Home | History | Annotate | Download | only in doc
      1 @c Copyright (C) 1991-2014 Free Software Foundation, Inc.
      2 @c This is part of the GAS manual.
      3 @c For copying conditions, see the file as.texinfo.
      4 @c man end
      5 
      6 @ifset GENERIC
      7 @page
      8 @node i386-Dependent
      9 @chapter 80386 Dependent Features
     10 @end ifset
     11 @ifclear GENERIC
     12 @node Machine Dependencies
     13 @chapter 80386 Dependent Features
     14 @end ifclear
     15 
     16 @cindex i386 support
     17 @cindex i80386 support
     18 @cindex x86-64 support
     19 
     20 The i386 version @code{@value{AS}} supports both the original Intel 386
     21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
     22 extending the Intel architecture to 64-bits.
     23 
     24 @menu
     25 * i386-Options::                Options
     26 * i386-Directives::             X86 specific directives
     27 * i386-Syntax::                 Syntactical considerations
     28 * i386-Mnemonics::              Instruction Naming
     29 * i386-Regs::                   Register Naming
     30 * i386-Prefixes::               Instruction Prefixes
     31 * i386-Memory::                 Memory References
     32 * i386-Jumps::                  Handling of Jump Instructions
     33 * i386-Float::                  Floating Point
     34 * i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
     35 * i386-LWP::                    AMD's Lightweight Profiling Instructions
     36 * i386-BMI::                    Bit Manipulation Instruction
     37 * i386-TBM::                    AMD's Trailing Bit Manipulation Instructions
     38 * i386-16bit::                  Writing 16-bit Code
     39 * i386-Arch::                   Specifying an x86 CPU architecture
     40 * i386-Bugs::                   AT&T Syntax bugs
     41 * i386-Notes::                  Notes
     42 @end menu
     43 
     44 @node i386-Options
     45 @section Options
     46 
     47 @cindex options for i386
     48 @cindex options for x86-64
     49 @cindex i386 options
     50 @cindex x86-64 options
     51 
     52 The i386 version of @code{@value{AS}} has a few machine
     53 dependent options:
     54 
     55 @c man begin OPTIONS
     56 @table @gcctabopt
     57 @cindex @samp{--32} option, i386
     58 @cindex @samp{--32} option, x86-64
     59 @cindex @samp{--x32} option, i386
     60 @cindex @samp{--x32} option, x86-64
     61 @cindex @samp{--64} option, i386
     62 @cindex @samp{--64} option, x86-64
     63 @item --32 | --x32 | --64
     64 Select the word size, either 32 bits or 64 bits.  @samp{--32}
     65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
     66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
     67 respectively.
     68 
     69 These options are only available with the ELF object file format, and
     70 require that the necessary BFD support has been included (on a 32-bit
     71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
     72 usage and use x86-64 as target platform).
     73 
     74 @item -n
     75 By default, x86 GAS replaces multiple nop instructions used for
     76 alignment within code sections with multi-byte nop instructions such
     77 as leal 0(%esi,1),%esi.  This switch disables the optimization.
     78 
     79 @cindex @samp{--divide} option, i386
     80 @item --divide
     81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
     82 character, which means that it cannot be used in expressions.  The
     83 @samp{--divide} option turns @samp{/} into a normal character.  This does
     84 not disable @samp{/} at the beginning of a line starting a comment, or
     85 affect using @samp{#} for starting a comment.
     86 
     87 @cindex @samp{-march=} option, i386
     88 @cindex @samp{-march=} option, x86-64
     89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
     90 This option specifies the target processor.  The assembler will
     91 issue an error message if an attempt is made to assemble an instruction
     92 which will not execute on the target processor.  The following
     93 processor names are recognized:
     94 @code{i8086},
     95 @code{i186},
     96 @code{i286},
     97 @code{i386},
     98 @code{i486},
     99 @code{i586},
    100 @code{i686},
    101 @code{pentium},
    102 @code{pentiumpro},
    103 @code{pentiumii},
    104 @code{pentiumiii},
    105 @code{pentium4},
    106 @code{prescott},
    107 @code{nocona},
    108 @code{core},
    109 @code{core2},
    110 @code{corei7},
    111 @code{l1om},
    112 @code{k1om},
    113 @code{k6},
    114 @code{k6_2},
    115 @code{athlon},
    116 @code{opteron},
    117 @code{k8},
    118 @code{amdfam10},
    119 @code{bdver1},
    120 @code{bdver2},
    121 @code{bdver3},
    122 @code{bdver4},
    123 @code{btver1},
    124 @code{btver2},
    125 @code{generic32} and
    126 @code{generic64}.
    127 
    128 In addition to the basic instruction set, the assembler can be told to
    129 accept various extension mnemonics.  For example,
    130 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
    131 @var{vmx}.  The following extensions are currently supported:
    132 @code{8087},
    133 @code{287},
    134 @code{387},
    135 @code{no87},
    136 @code{mmx},
    137 @code{nommx},
    138 @code{sse},
    139 @code{sse2},
    140 @code{sse3},
    141 @code{ssse3},
    142 @code{sse4.1},
    143 @code{sse4.2},
    144 @code{sse4},
    145 @code{nosse},
    146 @code{avx},
    147 @code{avx2},
    148 @code{adx},
    149 @code{rdseed},
    150 @code{prfchw},
    151 @code{smap},
    152 @code{mpx},
    153 @code{sha},
    154 @code{prefetchwt1},
    155 @code{clflushopt},
    156 @code{se1},
    157 @code{clwb},
    158 @code{pcommit},
    159 @code{avx512f},
    160 @code{avx512cd},
    161 @code{avx512er},
    162 @code{avx512pf},
    163 @code{avx512vl},
    164 @code{avx512bw},
    165 @code{avx512dq},
    166 @code{avx512ifma},
    167 @code{avx512vbmi},
    168 @code{noavx},
    169 @code{vmx},
    170 @code{vmfunc},
    171 @code{smx},
    172 @code{xsave},
    173 @code{xsaveopt},
    174 @code{xsavec},
    175 @code{xsaves},
    176 @code{aes},
    177 @code{pclmul},
    178 @code{fsgsbase},
    179 @code{rdrnd},
    180 @code{f16c},
    181 @code{bmi2},
    182 @code{fma},
    183 @code{movbe},
    184 @code{ept},
    185 @code{lzcnt},
    186 @code{hle},
    187 @code{rtm},
    188 @code{invpcid},
    189 @code{clflush},
    190 @code{lwp},
    191 @code{fma4},
    192 @code{xop},
    193 @code{cx16},
    194 @code{syscall},
    195 @code{rdtscp},
    196 @code{3dnow},
    197 @code{3dnowa},
    198 @code{sse4a},
    199 @code{sse5},
    200 @code{svme},
    201 @code{abm} and
    202 @code{padlock}.
    203 Note that rather than extending a basic instruction set, the extension
    204 mnemonics starting with @code{no} revoke the respective functionality.
    205 
    206 When the @code{.arch} directive is used with @option{-march}, the
    207 @code{.arch} directive will take precedent.
    208 
    209 @cindex @samp{-mtune=} option, i386
    210 @cindex @samp{-mtune=} option, x86-64
    211 @item -mtune=@var{CPU}
    212 This option specifies a processor to optimize for. When used in
    213 conjunction with the @option{-march} option, only instructions
    214 of the processor specified by the @option{-march} option will be
    215 generated.
    216 
    217 Valid @var{CPU} values are identical to the processor list of
    218 @option{-march=@var{CPU}}.
    219 
    220 @cindex @samp{-msse2avx} option, i386
    221 @cindex @samp{-msse2avx} option, x86-64
    222 @item -msse2avx
    223 This option specifies that the assembler should encode SSE instructions
    224 with VEX prefix.
    225 
    226 @cindex @samp{-msse-check=} option, i386
    227 @cindex @samp{-msse-check=} option, x86-64
    228 @item -msse-check=@var{none}
    229 @itemx -msse-check=@var{warning}
    230 @itemx -msse-check=@var{error}
    231 These options control if the assembler should check SSE instructions.
    232 @option{-msse-check=@var{none}} will make the assembler not to check SSE
    233 instructions,  which is the default.  @option{-msse-check=@var{warning}}
    234 will make the assembler issue a warning for any SSE instruction.
    235 @option{-msse-check=@var{error}} will make the assembler issue an error
    236 for any SSE instruction.
    237 
    238 @cindex @samp{-mavxscalar=} option, i386
    239 @cindex @samp{-mavxscalar=} option, x86-64
    240 @item -mavxscalar=@var{128}
    241 @itemx -mavxscalar=@var{256}
    242 These options control how the assembler should encode scalar AVX
    243 instructions.  @option{-mavxscalar=@var{128}} will encode scalar
    244 AVX instructions with 128bit vector length, which is the default.
    245 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
    246 with 256bit vector length.
    247 
    248 @cindex @samp{-mevexlig=} option, i386
    249 @cindex @samp{-mevexlig=} option, x86-64
    250 @item -mevexlig=@var{128}
    251 @itemx -mevexlig=@var{256}
    252 @itemx -mevexlig=@var{512}
    253 These options control how the assembler should encode length-ignored
    254 (LIG) EVEX instructions.  @option{-mevexlig=@var{128}} will encode LIG
    255 EVEX instructions with 128bit vector length, which is the default.
    256 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
    257 encode LIG EVEX instructions with 256bit and 512bit vector length,
    258 respectively.
    259 
    260 @cindex @samp{-mevexwig=} option, i386
    261 @cindex @samp{-mevexwig=} option, x86-64
    262 @item -mevexwig=@var{0}
    263 @itemx -mevexwig=@var{1}
    264 These options control how the assembler should encode w-ignored (WIG)
    265 EVEX instructions.  @option{-mevexwig=@var{0}} will encode WIG
    266 EVEX instructions with evex.w = 0, which is the default.
    267 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
    268 evex.w = 1.
    269 
    270 @cindex @samp{-mmnemonic=} option, i386
    271 @cindex @samp{-mmnemonic=} option, x86-64
    272 @item -mmnemonic=@var{att}
    273 @itemx -mmnemonic=@var{intel}
    274 This option specifies instruction mnemonic for matching instructions.
    275 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
    276 take precedent.
    277 
    278 @cindex @samp{-msyntax=} option, i386
    279 @cindex @samp{-msyntax=} option, x86-64
    280 @item -msyntax=@var{att}
    281 @itemx -msyntax=@var{intel}
    282 This option specifies instruction syntax when processing instructions.
    283 The @code{.att_syntax} and @code{.intel_syntax} directives will
    284 take precedent.
    285 
    286 @cindex @samp{-mnaked-reg} option, i386
    287 @cindex @samp{-mnaked-reg} option, x86-64
    288 @item -mnaked-reg
    289 This opetion specifies that registers don't require a @samp{%} prefix.
    290 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
    291 
    292 @cindex @samp{-madd-bnd-prefix} option, i386
    293 @cindex @samp{-madd-bnd-prefix} option, x86-64
    294 @item -madd-bnd-prefix
    295 This option forces the assembler to add BND prefix to all branches, even
    296 if such prefix was not explicitly specified in the source code.
    297 
    298 @cindex @samp{-mbig-obj} option, x86-64
    299 @item -mbig-obj
    300 On x86-64 PE/COFF target this option forces the use of big object file
    301 format, which allows more than 32768 sections.
    302 
    303 @cindex @samp{-momit-lock-prefix=} option, i386
    304 @cindex @samp{-momit-lock-prefix=} option, x86-64
    305 @item -momit-lock-prefix=@var{no}
    306 @itemx -momit-lock-prefix=@var{yes}
    307 These options control how the assembler should encode lock prefix.
    308 This option is intended as a workaround for processors, that fail on
    309 lock prefix. This option can only be safely used with single-core,
    310 single-thread computers
    311 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
    312 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
    313 which is the default.
    314 
    315 @cindex @samp{-mevexrcig=} option, i386
    316 @cindex @samp{-mevexrcig=} option, x86-64
    317 @item -mevexrcig=@var{rne}
    318 @itemx -mevexrcig=@var{rd}
    319 @itemx -mevexrcig=@var{ru}
    320 @itemx -mevexrcig=@var{rz}
    321 These options control how the assembler should encode SAE-only
    322 EVEX instructions.  @option{-mevexrcig=@var{rne}} will encode RC bits
    323 of EVEX instruction with 00, which is the default.
    324 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
    325 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
    326 with 01, 10 and 11 RC bits, respectively.
    327 
    328 @end table
    329 @c man end
    330 
    331 @node i386-Directives
    332 @section x86 specific Directives
    333 
    334 @cindex machine directives, x86
    335 @cindex x86 machine directives
    336 @table @code
    337 
    338 @cindex @code{lcomm} directive, COFF
    339 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
    340 Reserve @var{length} (an absolute expression) bytes for a local common
    341 denoted by @var{symbol}.  The section and value of @var{symbol} are
    342 those of the new local common.  The addresses are allocated in the bss
    343 section, so that at run-time the bytes start off zeroed.  Since
    344 @var{symbol} is not declared global, it is normally not visible to
    345 @code{@value{LD}}.  The optional third parameter, @var{alignment},
    346 specifies the desired alignment of the symbol in the bss section.
    347 
    348 This directive is only available for COFF based x86 targets.
    349 
    350 @c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
    351 @c .largecomm
    352 
    353 @end table
    354 
    355 @node i386-Syntax
    356 @section i386 Syntactical Considerations
    357 @menu
    358 * i386-Variations::           AT&T Syntax versus Intel Syntax
    359 * i386-Chars::                Special Characters
    360 @end menu
    361 
    362 @node i386-Variations
    363 @subsection AT&T Syntax versus Intel Syntax
    364 
    365 @cindex i386 intel_syntax pseudo op
    366 @cindex intel_syntax pseudo op, i386
    367 @cindex i386 att_syntax pseudo op
    368 @cindex att_syntax pseudo op, i386
    369 @cindex i386 syntax compatibility
    370 @cindex syntax compatibility, i386
    371 @cindex x86-64 intel_syntax pseudo op
    372 @cindex intel_syntax pseudo op, x86-64
    373 @cindex x86-64 att_syntax pseudo op
    374 @cindex att_syntax pseudo op, x86-64
    375 @cindex x86-64 syntax compatibility
    376 @cindex syntax compatibility, x86-64
    377 
    378 @code{@value{AS}} now supports assembly using Intel assembler syntax.
    379 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
    380 back to the usual AT&T mode for compatibility with the output of
    381 @code{@value{GCC}}.  Either of these directives may have an optional
    382 argument, @code{prefix}, or @code{noprefix} specifying whether registers
    383 require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
    384 different from Intel syntax.  We mention these differences because
    385 almost all 80386 documents use Intel syntax.  Notable differences
    386 between the two syntaxes are:
    387 
    388 @cindex immediate operands, i386
    389 @cindex i386 immediate operands
    390 @cindex register operands, i386
    391 @cindex i386 register operands
    392 @cindex jump/call operands, i386
    393 @cindex i386 jump/call operands
    394 @cindex operand delimiters, i386
    395 
    396 @cindex immediate operands, x86-64
    397 @cindex x86-64 immediate operands
    398 @cindex register operands, x86-64
    399 @cindex x86-64 register operands
    400 @cindex jump/call operands, x86-64
    401 @cindex x86-64 jump/call operands
    402 @cindex operand delimiters, x86-64
    403 @itemize @bullet
    404 @item
    405 AT&T immediate operands are preceded by @samp{$}; Intel immediate
    406 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
    407 AT&T register operands are preceded by @samp{%}; Intel register operands
    408 are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
    409 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
    410 
    411 @cindex i386 source, destination operands
    412 @cindex source, destination operands; i386
    413 @cindex x86-64 source, destination operands
    414 @cindex source, destination operands; x86-64
    415 @item
    416 AT&T and Intel syntax use the opposite order for source and destination
    417 operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
    418 @samp{source, dest} convention is maintained for compatibility with
    419 previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
    420 instructions with 2 immediate operands, such as the @samp{enter}
    421 instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
    422 
    423 @cindex mnemonic suffixes, i386
    424 @cindex sizes operands, i386
    425 @cindex i386 size suffixes
    426 @cindex mnemonic suffixes, x86-64
    427 @cindex sizes operands, x86-64
    428 @cindex x86-64 size suffixes
    429 @item
    430 In AT&T syntax the size of memory operands is determined from the last
    431 character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
    432 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
    433 (32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
    434 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
    435 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
    436 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
    437 syntax.
    438 
    439 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
    440 instruction with the 64-bit displacement or immediate operand.
    441 
    442 @cindex return instructions, i386
    443 @cindex i386 jump, call, return
    444 @cindex return instructions, x86-64
    445 @cindex x86-64 jump, call, return
    446 @item
    447 Immediate form long jumps and calls are
    448 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
    449 Intel syntax is
    450 @samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
    451 instruction
    452 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
    453 @samp{ret far @var{stack-adjust}}.
    454 
    455 @cindex sections, i386
    456 @cindex i386 sections
    457 @cindex sections, x86-64
    458 @cindex x86-64 sections
    459 @item
    460 The AT&T assembler does not provide support for multiple section
    461 programs.  Unix style systems expect all programs to be single sections.
    462 @end itemize
    463 
    464 @node i386-Chars
    465 @subsection Special Characters
    466 
    467 @cindex line comment character, i386
    468 @cindex i386 line comment character
    469 The presence of a @samp{#} appearing anywhere on a line indicates the
    470 start of a comment that extends to the end of that line.
    471 
    472 If a @samp{#} appears as the first character of a line then the whole
    473 line is treated as a comment, but in this case the line can also be a
    474 logical line number directive (@pxref{Comments}) or a preprocessor
    475 control command (@pxref{Preprocessing}).
    476 
    477 If the @option{--divide} command line option has not been specified
    478 then the @samp{/} character appearing anywhere on a line also
    479 introduces a line comment.
    480 
    481 @cindex line separator, i386
    482 @cindex statement separator, i386
    483 @cindex i386 line separator
    484 The @samp{;} character can be used to separate statements on the same
    485 line.
    486 
    487 @node i386-Mnemonics
    488 @section Instruction Naming
    489 
    490 @cindex i386 instruction naming
    491 @cindex instruction naming, i386
    492 @cindex x86-64 instruction naming
    493 @cindex instruction naming, x86-64
    494 
    495 Instruction mnemonics are suffixed with one character modifiers which
    496 specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
    497 and @samp{q} specify byte, word, long and quadruple word operands.  If
    498 no suffix is specified by an instruction then @code{@value{AS}} tries to
    499 fill in the missing suffix based on the destination register operand
    500 (the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
    501 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
    502 @samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
    503 assembler which assumes that a missing mnemonic suffix implies long
    504 operand size.  (This incompatibility does not affect compiler output
    505 since compilers always explicitly specify the mnemonic suffix.)
    506 
    507 Almost all instructions have the same names in AT&T and Intel format.
    508 There are a few exceptions.  The sign extend and zero extend
    509 instructions need two sizes to specify them.  They need a size to
    510 sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
    511 is accomplished by using two instruction mnemonic suffixes in AT&T
    512 syntax.  Base names for sign extend and zero extend are
    513 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
    514 and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
    515 are tacked on to this base name, the @emph{from} suffix before the
    516 @emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
    517 ``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
    518 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
    519 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
    520 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
    521 quadruple word).
    522 
    523 @cindex encoding options, i386
    524 @cindex encoding options, x86-64
    525 
    526 Different encoding options can be specified via optional mnemonic
    527 suffix.  @samp{.s} suffix swaps 2 register operands in encoding when
    528 moving from one register to another.  @samp{.d8} or @samp{.d32} suffix
    529 prefers 8bit or 32bit displacement in encoding.
    530 
    531 @cindex conversion instructions, i386
    532 @cindex i386 conversion instructions
    533 @cindex conversion instructions, x86-64
    534 @cindex x86-64 conversion instructions
    535 The Intel-syntax conversion instructions
    536 
    537 @itemize @bullet
    538 @item
    539 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
    540 
    541 @item
    542 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
    543 
    544 @item
    545 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
    546 
    547 @item
    548 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
    549 
    550 @item
    551 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
    552 (x86-64 only),
    553 
    554 @item
    555 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
    556 @samp{%rdx:%rax} (x86-64 only),
    557 @end itemize
    558 
    559 @noindent
    560 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
    561 @samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
    562 instructions.
    563 
    564 @cindex jump instructions, i386
    565 @cindex call instructions, i386
    566 @cindex jump instructions, x86-64
    567 @cindex call instructions, x86-64
    568 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
    569 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
    570 convention.
    571 
    572 @section AT&T Mnemonic versus Intel Mnemonic
    573 
    574 @cindex i386 mnemonic compatibility
    575 @cindex mnemonic compatibility, i386
    576 
    577 @code{@value{AS}} supports assembly using Intel mnemonic.
    578 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
    579 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
    580 syntax for compatibility with the output of @code{@value{GCC}}.
    581 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
    582 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
    583 @samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
    584 assembler with different mnemonics from those in Intel IA32 specification.
    585 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
    586 
    587 @node i386-Regs
    588 @section Register Naming
    589 
    590 @cindex i386 registers
    591 @cindex registers, i386
    592 @cindex x86-64 registers
    593 @cindex registers, x86-64
    594 Register operands are always prefixed with @samp{%}.  The 80386 registers
    595 consist of
    596 
    597 @itemize @bullet
    598 @item
    599 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
    600 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
    601 frame pointer), and @samp{%esp} (the stack pointer).
    602 
    603 @item
    604 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
    605 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
    606 
    607 @item
    608 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
    609 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
    610 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
    611 @samp{%cx}, and @samp{%dx})
    612 
    613 @item
    614 the 6 section registers @samp{%cs} (code section), @samp{%ds}
    615 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
    616 and @samp{%gs}.
    617 
    618 @item
    619 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
    620 @samp{%cr3}.
    621 
    622 @item
    623 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
    624 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
    625 
    626 @item
    627 the 2 test registers @samp{%tr6} and @samp{%tr7}.
    628 
    629 @item
    630 the 8 floating point register stack @samp{%st} or equivalently
    631 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
    632 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
    633 These registers are overloaded by 8 MMX registers @samp{%mm0},
    634 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
    635 @samp{%mm6} and @samp{%mm7}.
    636 
    637 @item
    638 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
    639 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
    640 @end itemize
    641 
    642 The AMD x86-64 architecture extends the register set by:
    643 
    644 @itemize @bullet
    645 @item
    646 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
    647 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
    648 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
    649 pointer)
    650 
    651 @item
    652 the 8 extended registers @samp{%r8}--@samp{%r15}.
    653 
    654 @item
    655 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
    656 
    657 @item
    658 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
    659 
    660 @item
    661 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
    662 
    663 @item
    664 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
    665 
    666 @item
    667 the 8 debug registers: @samp{%db8}--@samp{%db15}.
    668 
    669 @item
    670 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
    671 @end itemize
    672 
    673 @node i386-Prefixes
    674 @section Instruction Prefixes
    675 
    676 @cindex i386 instruction prefixes
    677 @cindex instruction prefixes, i386
    678 @cindex prefixes, i386
    679 Instruction prefixes are used to modify the following instruction.  They
    680 are used to repeat string instructions, to provide section overrides, to
    681 perform bus lock operations, and to change operand and address sizes.
    682 (Most instructions that normally operate on 32-bit operands will use
    683 16-bit operands if the instruction has an ``operand size'' prefix.)
    684 Instruction prefixes are best written on the same line as the instruction
    685 they act upon. For example, the @samp{scas} (scan string) instruction is
    686 repeated with:
    687 
    688 @smallexample
    689         repne scas %es:(%edi),%al
    690 @end smallexample
    691 
    692 You may also place prefixes on the lines immediately preceding the
    693 instruction, but this circumvents checks that @code{@value{AS}} does
    694 with prefixes, and will not work with all prefixes.
    695 
    696 Here is a list of instruction prefixes:
    697 
    698 @cindex section override prefixes, i386
    699 @itemize @bullet
    700 @item
    701 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
    702 @samp{fs}, @samp{gs}.  These are automatically added by specifying
    703 using the @var{section}:@var{memory-operand} form for memory references.
    704 
    705 @cindex size prefixes, i386
    706 @item
    707 Operand/Address size prefixes @samp{data16} and @samp{addr16}
    708 change 32-bit operands/addresses into 16-bit operands/addresses,
    709 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
    710 @code{.code16} section) into 32-bit operands/addresses.  These prefixes
    711 @emph{must} appear on the same line of code as the instruction they
    712 modify. For example, in a 16-bit @code{.code16} section, you might
    713 write:
    714 
    715 @smallexample
    716         addr32 jmpl *(%ebx)
    717 @end smallexample
    718 
    719 @cindex bus lock prefixes, i386
    720 @cindex inhibiting interrupts, i386
    721 @item
    722 The bus lock prefix @samp{lock} inhibits interrupts during execution of
    723 the instruction it precedes.  (This is only valid with certain
    724 instructions; see a 80386 manual for details).
    725 
    726 @cindex coprocessor wait, i386
    727 @item
    728 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
    729 complete the current instruction.  This should never be needed for the
    730 80386/80387 combination.
    731 
    732 @cindex repeat prefixes, i386
    733 @item
    734 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
    735 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
    736 times if the current address size is 16-bits).
    737 @cindex REX prefixes, i386
    738 @item
    739 The @samp{rex} family of prefixes is used by x86-64 to encode
    740 extensions to i386 instruction set.  The @samp{rex} prefix has four
    741 bits --- an operand size overwrite (@code{64}) used to change operand size
    742 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
    743 register set.
    744 
    745 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
    746 instruction emits @samp{rex} prefix with all the bits set.  By omitting
    747 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
    748 prefixes as well.  Normally, there is no need to write the prefixes
    749 explicitly, since gas will automatically generate them based on the
    750 instruction operands.
    751 @end itemize
    752 
    753 @node i386-Memory
    754 @section Memory References
    755 
    756 @cindex i386 memory references
    757 @cindex memory references, i386
    758 @cindex x86-64 memory references
    759 @cindex memory references, x86-64
    760 An Intel syntax indirect memory reference of the form
    761 
    762 @smallexample
    763 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
    764 @end smallexample
    765 
    766 @noindent
    767 is translated into the AT&T syntax
    768 
    769 @smallexample
    770 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
    771 @end smallexample
    772 
    773 @noindent
    774 where @var{base} and @var{index} are the optional 32-bit base and
    775 index registers, @var{disp} is the optional displacement, and
    776 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
    777 to calculate the address of the operand.  If no @var{scale} is
    778 specified, @var{scale} is taken to be 1.  @var{section} specifies the
    779 optional section register for the memory operand, and may override the
    780 default section register (see a 80386 manual for section register
    781 defaults). Note that section overrides in AT&T syntax @emph{must}
    782 be preceded by a @samp{%}.  If you specify a section override which
    783 coincides with the default section register, @code{@value{AS}} does @emph{not}
    784 output any section register override prefixes to assemble the given
    785 instruction.  Thus, section overrides can be specified to emphasize which
    786 section register is used for a given memory operand.
    787 
    788 Here are some examples of Intel and AT&T style memory references:
    789 
    790 @table @asis
    791 @item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
    792 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
    793 missing, and the default section is used (@samp{%ss} for addressing with
    794 @samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
    795 
    796 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
    797 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
    798 @samp{foo}.  All other fields are missing.  The section register here
    799 defaults to @samp{%ds}.
    800 
    801 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
    802 This uses the value pointed to by @samp{foo} as a memory operand.
    803 Note that @var{base} and @var{index} are both missing, but there is only
    804 @emph{one} @samp{,}.  This is a syntactic exception.
    805 
    806 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
    807 This selects the contents of the variable @samp{foo} with section
    808 register @var{section} being @samp{%gs}.
    809 @end table
    810 
    811 Absolute (as opposed to PC relative) call and jump operands must be
    812 prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
    813 always chooses PC relative addressing for jump/call labels.
    814 
    815 Any instruction that has a memory operand, but no register operand,
    816 @emph{must} specify its size (byte, word, long, or quadruple) with an
    817 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
    818 respectively).
    819 
    820 The x86-64 architecture adds an RIP (instruction pointer relative)
    821 addressing.  This addressing mode is specified by using @samp{rip} as a
    822 base register.  Only constant offsets are valid. For example:
    823 
    824 @table @asis
    825 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
    826 Points to the address 1234 bytes past the end of the current
    827 instruction.
    828 
    829 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
    830 Points to the @code{symbol} in RIP relative way, this is shorter than
    831 the default absolute addressing.
    832 @end table
    833 
    834 Other addressing modes remain unchanged in x86-64 architecture, except
    835 registers used are 64-bit instead of 32-bit.
    836 
    837 @node i386-Jumps
    838 @section Handling of Jump Instructions
    839 
    840 @cindex jump optimization, i386
    841 @cindex i386 jump optimization
    842 @cindex jump optimization, x86-64
    843 @cindex x86-64 jump optimization
    844 Jump instructions are always optimized to use the smallest possible
    845 displacements.  This is accomplished by using byte (8-bit) displacement
    846 jumps whenever the target is sufficiently close.  If a byte displacement
    847 is insufficient a long displacement is used.  We do not support
    848 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
    849 instruction with the @samp{data16} instruction prefix), since the 80386
    850 insists upon masking @samp{%eip} to 16 bits after the word displacement
    851 is added. (See also @pxref{i386-Arch})
    852 
    853 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
    854 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
    855 displacements, so that if you use these instructions (@code{@value{GCC}} does
    856 not use them) you may get an error message (and incorrect code).  The AT&T
    857 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
    858 to
    859 
    860 @smallexample
    861          jcxz cx_zero
    862          jmp cx_nonzero
    863 cx_zero: jmp foo
    864 cx_nonzero:
    865 @end smallexample
    866 
    867 @node i386-Float
    868 @section Floating Point
    869 
    870 @cindex i386 floating point
    871 @cindex floating point, i386
    872 @cindex x86-64 floating point
    873 @cindex floating point, x86-64
    874 All 80387 floating point types except packed BCD are supported.
    875 (BCD support may be added without much difficulty).  These data
    876 types are 16-, 32-, and 64- bit integers, and single (32-bit),
    877 double (64-bit), and extended (80-bit) precision floating point.
    878 Each supported type has an instruction mnemonic suffix and a constructor
    879 associated with it.  Instruction mnemonic suffixes specify the operand's
    880 data type.  Constructors build these data types into memory.
    881 
    882 @cindex @code{float} directive, i386
    883 @cindex @code{single} directive, i386
    884 @cindex @code{double} directive, i386
    885 @cindex @code{tfloat} directive, i386
    886 @cindex @code{float} directive, x86-64
    887 @cindex @code{single} directive, x86-64
    888 @cindex @code{double} directive, x86-64
    889 @cindex @code{tfloat} directive, x86-64
    890 @itemize @bullet
    891 @item
    892 Floating point constructors are @samp{.float} or @samp{.single},
    893 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
    894 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
    895 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
    896 only supports this format via the @samp{fldt} (load 80-bit real to stack
    897 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
    898 
    899 @cindex @code{word} directive, i386
    900 @cindex @code{long} directive, i386
    901 @cindex @code{int} directive, i386
    902 @cindex @code{quad} directive, i386
    903 @cindex @code{word} directive, x86-64
    904 @cindex @code{long} directive, x86-64
    905 @cindex @code{int} directive, x86-64
    906 @cindex @code{quad} directive, x86-64
    907 @item
    908 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
    909 @samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
    910 corresponding instruction mnemonic suffixes are @samp{s} (single),
    911 @samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
    912 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
    913 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
    914 stack) instructions.
    915 @end itemize
    916 
    917 Register to register operations should not use instruction mnemonic suffixes.
    918 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
    919 wrote @samp{fst %st, %st(1)}, since all register to register operations
    920 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
    921 which converts @samp{%st} from 80-bit to 64-bit floating point format,
    922 then stores the result in the 4 byte location @samp{mem})
    923 
    924 @node i386-SIMD
    925 @section Intel's MMX and AMD's 3DNow! SIMD Operations
    926 
    927 @cindex MMX, i386
    928 @cindex 3DNow!, i386
    929 @cindex SIMD, i386
    930 @cindex MMX, x86-64
    931 @cindex 3DNow!, x86-64
    932 @cindex SIMD, x86-64
    933 
    934 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
    935 instructions for integer data), available on Intel's Pentium MMX
    936 processors and Pentium II processors, AMD's K6 and K6-2 processors,
    937 Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
    938 instruction set (SIMD instructions for 32-bit floating point data)
    939 available on AMD's K6-2 processor and possibly others in the future.
    940 
    941 Currently, @code{@value{AS}} does not support Intel's floating point
    942 SIMD, Katmai (KNI).
    943 
    944 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
    945 @samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
    946 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
    947 floating point values.  The MMX registers cannot be used at the same time
    948 as the floating point stack.
    949 
    950 See Intel and AMD documentation, keeping in mind that the operand order in
    951 instructions is reversed from the Intel syntax.
    952 
    953 @node i386-LWP
    954 @section AMD's Lightweight Profiling Instructions
    955 
    956 @cindex LWP, i386
    957 @cindex LWP, x86-64
    958 
    959 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
    960 instruction set, available on AMD's Family 15h (Orochi) processors.
    961 
    962 LWP enables applications to collect and manage performance data, and
    963 react to performance events.  The collection of performance data
    964 requires no context switches.  LWP runs in the context of a thread and
    965 so several counters can be used independently across multiple threads.
    966 LWP can be used in both 64-bit and legacy 32-bit modes.
    967 
    968 For detailed information on the LWP instruction set, see the
    969 @cite{AMD Lightweight Profiling Specification} available at
    970 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
    971 
    972 @node i386-BMI
    973 @section Bit Manipulation Instructions
    974 
    975 @cindex BMI, i386
    976 @cindex BMI, x86-64
    977 
    978 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
    979 
    980 BMI instructions provide several instructions implementing individual
    981 bit manipulation operations such as isolation, masking, setting, or
    982 resetting.
    983 
    984 @c Need to add a specification citation here when available.
    985 
    986 @node i386-TBM
    987 @section AMD's Trailing Bit Manipulation Instructions
    988 
    989 @cindex TBM, i386
    990 @cindex TBM, x86-64
    991 
    992 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
    993 instruction set, available on AMD's BDVER2 processors (Trinity and
    994 Viperfish).
    995 
    996 TBM instructions provide instructions implementing individual bit
    997 manipulation operations such as isolating, masking, setting, resetting,
    998 complementing, and operations on trailing zeros and ones.
    999 
   1000 @c Need to add a specification citation here when available.
   1001 
   1002 @node i386-16bit
   1003 @section Writing 16-bit Code
   1004 
   1005 @cindex i386 16-bit code
   1006 @cindex 16-bit code, i386
   1007 @cindex real-mode code, i386
   1008 @cindex @code{code16gcc} directive, i386
   1009 @cindex @code{code16} directive, i386
   1010 @cindex @code{code32} directive, i386
   1011 @cindex @code{code64} directive, i386
   1012 @cindex @code{code64} directive, x86-64
   1013 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
   1014 or 64-bit x86-64 code depending on the default configuration,
   1015 it also supports writing code to run in real mode or in 16-bit protected
   1016 mode code segments.  To do this, put a @samp{.code16} or
   1017 @samp{.code16gcc} directive before the assembly language instructions to
   1018 be run in 16-bit mode.  You can switch @code{@value{AS}} to writing
   1019 32-bit code with the @samp{.code32} directive or 64-bit code with the
   1020 @samp{.code64} directive.
   1021 
   1022 @samp{.code16gcc} provides experimental support for generating 16-bit
   1023 code from gcc, and differs from @samp{.code16} in that @samp{call},
   1024 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
   1025 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
   1026 default to 32-bit size.  This is so that the stack pointer is
   1027 manipulated in the same way over function calls, allowing access to
   1028 function parameters at the same stack offsets as in 32-bit mode.
   1029 @samp{.code16gcc} also automatically adds address size prefixes where
   1030 necessary to use the 32-bit addressing modes that gcc generates.
   1031 
   1032 The code which @code{@value{AS}} generates in 16-bit mode will not
   1033 necessarily run on a 16-bit pre-80386 processor.  To write code that
   1034 runs on such a processor, you must refrain from using @emph{any} 32-bit
   1035 constructs which require @code{@value{AS}} to output address or operand
   1036 size prefixes.
   1037 
   1038 Note that writing 16-bit code instructions by explicitly specifying a
   1039 prefix or an instruction mnemonic suffix within a 32-bit code section
   1040 generates different machine instructions than those generated for a
   1041 16-bit code segment.  In a 32-bit code section, the following code
   1042 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
   1043 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
   1044 
   1045 @smallexample
   1046         pushw $4
   1047 @end smallexample
   1048 
   1049 The same code in a 16-bit code section would generate the machine
   1050 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
   1051 is correct since the processor default operand size is assumed to be 16
   1052 bits in a 16-bit code section.
   1053 
   1054 @node i386-Bugs
   1055 @section AT&T Syntax bugs
   1056 
   1057 The UnixWare assembler, and probably other AT&T derived ix86 Unix
   1058 assemblers, generate floating point instructions with reversed source
   1059 and destination registers in certain cases.  Unfortunately, gcc and
   1060 possibly many other programs use this reversed syntax, so we're stuck
   1061 with it.
   1062 
   1063 For example
   1064 
   1065 @smallexample
   1066         fsub %st,%st(3)
   1067 @end smallexample
   1068 @noindent
   1069 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
   1070 than the expected @samp{%st(3) - %st}.  This happens with all the
   1071 non-commutative arithmetic floating point operations with two register
   1072 operands where the source register is @samp{%st} and the destination
   1073 register is @samp{%st(i)}.
   1074 
   1075 @node i386-Arch
   1076 @section Specifying CPU Architecture
   1077 
   1078 @cindex arch directive, i386
   1079 @cindex i386 arch directive
   1080 @cindex arch directive, x86-64
   1081 @cindex x86-64 arch directive
   1082 
   1083 @code{@value{AS}} may be told to assemble for a particular CPU
   1084 (sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
   1085 directive enables a warning when gas detects an instruction that is not
   1086 supported on the CPU specified.  The choices for @var{cpu_type} are:
   1087 
   1088 @multitable @columnfractions .20 .20 .20 .20
   1089 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
   1090 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
   1091 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
   1092 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
   1093 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
   1094 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
   1095 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
   1096 @item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2}
   1097 @item @samp{generic32} @tab @samp{generic64}
   1098 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
   1099 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
   1100 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
   1101 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
   1102 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
   1103 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
   1104 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
   1105 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
   1106 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
   1107 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
   1108 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
   1109 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
   1110 @item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
   1111 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
   1112 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
   1113 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
   1114 @item @samp{.padlock}
   1115 @end multitable
   1116 
   1117 Apart from the warning, there are only two other effects on
   1118 @code{@value{AS}} operation;  Firstly, if you specify a CPU other than
   1119 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
   1120 will automatically use a two byte opcode sequence.  The larger three
   1121 byte opcode sequence is used on the 486 (and when no architecture is
   1122 specified) because it executes faster on the 486.  Note that you can
   1123 explicitly request the two byte opcode by writing @samp{sarl %eax}.
   1124 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
   1125 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
   1126 conditional jumps will be promoted when necessary to a two instruction
   1127 sequence consisting of a conditional jump of the opposite sense around
   1128 an unconditional jump to the target.
   1129 
   1130 Following the CPU architecture (but not a sub-architecture, which are those
   1131 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
   1132 control automatic promotion of conditional jumps. @samp{jumps} is the
   1133 default, and enables jump promotion;  All external jumps will be of the long
   1134 variety, and file-local jumps will be promoted as necessary.
   1135 (@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
   1136 byte offset jumps, and warns about file-local conditional jumps that
   1137 @code{@value{AS}} promotes.
   1138 Unconditional jumps are treated as for @samp{jumps}.
   1139 
   1140 For example
   1141 
   1142 @smallexample
   1143  .arch i8086,nojumps
   1144 @end smallexample
   1145 
   1146 @node i386-Notes
   1147 @section Notes
   1148 
   1149 @cindex i386 @code{mul}, @code{imul} instructions
   1150 @cindex @code{mul} instruction, i386
   1151 @cindex @code{imul} instruction, i386
   1152 @cindex @code{mul} instruction, x86-64
   1153 @cindex @code{imul} instruction, x86-64
   1154 There is some trickery concerning the @samp{mul} and @samp{imul}
   1155 instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
   1156 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
   1157 for @samp{imul}) can be output only in the one operand form.  Thus,
   1158 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
   1159 the expanding multiply would clobber the @samp{%edx} register, and this
   1160 would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
   1161 64-bit product in @samp{%edx:%eax}.
   1162 
   1163 We have added a two operand form of @samp{imul} when the first operand
   1164 is an immediate mode expression and the second operand is a register.
   1165 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
   1166 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
   1167 $69, %eax, %eax}.
   1168 
   1169