Home | History | Annotate | Download | only in IterativeSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2012, 2014 Kolja Brix <brix (at) igpm.rwth-aaachen.de>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_GMRES_H
     12 #define EIGEN_GMRES_H
     13 
     14 namespace Eigen {
     15 
     16 namespace internal {
     17 
     18 /**
     19 * Generalized Minimal Residual Algorithm based on the
     20 * Arnoldi algorithm implemented with Householder reflections.
     21 *
     22 * Parameters:
     23 *  \param mat       matrix of linear system of equations
     24 *  \param Rhs       right hand side vector of linear system of equations
     25 *  \param x         on input: initial guess, on output: solution
     26 *  \param precond   preconditioner used
     27 *  \param iters     on input: maximum number of iterations to perform
     28 *                   on output: number of iterations performed
     29 *  \param restart   number of iterations for a restart
     30 *  \param tol_error on input: relative residual tolerance
     31 *                   on output: residuum achieved
     32 *
     33 * \sa IterativeMethods::bicgstab()
     34 *
     35 *
     36 * For references, please see:
     37 *
     38 * Saad, Y. and Schultz, M. H.
     39 * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
     40 * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
     41 *
     42 * Saad, Y.
     43 * Iterative Methods for Sparse Linear Systems.
     44 * Society for Industrial and Applied Mathematics, Philadelphia, 2003.
     45 *
     46 * Walker, H. F.
     47 * Implementations of the GMRES method.
     48 * Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
     49 *
     50 * Walker, H. F.
     51 * Implementation of the GMRES Method using Householder Transformations.
     52 * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
     53 *
     54 */
     55 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
     56 bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
     57     Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) {
     58 
     59   using std::sqrt;
     60   using std::abs;
     61 
     62   typedef typename Dest::RealScalar RealScalar;
     63   typedef typename Dest::Scalar Scalar;
     64   typedef Matrix < Scalar, Dynamic, 1 > VectorType;
     65   typedef Matrix < Scalar, Dynamic, Dynamic, ColMajor> FMatrixType;
     66 
     67   RealScalar tol = tol_error;
     68   const Index maxIters = iters;
     69   iters = 0;
     70 
     71   const Index m = mat.rows();
     72 
     73   // residual and preconditioned residual
     74   VectorType p0 = rhs - mat*x;
     75   VectorType r0 = precond.solve(p0);
     76 
     77   const RealScalar r0Norm = r0.norm();
     78 
     79   // is initial guess already good enough?
     80   if(r0Norm == 0)
     81   {
     82     tol_error = 0;
     83     return true;
     84   }
     85 
     86   // storage for Hessenberg matrix and Householder data
     87   FMatrixType H   = FMatrixType::Zero(m, restart + 1);
     88   VectorType w    = VectorType::Zero(restart + 1);
     89   VectorType tau  = VectorType::Zero(restart + 1);
     90 
     91   // storage for Jacobi rotations
     92   std::vector < JacobiRotation < Scalar > > G(restart);
     93 
     94   // storage for temporaries
     95   VectorType t(m), v(m), workspace(m), x_new(m);
     96 
     97   // generate first Householder vector
     98   Ref<VectorType> H0_tail = H.col(0).tail(m - 1);
     99   RealScalar beta;
    100   r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
    101   w(0) = Scalar(beta);
    102 
    103   for (Index k = 1; k <= restart; ++k)
    104   {
    105     ++iters;
    106 
    107     v = VectorType::Unit(m, k - 1);
    108 
    109     // apply Householder reflections H_{1} ... H_{k-1} to v
    110     // TODO: use a HouseholderSequence
    111     for (Index i = k - 1; i >= 0; --i) {
    112       v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
    113     }
    114 
    115     // apply matrix M to v:  v = mat * v;
    116     t.noalias() = mat * v;
    117     v = precond.solve(t);
    118 
    119     // apply Householder reflections H_{k-1} ... H_{1} to v
    120     // TODO: use a HouseholderSequence
    121     for (Index i = 0; i < k; ++i) {
    122       v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
    123     }
    124 
    125     if (v.tail(m - k).norm() != 0.0)
    126     {
    127       if (k <= restart)
    128       {
    129         // generate new Householder vector
    130         Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1);
    131         v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta);
    132 
    133         // apply Householder reflection H_{k} to v
    134         v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data());
    135       }
    136     }
    137 
    138     if (k > 1)
    139     {
    140       for (Index i = 0; i < k - 1; ++i)
    141       {
    142         // apply old Givens rotations to v
    143         v.applyOnTheLeft(i, i + 1, G[i].adjoint());
    144       }
    145     }
    146 
    147     if (k<m && v(k) != (Scalar) 0)
    148     {
    149       // determine next Givens rotation
    150       G[k - 1].makeGivens(v(k - 1), v(k));
    151 
    152       // apply Givens rotation to v and w
    153       v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
    154       w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
    155     }
    156 
    157     // insert coefficients into upper matrix triangle
    158     H.col(k-1).head(k) = v.head(k);
    159 
    160     tol_error = abs(w(k)) / r0Norm;
    161     bool stop = (k==m || tol_error < tol || iters == maxIters);
    162 
    163     if (stop || k == restart)
    164     {
    165       // solve upper triangular system
    166       Ref<VectorType> y = w.head(k);
    167       H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y);
    168 
    169       // use Horner-like scheme to calculate solution vector
    170       x_new.setZero();
    171       for (Index i = k - 1; i >= 0; --i)
    172       {
    173         x_new(i) += y(i);
    174         // apply Householder reflection H_{i} to x_new
    175         x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
    176       }
    177 
    178       x += x_new;
    179 
    180       if(stop)
    181       {
    182         return true;
    183       }
    184       else
    185       {
    186         k=0;
    187 
    188         // reset data for restart
    189         p0.noalias() = rhs - mat*x;
    190         r0 = precond.solve(p0);
    191 
    192         // clear Hessenberg matrix and Householder data
    193         H.setZero();
    194         w.setZero();
    195         tau.setZero();
    196 
    197         // generate first Householder vector
    198         r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
    199         w(0) = Scalar(beta);
    200       }
    201     }
    202   }
    203 
    204   return false;
    205 
    206 }
    207 
    208 }
    209 
    210 template< typename _MatrixType,
    211           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
    212 class GMRES;
    213 
    214 namespace internal {
    215 
    216 template< typename _MatrixType, typename _Preconditioner>
    217 struct traits<GMRES<_MatrixType,_Preconditioner> >
    218 {
    219   typedef _MatrixType MatrixType;
    220   typedef _Preconditioner Preconditioner;
    221 };
    222 
    223 }
    224 
    225 /** \ingroup IterativeLinearSolvers_Module
    226   * \brief A GMRES solver for sparse square problems
    227   *
    228   * This class allows to solve for A.x = b sparse linear problems using a generalized minimal
    229   * residual method. The vectors x and b can be either dense or sparse.
    230   *
    231   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
    232   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
    233   *
    234   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
    235   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
    236   * and NumTraits<Scalar>::epsilon() for the tolerance.
    237   *
    238   * This class can be used as the direct solver classes. Here is a typical usage example:
    239   * \code
    240   * int n = 10000;
    241   * VectorXd x(n), b(n);
    242   * SparseMatrix<double> A(n,n);
    243   * // fill A and b
    244   * GMRES<SparseMatrix<double> > solver(A);
    245   * x = solver.solve(b);
    246   * std::cout << "#iterations:     " << solver.iterations() << std::endl;
    247   * std::cout << "estimated error: " << solver.error()      << std::endl;
    248   * // update b, and solve again
    249   * x = solver.solve(b);
    250   * \endcode
    251   *
    252   * By default the iterations start with x=0 as an initial guess of the solution.
    253   * One can control the start using the solveWithGuess() method.
    254   *
    255   * GMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
    256   *
    257   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
    258   */
    259 template< typename _MatrixType, typename _Preconditioner>
    260 class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
    261 {
    262   typedef IterativeSolverBase<GMRES> Base;
    263   using Base::matrix;
    264   using Base::m_error;
    265   using Base::m_iterations;
    266   using Base::m_info;
    267   using Base::m_isInitialized;
    268 
    269 private:
    270   Index m_restart;
    271 
    272 public:
    273   using Base::_solve_impl;
    274   typedef _MatrixType MatrixType;
    275   typedef typename MatrixType::Scalar Scalar;
    276   typedef typename MatrixType::RealScalar RealScalar;
    277   typedef _Preconditioner Preconditioner;
    278 
    279 public:
    280 
    281   /** Default constructor. */
    282   GMRES() : Base(), m_restart(30) {}
    283 
    284   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    285     *
    286     * This constructor is a shortcut for the default constructor followed
    287     * by a call to compute().
    288     *
    289     * \warning this class stores a reference to the matrix A as well as some
    290     * precomputed values that depend on it. Therefore, if \a A is changed
    291     * this class becomes invalid. Call compute() to update it with the new
    292     * matrix A, or modify a copy of A.
    293     */
    294   template<typename MatrixDerived>
    295   explicit GMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30) {}
    296 
    297   ~GMRES() {}
    298 
    299   /** Get the number of iterations after that a restart is performed.
    300     */
    301   Index get_restart() { return m_restart; }
    302 
    303   /** Set the number of iterations after that a restart is performed.
    304     *  \param restart   number of iterations for a restarti, default is 30.
    305     */
    306   void set_restart(const Index restart) { m_restart=restart; }
    307 
    308   /** \internal */
    309   template<typename Rhs,typename Dest>
    310   void _solve_with_guess_impl(const Rhs& b, Dest& x) const
    311   {
    312     bool failed = false;
    313     for(Index j=0; j<b.cols(); ++j)
    314     {
    315       m_iterations = Base::maxIterations();
    316       m_error = Base::m_tolerance;
    317 
    318       typename Dest::ColXpr xj(x,j);
    319       if(!internal::gmres(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
    320         failed = true;
    321     }
    322     m_info = failed ? NumericalIssue
    323           : m_error <= Base::m_tolerance ? Success
    324           : NoConvergence;
    325     m_isInitialized = true;
    326   }
    327 
    328   /** \internal */
    329   template<typename Rhs,typename Dest>
    330   void _solve_impl(const Rhs& b, MatrixBase<Dest> &x) const
    331   {
    332     x = b;
    333     if(x.squaredNorm() == 0) return; // Check Zero right hand side
    334     _solve_with_guess_impl(b,x.derived());
    335   }
    336 
    337 protected:
    338 
    339 };
    340 
    341 } // end namespace Eigen
    342 
    343 #endif // EIGEN_GMRES_H
    344