msse-check=@var{none}} will make the assembler not to check SSE 233 instructions, which is the default. @option{-msse-check=@var{warning}} 234 will make the assembler issue a warning for any SSE instruction. 235 @option{-msse-check=@var{error}} will make the assembler issue an error 236 for any SSE instruction. 237 238 @cindex @samp{-mavxscalar=} option, i386 239 @cindex @samp{-mavxscalar=} option, x86-64 240 @item -mavxscalar=@var{128} 241 @itemx -mavxscalar=@var{256} 242 These options control how the assembler should encode scalar AVX 243 instructions. @option{-mavxscalar=@var{128}} will encode scalar 244 AVX instructions with 128bit vector length, which is the default. 245 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions 246 with 256bit vector length. 247 248 @cindex @samp{-mevexlig=} option, i386 249 @cindex @samp{-mevexlig=} option, x86-64 250 @item -mevexlig=@var{128} 251 @itemx -mevexlig=@var{256} 252 @itemx -mevexlig=@var{512} 253 These options control how the assembler should encode length-ignored 254 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG 255 EVEX instructions with 128bit vector length, which is the default. 256 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will 257 encode LIG EVEX instructions with 256bit and 512bit vector length, 258 respectively. 259 260 @cindex @samp{-mevexwig=} option, i386 261 @cindex @samp{-mevexwig=} option, x86-64 262 @item -mevexwig=@var{0} 263 @itemx -mevexwig=@var{1} 264 These options control how the assembler should encode w-ignored (WIG) 265 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG 266 EVEX instructions with evex.w = 0, which is the default. 267 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with 268 evex.w = 1. 269 270 @cindex @samp{-mmnemonic=} option, i386 271 @cindex @samp{-mmnemonic=} option, x86-64 272 @item -mmnemonic=@var{att} 273 @itemx -mmnemonic=@var{intel} 274 This option specifies instruction mnemonic for matching instructions. 275 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will 276 take precedent. 277 278 @cindex @samp{-msyntax=} option, i386 279 @cindex @samp{-msyntax=} option, x86-64 280 @item -msyntax=@var{att} 281 @itemx -msyntax=@var{intel} 282 This option specifies instruction syntax when processing instructions. 283 The @code{.att_syntax} and @code{.intel_syntax} directives will 284 take precedent. 285 286 @cindex @samp{-mnaked-reg} option, i386 287 @cindex @samp{-mnaked-reg} option, x86-64 288 @item -mnaked-reg 289 This opetion specifies that registers don't require a @samp{%} prefix. 290 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent. 291 292 @cindex @samp{-madd-bnd-prefix} option, i386 293 @cindex @samp{-madd-bnd-prefix} option, x86-64 294 @item -madd-bnd-prefix 295 This option forces the assembler to add BND prefix to all branches, even 296 if such prefix was not explicitly specified in the source code. 297 298 @cindex @samp{-mbig-obj} option, x86-64 299 @item -mbig-obj 300 On x86-64 PE/COFF target this option forces the use of big object file 301 format, which allows more than 32768 sections. 302 303 @cindex @samp{-momit-lock-prefix=} option, i386 304 @cindex @samp{-momit-lock-prefix=} option, x86-64 305 @item -momit-lock-prefix=@var{no} 306 @itemx -momit-lock-prefix=@var{yes} 307 These options control how the assembler should encode lock prefix. 308 This option is intended as a workaround for processors, that fail on 309 lock prefix. This option can only be safely used with single-core, 310 single-thread computers 311 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes. 312 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual, 313 which is the default. 314 315 @cindex @samp{-mevexrcig=} option, i386 316 @cindex @samp{-mevexrcig=} option, x86-64 317 @item -mevexrcig=@var{rne} 318 @itemx -mevexrcig=@var{rd} 319 @itemx -mevexrcig=@var{ru} 320 @itemx -mevexrcig=@var{rz} 321 These options control how the assembler should encode SAE-only 322 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits 323 of EVEX instruction with 00, which is the default. 324 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}} 325 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions 326 with 01, 10 and 11 RC bits, respectively. 327 328 @end table 329 @c man end 330 331 @node i386-Directives 332 @section x86 specific Directives 333 334 @cindex machine directives, x86 335 @cindex x86 machine directives 336 @table @code 337 338 @cindex @code{lcomm} directive, COFF 339 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}] 340 Reserve @var{length} (an absolute expression) bytes for a local common 341 denoted by @var{symbol}. The section and value of @var{symbol} are 342 those of the new local common. The addresses are allocated in the bss 343 section, so that at run-time the bytes start off zeroed. Since 344 @var{symbol} is not declared global, it is normally not visible to 345 @code{@value{LD}}. The optional third parameter, @var{alignment}, 346 specifies the desired alignment of the symbol in the bss section. 347 348 This directive is only available for COFF based x86 targets. 349 350 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc, 351 @c .largecomm 352 353 @end table 354 355 @node i386-Syntax 356 @section i386 Syntactical Considerations 357 @menu 358 * i386-Variations:: AT&T Syntax versus Intel Syntax 359 * i386-Chars:: Special Characters 360 @end menu 361 362 @node i386-Variations 363 @subsection AT&T Syntax versus Intel Syntax 364 365 @cindex i386 intel_syntax pseudo op 366 @cindex intel_syntax pseudo op, i386 367 @cindex i386 att_syntax pseudo op 368 @cindex att_syntax pseudo op, i386 369 @cindex i386 syntax compatibility 370 @cindex syntax compatibility, i386 371 @cindex x86-64 intel_syntax pseudo op 372 @cindex intel_syntax pseudo op, x86-64 373 @cindex x86-64 att_syntax pseudo op 374 @cindex att_syntax pseudo op, x86-64 375 @cindex x86-64 syntax compatibility 376 @cindex syntax compatibility, x86-64 377 378 @code{@value{AS}} now supports assembly using Intel assembler syntax. 379 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches 380 back to the usual AT&T mode for compatibility with the output of 381 @code{@value{GCC}}. Either of these directives may have an optional 382 argument, @code{prefix}, or @code{noprefix} specifying whether registers 383 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite 384 different from Intel syntax. We mention these differences because 385 almost all 80386 documents use Intel syntax. Notable differences 386 between the two syntaxes are: 387 388 @cindex immediate operands, i386 389 @cindex i386 immediate operands 390 @cindex register operands, i386 391 @cindex i386 register operands 392 @cindex jump/call operands, i386 393 @cindex i386 jump/call operands 394 @cindex operand delimiters, i386 395 396 @cindex immediate operands, x86-64 397 @cindex x86-64 immediate operands 398 @cindex register operands, x86-64 399 @cindex x86-64 register operands 400 @cindex jump/call operands, x86-64 401 @cindex x86-64 jump/call operands 402 @cindex operand delimiters, x86-64 403 @itemize @bullet 404 @item 405 AT&T immediate operands are preceded by @samp{$}; Intel immediate 406 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}). 407 AT&T register operands are preceded by @samp{%}; Intel register operands 408 are undelimited. AT&T absolute (as opposed to PC relative) jump/call 409 operands are prefixed by @samp{*}; they are undelimited in Intel syntax. 410 411 @cindex i386 source, destination operands 412 @cindex source, destination operands; i386 413 @cindex x86-64 source, destination operands 414 @cindex source, destination operands; x86-64 415 @item 416 AT&T and Intel syntax use the opposite order for source and destination 417 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The 418 @samp{source, dest} convention is maintained for compatibility with 419 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and 420 instructions with 2 immediate operands, such as the @samp{enter} 421 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}. 422 423 @cindex mnemonic suffixes, i386 424 @cindex sizes operands, i386 425 @cindex i386 size suffixes 426 @cindex mnemonic suffixes, x86-64 427 @cindex sizes operands, x86-64 428 @cindex x86-64 size suffixes 429 @item 430 In AT&T syntax the size of memory operands is determined from the last 431 character of the instruction mnemonic. Mnemonic suffixes of @samp{b}, 432 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long 433 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes 434 this by prefixing memory operands (@emph{not} the instruction mnemonics) with 435 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus, 436 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T 437 syntax. 438 439 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov} 440 instruction with the 64-bit displacement or immediate operand. 441 442 @cindex return instructions, i386 443 @cindex i386 jump, call, return 444 @cindex return instructions, x86-64 445 @cindex x86-64 jump, call, return 446 @item 447 Immediate form long jumps and calls are 448 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the 449 Intel syntax is 450 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return 451 instruction 452 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is 453 @samp{ret far @var{stack-adjust}}. 454 455 @cindex sections, i386 456 @cindex i386 sections 457 @cindex sections, x86-64 458 @cindex x86-64 sections 459 @item 460 The AT&T assembler does not provide support for multiple section 461 programs. Unix style systems expect all programs to be single sections. 462 @end itemize 463 464 @node i386-Chars 465 @subsection Special Characters 466 467 @cindex line comment character, i386 468 @cindex i386 line comment character 469 The presence of a @samp{#} appearing anywhere on a line indicates the 470 start of a comment that extends to the end of that line. 471 472 If a @samp{#} appears as the first character of a line then the whole 473 line is treated as a comment, but in this case the line can also be a 474 logical line number directive (@pxref{Comments}) or a preprocessor 475 control command (@pxref{Preprocessing}). 476 477 If the @option{--divide} command line option has not been specified 478 then the @samp{/} character appearing anywhere on a line also 479 introduces a line comment. 480 481 @cindex line separator, i386 482 @cindex statement separator, i386 483 @cindex i386 line separator 484 The @samp{;} character can be used to separate statements on the same 485 line. 486 487 @node i386-Mnemonics 488 @section Instruction Naming 489 490 @cindex i386 instruction naming 491 @cindex instruction naming, i386 492 @cindex x86-64 instruction naming 493 @cindex instruction naming, x86-64 494 495 Instruction mnemonics are suffixed with one character modifiers which 496 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l} 497 and @samp{q} specify byte, word, long and quadruple word operands. If 498 no suffix is specified by an instruction then @code{@value{AS}} tries to 499 fill in the missing suffix based on the destination register operand 500 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent 501 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to 502 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix 503 assembler which assumes that a missing mnemonic suffix implies long 504 operand size. (This incompatibility does not affect compiler output 505 since compilers always explicitly specify the mnemonic suffix.) 506 507 Almost all instructions have the same names in AT&T and Intel format. 508 There are a few exceptions. The sign extend and zero extend 509 instructions need two sizes to specify them. They need a size to 510 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This 511 is accomplished by using two instruction mnemonic suffixes in AT&T 512 syntax. Base names for sign extend and zero extend are 513 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx} 514 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes 515 are tacked on to this base name, the @emph{from} suffix before the 516 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for 517 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes, 518 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word), 519 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word), 520 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to 521 quadruple word). 522 523 @cindex encoding options, i386 524 @cindex encoding options, x86-64 525 526 Different encoding options can be specified via optional mnemonic 527 suffix. @samp{.s} suffix swaps 2 register operands in encoding when 528 moving from one register to another. @samp{.d8} or @samp{.d32} suffix 529 prefers 8bit or 32bit displacement in encoding. 530 531 @cindex conversion instructions, i386 532 @cindex i386 conversion instructions 533 @cindex conversion instructions, x86-64 534 @cindex x86-64 conversion instructions 535 The Intel-syntax conversion instructions 536 537 @itemize @bullet 538 @item 539 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax}, 540 541 @item 542 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax}, 543 544 @item 545 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax}, 546 547 @item 548 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax}, 549 550 @item 551 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax} 552 (x86-64 only), 553 554 @item 555 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in 556 @samp{%rdx:%rax} (x86-64 only), 557 @end itemize 558 559 @noindent 560 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and 561 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these 562 instructions. 563 564 @cindex jump instructions, i386 565 @cindex call instructions, i386 566 @cindex jump instructions, x86-64 567 @cindex call instructions, x86-64 568 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in 569 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel 570 convention. 571 572 @section AT&T Mnemonic versus Intel Mnemonic 573 574 @cindex i386 mnemonic compatibility 575 @cindex mnemonic compatibility, i386 576 577 @code{@value{AS}} supports assembly using Intel mnemonic. 578 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and 579 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T 580 syntax for compatibility with the output of @code{@value{GCC}}. 581 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp}, 582 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp}, 583 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386 584 assembler with different mnemonics from those in Intel IA32 specification. 585 @code{@value{GCC}} generates those instructions with AT&T mnemonic. 586 587 @node i386-Regs 588 @section Register Naming 589 590 @cindex i386 registers 591 @cindex registers, i386 592 @cindex x86-64 registers 593 @cindex registers, x86-64 594 Register operands are always prefixed with @samp{%}. The 80386 registers 595 consist of 596 597 @itemize @bullet 598 @item 599 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx}, 600 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the 601 frame pointer), and @samp{%esp} (the stack pointer). 602 603 @item 604 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx}, 605 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}. 606 607 @item 608 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh}, 609 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These 610 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx}, 611 @samp{%cx}, and @samp{%dx}) 612 613 @item 614 the 6 section registers @samp{%cs} (code section), @samp{%ds} 615 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs}, 616 and @samp{%gs}. 617 618 @item 619 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and 620 @samp{%cr3}. 621 622 @item 623 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2}, 624 @samp{%db3}, @samp{%db6}, and @samp{%db7}. 625 626 @item 627 the 2 test registers @samp{%tr6} and @samp{%tr7}. 628 629 @item 630 the 8 floating point register stack @samp{%st} or equivalently 631 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)}, 632 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}. 633 These registers are overloaded by 8 MMX registers @samp{%mm0}, 634 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5}, 635 @samp{%mm6} and @samp{%mm7}. 636 637 @item 638 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2}, 639 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}. 640 @end itemize 641 642 The AMD x86-64 architecture extends the register set by: 643 644 @itemize @bullet 645 @item 646 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the 647 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi}, 648 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack 649 pointer) 650 651 @item 652 the 8 extended registers @samp{%r8}--@samp{%r15}. 653 654 @item 655 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d} 656 657 @item 658 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w} 659 660 @item 661 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b} 662 663 @item 664 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}. 665 666 @item 667 the 8 debug registers: @samp{%db8}--@samp{%db15}. 668 669 @item 670 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}. 671 @end itemize 672 673 @node i386-Prefixes 674 @section Instruction Prefixes 675 676 @cindex i386 instruction prefixes 677 @cindex instruction prefixes, i386 678 @cindex prefixes, i386 679 Instruction prefixes are used to modify the following instruction. They 680 are used to repeat string instructions, to provide section overrides, to 681 perform bus lock operations, and to change operand and address sizes. 682 (Most instructions that normally operate on 32-bit operands will use 683 16-bit operands if the instruction has an ``operand size'' prefix.) 684 Instruction prefixes are best written on the same line as the instruction 685 they act upon. For example, the @samp{scas} (scan string) instruction is 686 repeated with: 687 688 @smallexample 689 repne scas %es:(%edi),%al 690 @end smallexample 691 692 You may also place prefixes on the lines immediately preceding the 693 instruction, but this circumvents checks that @code{@value{AS}} does 694 with prefixes, and will not work with all prefixes. 695 696 Here is a list of instruction prefixes: 697 698 @cindex section override prefixes, i386 699 @itemize @bullet 700 @item 701 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es}, 702 @samp{fs}, @samp{gs}. These are automatically added by specifying 703 using the @var{section}:@var{memory-operand} form for memory references. 704 705 @cindex size prefixes, i386 706 @item 707 Operand/Address size prefixes @samp{data16} and @samp{addr16} 708 change 32-bit operands/addresses into 16-bit operands/addresses, 709 while @samp{data32} and @samp{addr32} change 16-bit ones (in a 710 @code{.code16} section) into 32-bit operands/addresses. These prefixes 711 @emph{must} appear on the same line of code as the instruction they 712 modify. For example, in a 16-bit @code{.code16} section, you might 713 write: 714 715 @smallexample 716 addr32 jmpl *(%ebx) 717 @end smallexample 718 719 @cindex bus lock prefixes, i386 720 @cindex inhibiting interrupts, i386 721 @item 722 The bus lock prefix @samp{lock} inhibits interrupts during execution of 723 the instruction it precedes. (This is only valid with certain 724 instructions; see a 80386 manual for details). 725 726 @cindex coprocessor wait, i386 727 @item 728 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to 729 complete the current instruction. This should never be needed for the 730 80386/80387 combination. 731 732 @cindex repeat prefixes, i386 733 @item 734 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added 735 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx} 736 times if the current address size is 16-bits). 737 @cindex REX prefixes, i386 738 @item 739 The @samp{rex} family of prefixes is used by x86-64 to encode 740 extensions to i386 instruction set. The @samp{rex} prefix has four 741 bits --- an operand size overwrite (@code{64}) used to change operand size 742 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the 743 register set. 744 745 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz} 746 instruction emits @samp{rex} prefix with all the bits set. By omitting 747 the @code{64}, @code{x}, @code{y} or @code{z} you may write other 748 prefixes as well. Normally, there is no need to write the prefixes 749 explicitly, since gas will automatically generate them based on the 750 instruction operands. 751 @end itemize 752 753 @node i386-Memory 754 @section Memory References 755 756 @cindex i386 memory references 757 @cindex memory references, i386 758 @cindex x86-64 memory references 759 @cindex memory references, x86-64 760 An Intel syntax indirect memory reference of the form 761 762 @smallexample 763 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}] 764 @end smallexample 765 766 @noindent 767 is translated into the AT&T syntax 768 769 @smallexample 770 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale}) 771 @end smallexample 772 773 @noindent 774 where @var{base} and @var{index} are the optional 32-bit base and 775 index registers, @var{disp} is the optional displacement, and 776 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index} 777 to calculate the address of the operand. If no @var{scale} is 778 specified, @var{scale} is taken to be 1. @var{section} specifies the 779 optional section register for the memory operand, and may override the 780 default section register (see a 80386 manual for section register 781 defaults). Note that section overrides in AT&T syntax @emph{must} 782 be preceded by a @samp{%}. If you specify a section override which 783 coincides with the default section register, @code{@value{AS}} does @emph{not} 784 output any section register override prefixes to assemble the given 785 instruction. Thus, section overrides can be specified to emphasize which 786 section register is used for a given memory operand. 787 788 Here are some examples of Intel and AT&T style memory references: 789 790 @table @asis 791 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]} 792 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is 793 missing, and the default section is used (@samp{%ss} for addressing with 794 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing. 795 796 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]} 797 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is 798 @samp{foo}. All other fields are missing. The section register here 799 defaults to @samp{%ds}. 800 801 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]} 802 This uses the value pointed to by @samp{foo} as a memory operand. 803 Note that @var{base} and @var{index} are both missing, but there is only 804 @emph{one} @samp{,}. This is a syntactic exception. 805 806 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo} 807 This selects the contents of the variable @samp{foo} with section 808 register @var{section} being @samp{%gs}. 809 @end table 810 811 Absolute (as opposed to PC relative) call and jump operands must be 812 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}} 813 always chooses PC relative addressing for jump/call labels. 814 815 Any instruction that has a memory operand, but no register operand, 816 @emph{must} specify its size (byte, word, long, or quadruple) with an 817 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q}, 818 respectively). 819 820 The x86-64 architecture adds an RIP (instruction pointer relative) 821 addressing. This addressing mode is specified by using @samp{rip} as a 822 base register. Only constant offsets are valid. For example: 823 824 @table @asis 825 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]} 826 Points to the address 1234 bytes past the end of the current 827 instruction. 828 829 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]} 830 Points to the @code{symbol} in RIP relative way, this is shorter than 831 the default absolute addressing. 832 @end table 833 834 Other addressing modes remain unchanged in x86-64 architecture, except 835 registers used are 64-bit instead of 32-bit. 836 837 @node i386-Jumps 838 @section Handling of Jump Instructions 839 840 @cindex jump optimization, i386 841 @cindex i386 jump optimization 842 @cindex jump optimization, x86-64 843 @cindex x86-64 jump optimization 844 Jump instructions are always optimized to use the smallest possible 845 displacements. This is accomplished by using byte (8-bit) displacement 846 jumps whenever the target is sufficiently close. If a byte displacement 847 is insufficient a long displacement is used. We do not support 848 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump 849 instruction with the @samp{data16} instruction prefix), since the 80386 850 insists upon masking @samp{%eip} to 16 bits after the word displacement 851 is added. (See also @pxref{i386-Arch}) 852 853 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz}, 854 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte 855 displacements, so that if you use these instructions (@code{@value{GCC}} does 856 not use them) you may get an error message (and incorrect code). The AT&T 857 80386 assembler tries to get around this problem by expanding @samp{jcxz foo} 858 to 859 860 @smallexample 861 jcxz cx_zero 862 jmp cx_nonzero 863 cx_zero: jmp foo 864 cx_nonzero: 865 @end smallexample 866 867 @node i386-Float 868 @section Floating Point 869 870 @cindex i386 floating point 871 @cindex floating point, i386 872 @cindex x86-64 floating point 873 @cindex floating point, x86-64 874 All 80387 floating point types except packed BCD are supported. 875 (BCD support may be added without much difficulty). These data 876 types are 16-, 32-, and 64- bit integers, and single (32-bit), 877 double (64-bit), and extended (80-bit) precision floating point. 878 Each supported type has an instruction mnemonic suffix and a constructor 879 associated with it. Instruction mnemonic suffixes specify the operand's 880 data type. Constructors build these data types into memory. 881 882 @cindex @code{float} directive, i386 883 @cindex @code{single} directive, i386 884 @cindex @code{double} directive, i386 885 @cindex @code{tfloat} directive, i386 886 @cindex @code{float} directive, x86-64 887 @cindex @code{single} directive, x86-64 888 @cindex @code{double} directive, x86-64 889 @cindex @code{tfloat} directive, x86-64 890 @itemize @bullet 891 @item 892 Floating point constructors are @samp{.float} or @samp{.single}, 893 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats. 894 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l}, 895 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387 896 only supports this format via the @samp{fldt} (load 80-bit real to stack 897 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions. 898 899 @cindex @code{word} directive, i386 900 @cindex @code{long} directive, i386 901 @cindex @code{int} directive, i386 902 @cindex @code{quad} directive, i386 903 @cindex @code{word} directive, x86-64 904 @cindex @code{long} directive, x86-64 905 @cindex @code{int} directive, x86-64 906 @cindex @code{quad} directive, x86-64 907 @item 908 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and 909 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The 910 corresponding instruction mnemonic suffixes are @samp{s} (single), 911 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format, 912 the 64-bit @samp{q} format is only present in the @samp{fildq} (load 913 quad integer to stack top) and @samp{fistpq} (store quad integer and pop 914 stack) instructions. 915 @end itemize 916 917 Register to register operations should not use instruction mnemonic suffixes. 918 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you 919 wrote @samp{fst %st, %st(1)}, since all register to register operations 920 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem}, 921 which converts @samp{%st} from 80-bit to 64-bit floating point format, 922 then stores the result in the 4 byte location @samp{mem}) 923 924 @node i386-SIMD 925 @section Intel's MMX and AMD's 3DNow! SIMD Operations 926 927 @cindex MMX, i386 928 @cindex 3DNow!, i386 929 @cindex SIMD, i386 930 @cindex MMX, x86-64 931 @cindex 3DNow!, x86-64 932 @cindex SIMD, x86-64 933 934 @code{@value{AS}} supports Intel's MMX instruction set (SIMD 935 instructions for integer data), available on Intel's Pentium MMX 936 processors and Pentium II processors, AMD's K6 and K6-2 processors, 937 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@: 938 instruction set (SIMD instructions for 32-bit floating point data) 939 available on AMD's K6-2 processor and possibly others in the future. 940 941 Currently, @code{@value{AS}} does not support Intel's floating point 942 SIMD, Katmai (KNI). 943 944 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0}, 945 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four 946 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit 947 floating point values. The MMX registers cannot be used at the same time 948 as the floating point stack. 949 950 See Intel and AMD documentation, keeping in mind that the operand order in 951 instructions is reversed from the Intel syntax. 952 953 @node i386-LWP 954 @section AMD's Lightweight Profiling Instructions 955 956 @cindex LWP, i386 957 @cindex LWP, x86-64 958 959 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP) 960 instruction set, available on AMD's Family 15h (Orochi) processors. 961 962 LWP enables applications to collect and manage performance data, and 963 react to performance events. The collection of performance data 964 requires no context switches. LWP runs in the context of a thread and 965 so several counters can be used independently across multiple threads. 966 LWP can be used in both 64-bit and legacy 32-bit modes. 967 968 For detailed information on the LWP instruction set, see the 969 @cite{AMD Lightweight Profiling Specification} available at 970 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}. 971 972 @node i386-BMI 973 @section Bit Manipulation Instructions 974 975 @cindex BMI, i386 976 @cindex BMI, x86-64 977 978 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set. 979 980 BMI instructions provide several instructions implementing individual 981 bit manipulation operations such as isolation, masking, setting, or 982 resetting. 983 984 @c Need to add a specification citation here when available. 985 986 @node i386-TBM 987 @section AMD's Trailing Bit Manipulation Instructions 988 989 @cindex TBM, i386 990 @cindex TBM, x86-64 991 992 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM) 993 instruction set, available on AMD's BDVER2 processors (Trinity and 994 Viperfish). 995 996 TBM instructions provide instructions implementing individual bit 997 manipulation operations such as isolating, masking, setting, resetting, 998 complementing, and operations on trailing zeros and ones. 999 1000 @c Need to add a specification citation here when available. 1001 1002 @node i386-16bit 1003 @section Writing 16-bit Code 1004 1005 @cindex i386 16-bit code 1006 @cindex 16-bit code, i386 1007 @cindex real-mode code, i386 1008 @cindex @code{code16gcc} directive, i386 1009 @cindex @code{code16} directive, i386 1010 @cindex @code{code32} directive, i386 1011 @cindex @code{code64} directive, i386 1012 @cindex @code{code64} directive, x86-64 1013 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code 1014 or 64-bit x86-64 code depending on the default configuration, 1015 it also supports writing code to run in real mode or in 16-bit protected 1016 mode code segments. To do this, put a @samp{.code16} or 1017 @samp{.code16gcc} directive before the assembly language instructions to 1018 be run in 16-bit mode. You can switch @code{@value{AS}} to writing 1019 32-bit code with the @samp{.code32} directive or 64-bit code with the 1020 @samp{.code64} directive. 1021 1022 @samp{.code16gcc} provides experimental support for generating 16-bit 1023 code from gcc, and differs from @samp{.code16} in that @samp{call}, 1024 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop}, 1025 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions 1026 default to 32-bit size. This is so that the stack pointer is 1027 manipulated in the same way over function calls, allowing access to 1028 function parameters at the same stack offsets as in 32-bit mode. 1029 @samp{.code16gcc} also automatically adds address size prefixes where 1030 necessary to use the 32-bit addressing modes that gcc generates. 1031 1032 The code which @code{@value{AS}} generates in 16-bit mode will not 1033 necessarily run on a 16-bit pre-80386 processor. To write code that 1034 runs on such a processor, you must refrain from using @emph{any} 32-bit 1035 constructs which require @code{@value{AS}} to output address or operand 1036 size prefixes. 1037 1038 Note that writing 16-bit code instructions by explicitly specifying a 1039 prefix or an instruction mnemonic suffix within a 32-bit code section 1040 generates different machine instructions than those generated for a 1041 16-bit code segment. In a 32-bit code section, the following code 1042 generates the machine opcode bytes @samp{66 6a 04}, which pushes the 1043 value @samp{4} onto the stack, decrementing @samp{%esp} by 2. 1044 1045 @smallexample 1046 pushw $4 1047 @end smallexample 1048 1049 The same code in a 16-bit code section would generate the machine 1050 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which 1051 is correct since the processor default operand size is assumed to be 16 1052 bits in a 16-bit code section. 1053 1054 @node i386-Bugs 1055 @section AT&T Syntax bugs 1056 1057 The UnixWare assembler, and probably other AT&T derived ix86 Unix 1058 assemblers, generate floating point instructions with reversed source 1059 and destination registers in certain cases. Unfortunately, gcc and 1060 possibly many other programs use this reversed syntax, so we're stuck 1061 with it. 1062 1063 For example 1064 1065 @smallexample 1066 fsub %st,%st(3) 1067 @end smallexample 1068 @noindent 1069 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather 1070 than the expected @samp{%st(3) - %st}. This happens with all the 1071 non-commutative arithmetic floating point operations with two register 1072 operands where the source register is @samp{%st} and the destination 1073 register is @samp{%st(i)}. 1074 1075 @node i386-Arch 1076 @section Specifying CPU Architecture 1077 1078 @cindex arch directive, i386 1079 @cindex i386 arch directive 1080 @cindex arch directive, x86-64 1081 @cindex x86-64 arch directive 1082 1083 @code{@value{AS}} may be told to assemble for a particular CPU 1084 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This 1085 directive enables a warning when gas detects an instruction that is not 1086 supported on the CPU specified. The choices for @var{cpu_type} are: 1087 1088 @multitable @columnfractions .20 .20 .20 .20 1089 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386} 1090 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium} 1091 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4} 1092 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2} 1093 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} 1094 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8} 1095 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3} 1096 @item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2} 1097 @item @samp{generic32} @tab @samp{generic64} 1098 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} 1099 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4} 1100 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept} 1101 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt} 1102 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase} 1103 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2} 1104 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle} 1105 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw} 1106 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1} 1107 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1} 1108 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf} 1109 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma} 1110 @item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit} 1111 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5} 1112 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm} 1113 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16} 1114 @item @samp{.padlock} 1115 @end multitable 1116 1117 Apart from the warning, there are only two other effects on 1118 @code{@value{AS}} operation; Firstly, if you specify a CPU other than 1119 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax} 1120 will automatically use a two byte opcode sequence. The larger three 1121 byte opcode sequence is used on the 486 (and when no architecture is 1122 specified) because it executes faster on the 486. Note that you can 1123 explicitly request the two byte opcode by writing @samp{sarl %eax}. 1124 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286}, 1125 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset 1126 conditional jumps will be promoted when necessary to a two instruction 1127 sequence consisting of a conditional jump of the opposite sense around 1128 an unconditional jump to the target. 1129 1130 Following the CPU architecture (but not a sub-architecture, which are those 1131 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to 1132 control automatic promotion of conditional jumps. @samp{jumps} is the 1133 default, and enables jump promotion; All external jumps will be of the long 1134 variety, and file-local jumps will be promoted as necessary. 1135 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as 1136 byte offset jumps, and warns about file-local conditional jumps that 1137 @code{@value{AS}} promotes. 1138 Unconditional jumps are treated as for @samp{jumps}. 1139 1140 For example 1141 1142 @smallexample 1143 .arch i8086,nojumps 1144 @end smallexample 1145 1146 @node i386-Notes 1147 @section Notes 1148 1149 @cindex i386 @code{mul}, @code{imul} instructions 1150 @cindex @code{mul} instruction, i386 1151 @cindex @code{imul} instruction, i386 1152 @cindex @code{mul} instruction, x86-64 1153 @cindex @code{imul} instruction, x86-64 1154 There is some trickery concerning the @samp{mul} and @samp{imul} 1155 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding 1156 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5 1157 for @samp{imul}) can be output only in the one operand form. Thus, 1158 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply; 1159 the expanding multiply would clobber the @samp{%edx} register, and this 1160 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the 1161 64-bit product in @samp{%edx:%eax}. 1162 1163 We have added a two operand form of @samp{imul} when the first operand 1164 is an immediate mode expression and the second operand is a register. 1165 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for 1166 example, can be done with @samp{imul $69, %eax} rather than @samp{imul 1167 $69, %eax, %eax}. 1168 1169