Home | History | Annotate | Download | only in gold
      1 // target-reloc.h -- target specific relocation support  -*- C++ -*-
      2 
      3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
      4 // Written by Ian Lance Taylor <iant (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #ifndef GOLD_TARGET_RELOC_H
     24 #define GOLD_TARGET_RELOC_H
     25 
     26 #include "elfcpp.h"
     27 #include "symtab.h"
     28 #include "object.h"
     29 #include "reloc.h"
     30 #include "reloc-types.h"
     31 
     32 namespace gold
     33 {
     34 
     35 // This function implements the generic part of reloc scanning.  The
     36 // template parameter Scan must be a class type which provides two
     37 // functions: local() and global().  Those functions implement the
     38 // machine specific part of scanning.  We do it this way to
     39 // avoid making a function call for each relocation, and to avoid
     40 // repeating the generic code for each target.
     41 
     42 template<int size, bool big_endian, typename Target_type, int sh_type,
     43 	 typename Scan>
     44 inline void
     45 scan_relocs(
     46     Symbol_table* symtab,
     47     Layout* layout,
     48     Target_type* target,
     49     Sized_relobj_file<size, big_endian>* object,
     50     unsigned int data_shndx,
     51     const unsigned char* prelocs,
     52     size_t reloc_count,
     53     Output_section* output_section,
     54     bool needs_special_offset_handling,
     55     size_t local_count,
     56     const unsigned char* plocal_syms)
     57 {
     58   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
     59   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
     60   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
     61   Scan scan;
     62 
     63   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
     64     {
     65       Reltype reloc(prelocs);
     66 
     67       if (needs_special_offset_handling
     68 	  && !output_section->is_input_address_mapped(object, data_shndx,
     69 						      reloc.get_r_offset()))
     70 	continue;
     71 
     72       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
     73       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
     74       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
     75 
     76       if (r_sym < local_count)
     77 	{
     78 	  gold_assert(plocal_syms != NULL);
     79 	  typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
     80 						      + r_sym * sym_size);
     81 	  unsigned int shndx = lsym.get_st_shndx();
     82 	  bool is_ordinary;
     83 	  shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
     84 	  // If RELOC is a relocation against a local symbol in a
     85 	  // section we are discarding then we can ignore it.  It will
     86 	  // eventually become a reloc against the value zero.
     87 	  //
     88 	  // FIXME: We should issue a warning if this is an
     89 	  // allocated section; is this the best place to do it?
     90 	  //
     91 	  // FIXME: The old GNU linker would in some cases look
     92 	  // for the linkonce section which caused this section to
     93 	  // be discarded, and, if the other section was the same
     94 	  // size, change the reloc to refer to the other section.
     95 	  // That seems risky and weird to me, and I don't know of
     96 	  // any case where it is actually required.
     97 	  bool is_discarded = (is_ordinary
     98 			       && shndx != elfcpp::SHN_UNDEF
     99 			       && !object->is_section_included(shndx)
    100 			       && !symtab->is_section_folded(object, shndx));
    101 	  scan.local(symtab, layout, target, object, data_shndx,
    102 		     output_section, reloc, r_type, lsym, is_discarded);
    103 	}
    104       else
    105 	{
    106 	  Symbol* gsym = object->global_symbol(r_sym);
    107 	  gold_assert(gsym != NULL);
    108 	  if (gsym->is_forwarder())
    109 	    gsym = symtab->resolve_forwards(gsym);
    110 
    111 	  scan.global(symtab, layout, target, object, data_shndx,
    112 		      output_section, reloc, r_type, gsym);
    113 	}
    114     }
    115 }
    116 
    117 // Behavior for relocations to discarded comdat sections.
    118 
    119 enum Comdat_behavior
    120 {
    121   CB_UNDETERMINED,   // Not yet determined -- need to look at section name.
    122   CB_PRETEND,        // Attempt to map to the corresponding kept section.
    123   CB_IGNORE,         // Ignore the relocation.
    124   CB_WARNING         // Print a warning.
    125 };
    126 
    127 class Default_comdat_behavior
    128 {
    129  public:
    130   // Decide what the linker should do for relocations that refer to
    131   // discarded comdat sections.  This decision is based on the name of
    132   // the section being relocated.
    133 
    134   inline Comdat_behavior
    135   get(const char* name)
    136   {
    137     if (Layout::is_debug_info_section(name))
    138       return CB_PRETEND;
    139     if (strcmp(name, ".eh_frame") == 0
    140 	|| strcmp(name, ".gcc_except_table") == 0)
    141       return CB_IGNORE;
    142     return CB_WARNING;
    143   }
    144 };
    145 
    146 // Give an error for a symbol with non-default visibility which is not
    147 // defined locally.
    148 
    149 inline void
    150 visibility_error(const Symbol* sym)
    151 {
    152   const char* v;
    153   switch (sym->visibility())
    154     {
    155     case elfcpp::STV_INTERNAL:
    156       v = _("internal");
    157       break;
    158     case elfcpp::STV_HIDDEN:
    159       v = _("hidden");
    160       break;
    161     case elfcpp::STV_PROTECTED:
    162       v = _("protected");
    163       break;
    164     default:
    165       gold_unreachable();
    166     }
    167   gold_error(_("%s symbol '%s' is not defined locally"),
    168 	     v, sym->name());
    169 }
    170 
    171 // Return true if we are should issue an error saying that SYM is an
    172 // undefined symbol.  This is called if there is a relocation against
    173 // SYM.
    174 
    175 inline bool
    176 issue_undefined_symbol_error(const Symbol* sym)
    177 {
    178   // We only report global symbols.
    179   if (sym == NULL)
    180     return false;
    181 
    182   // We only report undefined symbols.
    183   if (!sym->is_undefined() && !sym->is_placeholder())
    184     return false;
    185 
    186   // We don't report weak symbols.
    187   if (sym->is_weak_undefined())
    188     return false;
    189 
    190   // We don't report symbols defined in discarded sections.
    191   if (sym->is_defined_in_discarded_section())
    192     return false;
    193 
    194   // If the target defines this symbol, don't report it here.
    195   if (parameters->target().is_defined_by_abi(sym))
    196     return false;
    197 
    198   // See if we've been told to ignore whether this symbol is
    199   // undefined.
    200   const char* const u = parameters->options().unresolved_symbols();
    201   if (u != NULL)
    202     {
    203       if (strcmp(u, "ignore-all") == 0)
    204 	return false;
    205       if (strcmp(u, "report-all") == 0)
    206 	return true;
    207       if (strcmp(u, "ignore-in-object-files") == 0 && !sym->in_dyn())
    208 	return false;
    209       if (strcmp(u, "ignore-in-shared-libs") == 0 && !sym->in_reg())
    210 	return false;
    211     }
    212 
    213   // If the symbol is hidden, report it.
    214   if (sym->visibility() == elfcpp::STV_HIDDEN)
    215     return true;
    216 
    217   // When creating a shared library, only report unresolved symbols if
    218   // -z defs was used.
    219   if (parameters->options().shared() && !parameters->options().defs())
    220     return false;
    221 
    222   // Otherwise issue a warning.
    223   return true;
    224 }
    225 
    226 // This function implements the generic part of relocation processing.
    227 // The template parameter Relocate must be a class type which provides
    228 // a single function, relocate(), which implements the machine
    229 // specific part of a relocation.
    230 
    231 // The template parameter Relocate_comdat_behavior is a class type
    232 // which provides a single function, get(), which determines what the
    233 // linker should do for relocations that refer to discarded comdat
    234 // sections.
    235 
    236 // SIZE is the ELF size: 32 or 64.  BIG_ENDIAN is the endianness of
    237 // the data.  SH_TYPE is the section type: SHT_REL or SHT_RELA.
    238 // RELOCATE implements operator() to do a relocation.
    239 
    240 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
    241 // of relocs.  OUTPUT_SECTION is the output section.
    242 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
    243 // mapped to output offsets.
    244 
    245 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
    246 // VIEW_SIZE is the size.  These refer to the input section, unless
    247 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
    248 // the output section.
    249 
    250 // RELOC_SYMBOL_CHANGES is used for -fsplit-stack support.  If it is
    251 // not NULL, it is a vector indexed by relocation index.  If that
    252 // entry is not NULL, it points to a global symbol which used as the
    253 // symbol for the relocation, ignoring the symbol index in the
    254 // relocation.
    255 
    256 template<int size, bool big_endian, typename Target_type, int sh_type,
    257 	 typename Relocate,
    258 	 typename Relocate_comdat_behavior>
    259 inline void
    260 relocate_section(
    261     const Relocate_info<size, big_endian>* relinfo,
    262     Target_type* target,
    263     const unsigned char* prelocs,
    264     size_t reloc_count,
    265     Output_section* output_section,
    266     bool needs_special_offset_handling,
    267     unsigned char* view,
    268     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
    269     section_size_type view_size,
    270     const Reloc_symbol_changes* reloc_symbol_changes)
    271 {
    272   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
    273   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
    274   Relocate relocate;
    275   Relocate_comdat_behavior relocate_comdat_behavior;
    276 
    277   Sized_relobj_file<size, big_endian>* object = relinfo->object;
    278   unsigned int local_count = object->local_symbol_count();
    279 
    280   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
    281 
    282   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    283     {
    284       Reltype reloc(prelocs);
    285 
    286       section_offset_type offset =
    287 	convert_to_section_size_type(reloc.get_r_offset());
    288 
    289       if (needs_special_offset_handling)
    290 	{
    291 	  offset = output_section->output_offset(relinfo->object,
    292 						 relinfo->data_shndx,
    293 						 offset);
    294 	  if (offset == -1)
    295 	    continue;
    296 	}
    297 
    298       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
    299       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
    300       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
    301 
    302       const Sized_symbol<size>* sym;
    303 
    304       Symbol_value<size> symval;
    305       const Symbol_value<size> *psymval;
    306       bool is_defined_in_discarded_section;
    307       unsigned int shndx;
    308       if (r_sym < local_count
    309 	  && (reloc_symbol_changes == NULL
    310 	      || (*reloc_symbol_changes)[i] == NULL))
    311 	{
    312 	  sym = NULL;
    313 	  psymval = object->local_symbol(r_sym);
    314 
    315           // If the local symbol belongs to a section we are discarding,
    316           // and that section is a debug section, try to find the
    317           // corresponding kept section and map this symbol to its
    318           // counterpart in the kept section.  The symbol must not
    319           // correspond to a section we are folding.
    320 	  bool is_ordinary;
    321 	  shndx = psymval->input_shndx(&is_ordinary);
    322 	  is_defined_in_discarded_section =
    323 	    (is_ordinary
    324 	     && shndx != elfcpp::SHN_UNDEF
    325 	     && !object->is_section_included(shndx)
    326 	     && !relinfo->symtab->is_section_folded(object, shndx));
    327 	}
    328       else
    329 	{
    330 	  const Symbol* gsym;
    331 	  if (reloc_symbol_changes != NULL
    332 	      && (*reloc_symbol_changes)[i] != NULL)
    333 	    gsym = (*reloc_symbol_changes)[i];
    334 	  else
    335 	    {
    336 	      gsym = object->global_symbol(r_sym);
    337 	      gold_assert(gsym != NULL);
    338 	      if (gsym->is_forwarder())
    339 		gsym = relinfo->symtab->resolve_forwards(gsym);
    340 	    }
    341 
    342 	  sym = static_cast<const Sized_symbol<size>*>(gsym);
    343 	  if (sym->has_symtab_index() && sym->symtab_index() != -1U)
    344 	    symval.set_output_symtab_index(sym->symtab_index());
    345 	  else
    346 	    symval.set_no_output_symtab_entry();
    347 	  symval.set_output_value(sym->value());
    348 	  if (gsym->type() == elfcpp::STT_TLS)
    349 	    symval.set_is_tls_symbol();
    350 	  else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
    351 	    symval.set_is_ifunc_symbol();
    352 	  psymval = &symval;
    353 
    354 	  is_defined_in_discarded_section =
    355 	    (gsym->is_defined_in_discarded_section()
    356 	     && gsym->is_undefined());
    357 	  shndx = 0;
    358 	}
    359 
    360       Symbol_value<size> symval2;
    361       if (is_defined_in_discarded_section)
    362 	{
    363 	  if (comdat_behavior == CB_UNDETERMINED)
    364 	    {
    365 	      std::string name = object->section_name(relinfo->data_shndx);
    366 	      comdat_behavior = relocate_comdat_behavior.get(name.c_str());
    367 	    }
    368 	  if (comdat_behavior == CB_PRETEND)
    369 	    {
    370 	      // FIXME: This case does not work for global symbols.
    371 	      // We have no place to store the original section index.
    372 	      // Fortunately this does not matter for comdat sections,
    373 	      // only for sections explicitly discarded by a linker
    374 	      // script.
    375 	      bool found;
    376 	      typename elfcpp::Elf_types<size>::Elf_Addr value =
    377 		object->map_to_kept_section(shndx, &found);
    378 	      if (found)
    379 		symval2.set_output_value(value + psymval->input_value());
    380 	      else
    381 		symval2.set_output_value(0);
    382 	    }
    383 	  else
    384 	    {
    385 	      if (comdat_behavior == CB_WARNING)
    386 		gold_warning_at_location(relinfo, i, offset,
    387 					 _("relocation refers to discarded "
    388 					   "section"));
    389 	      symval2.set_output_value(0);
    390 	    }
    391 	  symval2.set_no_output_symtab_entry();
    392 	  psymval = &symval2;
    393 	}
    394 
    395       // If OFFSET is out of range, still let the target decide to
    396       // ignore the relocation.  Pass in NULL as the VIEW argument so
    397       // that it can return quickly without trashing an invalid memory
    398       // address.
    399       unsigned char *v = view + offset;
    400       if (offset < 0 || static_cast<section_size_type>(offset) >= view_size)
    401 	v = NULL;
    402 
    403       if (!relocate.relocate(relinfo, target, output_section, i, reloc,
    404 			     r_type, sym, psymval, v, view_address + offset,
    405 			     view_size))
    406 	continue;
    407 
    408       if (v == NULL)
    409 	{
    410 	  gold_error_at_location(relinfo, i, offset,
    411 				 _("reloc has bad offset %zu"),
    412 				 static_cast<size_t>(offset));
    413 	  continue;
    414 	}
    415 
    416       if (issue_undefined_symbol_error(sym))
    417 	gold_undefined_symbol_at_location(sym, relinfo, i, offset);
    418       else if (sym != NULL
    419 	       && sym->visibility() != elfcpp::STV_DEFAULT
    420 	       && (sym->is_strong_undefined() || sym->is_from_dynobj()))
    421 	visibility_error(sym);
    422 
    423       if (sym != NULL && sym->has_warning())
    424 	relinfo->symtab->issue_warning(sym, relinfo, i, offset);
    425     }
    426 }
    427 
    428 // Apply an incremental relocation.
    429 
    430 template<int size, bool big_endian, typename Target_type,
    431 	 typename Relocate>
    432 void
    433 apply_relocation(const Relocate_info<size, big_endian>* relinfo,
    434 		 Target_type* target,
    435 		 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
    436 		 unsigned int r_type,
    437 		 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
    438 		 const Symbol* gsym,
    439 		 unsigned char* view,
    440 		 typename elfcpp::Elf_types<size>::Elf_Addr address,
    441 		 section_size_type view_size)
    442 {
    443   // Construct the ELF relocation in a temporary buffer.
    444   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
    445   unsigned char relbuf[reloc_size];
    446   elfcpp::Rela<size, big_endian> rel(relbuf);
    447   elfcpp::Rela_write<size, big_endian> orel(relbuf);
    448   orel.put_r_offset(r_offset);
    449   orel.put_r_info(elfcpp::elf_r_info<size>(0, r_type));
    450   orel.put_r_addend(r_addend);
    451 
    452   // Setup a Symbol_value for the global symbol.
    453   const Sized_symbol<size>* sym = static_cast<const Sized_symbol<size>*>(gsym);
    454   Symbol_value<size> symval;
    455   gold_assert(sym->has_symtab_index() && sym->symtab_index() != -1U);
    456   symval.set_output_symtab_index(sym->symtab_index());
    457   symval.set_output_value(sym->value());
    458   if (gsym->type() == elfcpp::STT_TLS)
    459     symval.set_is_tls_symbol();
    460   else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
    461     symval.set_is_ifunc_symbol();
    462 
    463   Relocate relocate;
    464   relocate.relocate(relinfo, target, NULL, -1U, rel, r_type, sym, &symval,
    465 		    view + r_offset, address + r_offset, view_size);
    466 }
    467 
    468 // This class may be used as a typical class for the
    469 // Scan_relocatable_reloc parameter to scan_relocatable_relocs.  The
    470 // template parameter Classify_reloc must be a class type which
    471 // provides a function get_size_for_reloc which returns the number of
    472 // bytes to which a reloc applies.  This class is intended to capture
    473 // the most typical target behaviour, while still permitting targets
    474 // to define their own independent class for Scan_relocatable_reloc.
    475 
    476 template<int sh_type, typename Classify_reloc>
    477 class Default_scan_relocatable_relocs
    478 {
    479  public:
    480   // Return the strategy to use for a local symbol which is not a
    481   // section symbol, given the relocation type.
    482   inline Relocatable_relocs::Reloc_strategy
    483   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
    484   {
    485     // We assume that relocation type 0 is NONE.  Targets which are
    486     // different must override.
    487     if (r_type == 0 && r_sym == 0)
    488       return Relocatable_relocs::RELOC_DISCARD;
    489     return Relocatable_relocs::RELOC_COPY;
    490   }
    491 
    492   // Return the strategy to use for a local symbol which is a section
    493   // symbol, given the relocation type.
    494   inline Relocatable_relocs::Reloc_strategy
    495   local_section_strategy(unsigned int r_type, Relobj* object)
    496   {
    497     if (sh_type == elfcpp::SHT_RELA)
    498       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
    499     else
    500       {
    501 	Classify_reloc classify;
    502 	switch (classify.get_size_for_reloc(r_type, object))
    503 	  {
    504 	  case 0:
    505 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
    506 	  case 1:
    507 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1;
    508 	  case 2:
    509 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2;
    510 	  case 4:
    511 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
    512 	  case 8:
    513 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8;
    514 	  default:
    515 	    gold_unreachable();
    516 	  }
    517       }
    518   }
    519 
    520   // Return the strategy to use for a global symbol, given the
    521   // relocation type, the object, and the symbol index.
    522   inline Relocatable_relocs::Reloc_strategy
    523   global_strategy(unsigned int, Relobj*, unsigned int)
    524   { return Relocatable_relocs::RELOC_COPY; }
    525 };
    526 
    527 // Scan relocs during a relocatable link.  This is a default
    528 // definition which should work for most targets.
    529 // Scan_relocatable_reloc must name a class type which provides three
    530 // functions which return a Relocatable_relocs::Reloc_strategy code:
    531 // global_strategy, local_non_section_strategy, and
    532 // local_section_strategy.  Most targets should be able to use
    533 // Default_scan_relocatable_relocs as this class.
    534 
    535 template<int size, bool big_endian, int sh_type,
    536 	 typename Scan_relocatable_reloc>
    537 void
    538 scan_relocatable_relocs(
    539     Symbol_table*,
    540     Layout*,
    541     Sized_relobj_file<size, big_endian>* object,
    542     unsigned int data_shndx,
    543     const unsigned char* prelocs,
    544     size_t reloc_count,
    545     Output_section* output_section,
    546     bool needs_special_offset_handling,
    547     size_t local_symbol_count,
    548     const unsigned char* plocal_syms,
    549     Relocatable_relocs* rr)
    550 {
    551   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
    552   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
    553   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
    554   Scan_relocatable_reloc scan;
    555 
    556   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    557     {
    558       Reltype reloc(prelocs);
    559 
    560       Relocatable_relocs::Reloc_strategy strategy;
    561 
    562       if (needs_special_offset_handling
    563 	  && !output_section->is_input_address_mapped(object, data_shndx,
    564 						      reloc.get_r_offset()))
    565 	strategy = Relocatable_relocs::RELOC_DISCARD;
    566       else
    567 	{
    568 	  typename elfcpp::Elf_types<size>::Elf_WXword r_info =
    569 	    reloc.get_r_info();
    570 	  const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
    571 	  const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
    572 
    573 	  if (r_sym >= local_symbol_count)
    574 	    strategy = scan.global_strategy(r_type, object, r_sym);
    575 	  else
    576 	    {
    577 	      gold_assert(plocal_syms != NULL);
    578 	      typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
    579 							  + r_sym * sym_size);
    580 	      unsigned int shndx = lsym.get_st_shndx();
    581 	      bool is_ordinary;
    582 	      shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
    583 	      if (is_ordinary
    584 		  && shndx != elfcpp::SHN_UNDEF
    585 		  && !object->is_section_included(shndx))
    586 		{
    587 		  // RELOC is a relocation against a local symbol
    588 		  // defined in a section we are discarding.  Discard
    589 		  // the reloc.  FIXME: Should we issue a warning?
    590 		  strategy = Relocatable_relocs::RELOC_DISCARD;
    591 		}
    592 	      else if (lsym.get_st_type() != elfcpp::STT_SECTION)
    593 		strategy = scan.local_non_section_strategy(r_type, object,
    594 							   r_sym);
    595 	      else
    596 		{
    597 		  strategy = scan.local_section_strategy(r_type, object);
    598 		  if (strategy != Relocatable_relocs::RELOC_DISCARD)
    599                     object->output_section(shndx)->set_needs_symtab_index();
    600 		}
    601 
    602 	      if (strategy == Relocatable_relocs::RELOC_COPY)
    603 		object->set_must_have_output_symtab_entry(r_sym);
    604 	    }
    605 	}
    606 
    607       rr->set_next_reloc_strategy(strategy);
    608     }
    609 }
    610 
    611 // Relocate relocs.  Called for a relocatable link, and for --emit-relocs.
    612 // This is a default definition which should work for most targets.
    613 
    614 template<int size, bool big_endian, int sh_type>
    615 void
    616 relocate_relocs(
    617     const Relocate_info<size, big_endian>* relinfo,
    618     const unsigned char* prelocs,
    619     size_t reloc_count,
    620     Output_section* output_section,
    621     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
    622     const Relocatable_relocs* rr,
    623     unsigned char* view,
    624     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
    625     section_size_type view_size,
    626     unsigned char* reloc_view,
    627     section_size_type reloc_view_size)
    628 {
    629   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
    630   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
    631   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc_write
    632     Reltype_write;
    633   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
    634   const Address invalid_address = static_cast<Address>(0) - 1;
    635 
    636   Sized_relobj_file<size, big_endian>* const object = relinfo->object;
    637   const unsigned int local_count = object->local_symbol_count();
    638 
    639   unsigned char* pwrite = reloc_view;
    640 
    641   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    642     {
    643       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
    644       if (strategy == Relocatable_relocs::RELOC_DISCARD)
    645 	continue;
    646 
    647       if (strategy == Relocatable_relocs::RELOC_SPECIAL)
    648 	{
    649 	  // Target wants to handle this relocation.
    650 	  Sized_target<size, big_endian>* target =
    651 	    parameters->sized_target<size, big_endian>();
    652 	  target->relocate_special_relocatable(relinfo, sh_type, prelocs,
    653 					       i, output_section,
    654 					       offset_in_output_section,
    655 					       view, view_address,
    656 					       view_size, pwrite);
    657 	  pwrite += reloc_size;
    658 	  continue;
    659 	}
    660       Reltype reloc(prelocs);
    661       Reltype_write reloc_write(pwrite);
    662 
    663       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
    664       const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
    665       const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
    666 
    667       // Get the new symbol index.
    668 
    669       unsigned int new_symndx;
    670       if (r_sym < local_count)
    671 	{
    672 	  switch (strategy)
    673 	    {
    674 	    case Relocatable_relocs::RELOC_COPY:
    675 	      if (r_sym == 0)
    676 		new_symndx = 0;
    677 	      else
    678 		{
    679 		  new_symndx = object->symtab_index(r_sym);
    680 		  gold_assert(new_symndx != -1U);
    681 		}
    682 	      break;
    683 
    684 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
    685 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
    686 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
    687 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
    688 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
    689 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
    690 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
    691 	      {
    692 		// We are adjusting a section symbol.  We need to find
    693 		// the symbol table index of the section symbol for
    694 		// the output section corresponding to input section
    695 		// in which this symbol is defined.
    696 		gold_assert(r_sym < local_count);
    697 		bool is_ordinary;
    698 		unsigned int shndx =
    699 		  object->local_symbol_input_shndx(r_sym, &is_ordinary);
    700 		gold_assert(is_ordinary);
    701 		Output_section* os = object->output_section(shndx);
    702 		gold_assert(os != NULL);
    703 		gold_assert(os->needs_symtab_index());
    704 		new_symndx = os->symtab_index();
    705 	      }
    706 	      break;
    707 
    708 	    default:
    709 	      gold_unreachable();
    710 	    }
    711 	}
    712       else
    713 	{
    714 	  const Symbol* gsym = object->global_symbol(r_sym);
    715 	  gold_assert(gsym != NULL);
    716 	  if (gsym->is_forwarder())
    717 	    gsym = relinfo->symtab->resolve_forwards(gsym);
    718 
    719 	  gold_assert(gsym->has_symtab_index());
    720 	  new_symndx = gsym->symtab_index();
    721 	}
    722 
    723       // Get the new offset--the location in the output section where
    724       // this relocation should be applied.
    725 
    726       Address offset = reloc.get_r_offset();
    727       Address new_offset;
    728       if (offset_in_output_section != invalid_address)
    729 	new_offset = offset + offset_in_output_section;
    730       else
    731 	{
    732           section_offset_type sot_offset =
    733               convert_types<section_offset_type, Address>(offset);
    734 	  section_offset_type new_sot_offset =
    735               output_section->output_offset(object, relinfo->data_shndx,
    736                                             sot_offset);
    737 	  gold_assert(new_sot_offset != -1);
    738           new_offset = new_sot_offset;
    739 	}
    740 
    741       // In an object file, r_offset is an offset within the section.
    742       // In an executable or dynamic object, generated by
    743       // --emit-relocs, r_offset is an absolute address.
    744       if (!parameters->options().relocatable())
    745 	{
    746 	  new_offset += view_address;
    747 	  if (offset_in_output_section != invalid_address)
    748 	    new_offset -= offset_in_output_section;
    749 	}
    750 
    751       reloc_write.put_r_offset(new_offset);
    752       reloc_write.put_r_info(elfcpp::elf_r_info<size>(new_symndx, r_type));
    753 
    754       // Handle the reloc addend based on the strategy.
    755 
    756       if (strategy == Relocatable_relocs::RELOC_COPY)
    757 	{
    758 	  if (sh_type == elfcpp::SHT_RELA)
    759 	    Reloc_types<sh_type, size, big_endian>::
    760 	      copy_reloc_addend(&reloc_write,
    761 				&reloc);
    762 	}
    763       else
    764 	{
    765 	  // The relocation uses a section symbol in the input file.
    766 	  // We are adjusting it to use a section symbol in the output
    767 	  // file.  The input section symbol refers to some address in
    768 	  // the input section.  We need the relocation in the output
    769 	  // file to refer to that same address.  This adjustment to
    770 	  // the addend is the same calculation we use for a simple
    771 	  // absolute relocation for the input section symbol.
    772 
    773 	  const Symbol_value<size>* psymval = object->local_symbol(r_sym);
    774 
    775 	  unsigned char* padd = view + offset;
    776 	  switch (strategy)
    777 	    {
    778 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
    779 	      {
    780 		typename elfcpp::Elf_types<size>::Elf_Swxword addend;
    781 		addend = Reloc_types<sh_type, size, big_endian>::
    782 			   get_reloc_addend(&reloc);
    783 		addend = psymval->value(object, addend);
    784 		Reloc_types<sh_type, size, big_endian>::
    785 		  set_reloc_addend(&reloc_write, addend);
    786 	      }
    787 	      break;
    788 
    789 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
    790 	      break;
    791 
    792 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
    793 	      Relocate_functions<size, big_endian>::rel8(padd, object,
    794 							 psymval);
    795 	      break;
    796 
    797 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
    798 	      Relocate_functions<size, big_endian>::rel16(padd, object,
    799 							  psymval);
    800 	      break;
    801 
    802 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
    803 	      Relocate_functions<size, big_endian>::rel32(padd, object,
    804 							  psymval);
    805 	      break;
    806 
    807 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
    808 	      Relocate_functions<size, big_endian>::rel64(padd, object,
    809 							  psymval);
    810 	      break;
    811 
    812 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
    813 	      Relocate_functions<size, big_endian>::rel32_unaligned(padd,
    814 								    object,
    815 								    psymval);
    816 	      break;
    817 
    818 	    default:
    819 	      gold_unreachable();
    820 	    }
    821 	}
    822 
    823       pwrite += reloc_size;
    824     }
    825 
    826   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
    827 	      == reloc_view_size);
    828 }
    829 
    830 } // End namespace gold.
    831 
    832 #endif // !defined(GOLD_TARGET_RELOC_H)
    833