Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 #include "nodes.h"
     17 
     18 #include <cfloat>
     19 
     20 #include "art_method-inl.h"
     21 #include "class_linker-inl.h"
     22 #include "code_generator.h"
     23 #include "common_dominator.h"
     24 #include "ssa_builder.h"
     25 #include "base/bit_vector-inl.h"
     26 #include "base/bit_utils.h"
     27 #include "base/stl_util.h"
     28 #include "intrinsics.h"
     29 #include "mirror/class-inl.h"
     30 #include "scoped_thread_state_change-inl.h"
     31 
     32 namespace art {
     33 
     34 // Enable floating-point static evaluation during constant folding
     35 // only if all floating-point operations and constants evaluate in the
     36 // range and precision of the type used (i.e., 32-bit float, 64-bit
     37 // double).
     38 static constexpr bool kEnableFloatingPointStaticEvaluation = (FLT_EVAL_METHOD == 0);
     39 
     40 void HGraph::InitializeInexactObjectRTI(VariableSizedHandleScope* handles) {
     41   ScopedObjectAccess soa(Thread::Current());
     42   // Create the inexact Object reference type and store it in the HGraph.
     43   ClassLinker* linker = Runtime::Current()->GetClassLinker();
     44   inexact_object_rti_ = ReferenceTypeInfo::Create(
     45       handles->NewHandle(linker->GetClassRoot(ClassLinker::kJavaLangObject)),
     46       /* is_exact */ false);
     47 }
     48 
     49 void HGraph::AddBlock(HBasicBlock* block) {
     50   block->SetBlockId(blocks_.size());
     51   blocks_.push_back(block);
     52 }
     53 
     54 void HGraph::FindBackEdges(ArenaBitVector* visited) {
     55   // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks.
     56   DCHECK_EQ(visited->GetHighestBitSet(), -1);
     57 
     58   // Nodes that we're currently visiting, indexed by block id.
     59   ArenaBitVector visiting(arena_, blocks_.size(), false, kArenaAllocGraphBuilder);
     60   // Number of successors visited from a given node, indexed by block id.
     61   ArenaVector<size_t> successors_visited(blocks_.size(),
     62                                          0u,
     63                                          arena_->Adapter(kArenaAllocGraphBuilder));
     64   // Stack of nodes that we're currently visiting (same as marked in "visiting" above).
     65   ArenaVector<HBasicBlock*> worklist(arena_->Adapter(kArenaAllocGraphBuilder));
     66   constexpr size_t kDefaultWorklistSize = 8;
     67   worklist.reserve(kDefaultWorklistSize);
     68   visited->SetBit(entry_block_->GetBlockId());
     69   visiting.SetBit(entry_block_->GetBlockId());
     70   worklist.push_back(entry_block_);
     71 
     72   while (!worklist.empty()) {
     73     HBasicBlock* current = worklist.back();
     74     uint32_t current_id = current->GetBlockId();
     75     if (successors_visited[current_id] == current->GetSuccessors().size()) {
     76       visiting.ClearBit(current_id);
     77       worklist.pop_back();
     78     } else {
     79       HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
     80       uint32_t successor_id = successor->GetBlockId();
     81       if (visiting.IsBitSet(successor_id)) {
     82         DCHECK(ContainsElement(worklist, successor));
     83         successor->AddBackEdge(current);
     84       } else if (!visited->IsBitSet(successor_id)) {
     85         visited->SetBit(successor_id);
     86         visiting.SetBit(successor_id);
     87         worklist.push_back(successor);
     88       }
     89     }
     90   }
     91 }
     92 
     93 static void RemoveEnvironmentUses(HInstruction* instruction) {
     94   for (HEnvironment* environment = instruction->GetEnvironment();
     95        environment != nullptr;
     96        environment = environment->GetParent()) {
     97     for (size_t i = 0, e = environment->Size(); i < e; ++i) {
     98       if (environment->GetInstructionAt(i) != nullptr) {
     99         environment->RemoveAsUserOfInput(i);
    100       }
    101     }
    102   }
    103 }
    104 
    105 static void RemoveAsUser(HInstruction* instruction) {
    106   instruction->RemoveAsUserOfAllInputs();
    107   RemoveEnvironmentUses(instruction);
    108 }
    109 
    110 void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const {
    111   for (size_t i = 0; i < blocks_.size(); ++i) {
    112     if (!visited.IsBitSet(i)) {
    113       HBasicBlock* block = blocks_[i];
    114       if (block == nullptr) continue;
    115       DCHECK(block->GetPhis().IsEmpty()) << "Phis are not inserted at this stage";
    116       for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
    117         RemoveAsUser(it.Current());
    118       }
    119     }
    120   }
    121 }
    122 
    123 void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) {
    124   for (size_t i = 0; i < blocks_.size(); ++i) {
    125     if (!visited.IsBitSet(i)) {
    126       HBasicBlock* block = blocks_[i];
    127       if (block == nullptr) continue;
    128       // We only need to update the successor, which might be live.
    129       for (HBasicBlock* successor : block->GetSuccessors()) {
    130         successor->RemovePredecessor(block);
    131       }
    132       // Remove the block from the list of blocks, so that further analyses
    133       // never see it.
    134       blocks_[i] = nullptr;
    135       if (block->IsExitBlock()) {
    136         SetExitBlock(nullptr);
    137       }
    138       // Mark the block as removed. This is used by the HGraphBuilder to discard
    139       // the block as a branch target.
    140       block->SetGraph(nullptr);
    141     }
    142   }
    143 }
    144 
    145 GraphAnalysisResult HGraph::BuildDominatorTree() {
    146   ArenaBitVector visited(arena_, blocks_.size(), false, kArenaAllocGraphBuilder);
    147 
    148   // (1) Find the back edges in the graph doing a DFS traversal.
    149   FindBackEdges(&visited);
    150 
    151   // (2) Remove instructions and phis from blocks not visited during
    152   //     the initial DFS as users from other instructions, so that
    153   //     users can be safely removed before uses later.
    154   RemoveInstructionsAsUsersFromDeadBlocks(visited);
    155 
    156   // (3) Remove blocks not visited during the initial DFS.
    157   //     Step (5) requires dead blocks to be removed from the
    158   //     predecessors list of live blocks.
    159   RemoveDeadBlocks(visited);
    160 
    161   // (4) Simplify the CFG now, so that we don't need to recompute
    162   //     dominators and the reverse post order.
    163   SimplifyCFG();
    164 
    165   // (5) Compute the dominance information and the reverse post order.
    166   ComputeDominanceInformation();
    167 
    168   // (6) Analyze loops discovered through back edge analysis, and
    169   //     set the loop information on each block.
    170   GraphAnalysisResult result = AnalyzeLoops();
    171   if (result != kAnalysisSuccess) {
    172     return result;
    173   }
    174 
    175   // (7) Precompute per-block try membership before entering the SSA builder,
    176   //     which needs the information to build catch block phis from values of
    177   //     locals at throwing instructions inside try blocks.
    178   ComputeTryBlockInformation();
    179 
    180   return kAnalysisSuccess;
    181 }
    182 
    183 void HGraph::ClearDominanceInformation() {
    184   for (HBasicBlock* block : GetReversePostOrder()) {
    185     block->ClearDominanceInformation();
    186   }
    187   reverse_post_order_.clear();
    188 }
    189 
    190 void HGraph::ClearLoopInformation() {
    191   SetHasIrreducibleLoops(false);
    192   for (HBasicBlock* block : GetReversePostOrder()) {
    193     block->SetLoopInformation(nullptr);
    194   }
    195 }
    196 
    197 void HBasicBlock::ClearDominanceInformation() {
    198   dominated_blocks_.clear();
    199   dominator_ = nullptr;
    200 }
    201 
    202 HInstruction* HBasicBlock::GetFirstInstructionDisregardMoves() const {
    203   HInstruction* instruction = GetFirstInstruction();
    204   while (instruction->IsParallelMove()) {
    205     instruction = instruction->GetNext();
    206   }
    207   return instruction;
    208 }
    209 
    210 static bool UpdateDominatorOfSuccessor(HBasicBlock* block, HBasicBlock* successor) {
    211   DCHECK(ContainsElement(block->GetSuccessors(), successor));
    212 
    213   HBasicBlock* old_dominator = successor->GetDominator();
    214   HBasicBlock* new_dominator =
    215       (old_dominator == nullptr) ? block
    216                                  : CommonDominator::ForPair(old_dominator, block);
    217 
    218   if (old_dominator == new_dominator) {
    219     return false;
    220   } else {
    221     successor->SetDominator(new_dominator);
    222     return true;
    223   }
    224 }
    225 
    226 void HGraph::ComputeDominanceInformation() {
    227   DCHECK(reverse_post_order_.empty());
    228   reverse_post_order_.reserve(blocks_.size());
    229   reverse_post_order_.push_back(entry_block_);
    230 
    231   // Number of visits of a given node, indexed by block id.
    232   ArenaVector<size_t> visits(blocks_.size(), 0u, arena_->Adapter(kArenaAllocGraphBuilder));
    233   // Number of successors visited from a given node, indexed by block id.
    234   ArenaVector<size_t> successors_visited(blocks_.size(),
    235                                          0u,
    236                                          arena_->Adapter(kArenaAllocGraphBuilder));
    237   // Nodes for which we need to visit successors.
    238   ArenaVector<HBasicBlock*> worklist(arena_->Adapter(kArenaAllocGraphBuilder));
    239   constexpr size_t kDefaultWorklistSize = 8;
    240   worklist.reserve(kDefaultWorklistSize);
    241   worklist.push_back(entry_block_);
    242 
    243   while (!worklist.empty()) {
    244     HBasicBlock* current = worklist.back();
    245     uint32_t current_id = current->GetBlockId();
    246     if (successors_visited[current_id] == current->GetSuccessors().size()) {
    247       worklist.pop_back();
    248     } else {
    249       HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
    250       UpdateDominatorOfSuccessor(current, successor);
    251 
    252       // Once all the forward edges have been visited, we know the immediate
    253       // dominator of the block. We can then start visiting its successors.
    254       if (++visits[successor->GetBlockId()] ==
    255           successor->GetPredecessors().size() - successor->NumberOfBackEdges()) {
    256         reverse_post_order_.push_back(successor);
    257         worklist.push_back(successor);
    258       }
    259     }
    260   }
    261 
    262   // Check if the graph has back edges not dominated by their respective headers.
    263   // If so, we need to update the dominators of those headers and recursively of
    264   // their successors. We do that with a fix-point iteration over all blocks.
    265   // The algorithm is guaranteed to terminate because it loops only if the sum
    266   // of all dominator chains has decreased in the current iteration.
    267   bool must_run_fix_point = false;
    268   for (HBasicBlock* block : blocks_) {
    269     if (block != nullptr &&
    270         block->IsLoopHeader() &&
    271         block->GetLoopInformation()->HasBackEdgeNotDominatedByHeader()) {
    272       must_run_fix_point = true;
    273       break;
    274     }
    275   }
    276   if (must_run_fix_point) {
    277     bool update_occurred = true;
    278     while (update_occurred) {
    279       update_occurred = false;
    280       for (HBasicBlock* block : GetReversePostOrder()) {
    281         for (HBasicBlock* successor : block->GetSuccessors()) {
    282           update_occurred |= UpdateDominatorOfSuccessor(block, successor);
    283         }
    284       }
    285     }
    286   }
    287 
    288   // Make sure that there are no remaining blocks whose dominator information
    289   // needs to be updated.
    290   if (kIsDebugBuild) {
    291     for (HBasicBlock* block : GetReversePostOrder()) {
    292       for (HBasicBlock* successor : block->GetSuccessors()) {
    293         DCHECK(!UpdateDominatorOfSuccessor(block, successor));
    294       }
    295     }
    296   }
    297 
    298   // Populate `dominated_blocks_` information after computing all dominators.
    299   // The potential presence of irreducible loops requires to do it after.
    300   for (HBasicBlock* block : GetReversePostOrder()) {
    301     if (!block->IsEntryBlock()) {
    302       block->GetDominator()->AddDominatedBlock(block);
    303     }
    304   }
    305 }
    306 
    307 HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) {
    308   HBasicBlock* new_block = new (arena_) HBasicBlock(this, successor->GetDexPc());
    309   AddBlock(new_block);
    310   // Use `InsertBetween` to ensure the predecessor index and successor index of
    311   // `block` and `successor` are preserved.
    312   new_block->InsertBetween(block, successor);
    313   return new_block;
    314 }
    315 
    316 void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
    317   // Insert a new node between `block` and `successor` to split the
    318   // critical edge.
    319   HBasicBlock* new_block = SplitEdge(block, successor);
    320   new_block->AddInstruction(new (arena_) HGoto(successor->GetDexPc()));
    321   if (successor->IsLoopHeader()) {
    322     // If we split at a back edge boundary, make the new block the back edge.
    323     HLoopInformation* info = successor->GetLoopInformation();
    324     if (info->IsBackEdge(*block)) {
    325       info->RemoveBackEdge(block);
    326       info->AddBackEdge(new_block);
    327     }
    328   }
    329 }
    330 
    331 void HGraph::SimplifyLoop(HBasicBlock* header) {
    332   HLoopInformation* info = header->GetLoopInformation();
    333 
    334   // Make sure the loop has only one pre header. This simplifies SSA building by having
    335   // to just look at the pre header to know which locals are initialized at entry of the
    336   // loop. Also, don't allow the entry block to be a pre header: this simplifies inlining
    337   // this graph.
    338   size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges();
    339   if (number_of_incomings != 1 || (GetEntryBlock()->GetSingleSuccessor() == header)) {
    340     HBasicBlock* pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
    341     AddBlock(pre_header);
    342     pre_header->AddInstruction(new (arena_) HGoto(header->GetDexPc()));
    343 
    344     for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
    345       HBasicBlock* predecessor = header->GetPredecessors()[pred];
    346       if (!info->IsBackEdge(*predecessor)) {
    347         predecessor->ReplaceSuccessor(header, pre_header);
    348         pred--;
    349       }
    350     }
    351     pre_header->AddSuccessor(header);
    352   }
    353 
    354   // Make sure the first predecessor of a loop header is the incoming block.
    355   if (info->IsBackEdge(*header->GetPredecessors()[0])) {
    356     HBasicBlock* to_swap = header->GetPredecessors()[0];
    357     for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) {
    358       HBasicBlock* predecessor = header->GetPredecessors()[pred];
    359       if (!info->IsBackEdge(*predecessor)) {
    360         header->predecessors_[pred] = to_swap;
    361         header->predecessors_[0] = predecessor;
    362         break;
    363       }
    364     }
    365   }
    366 
    367   HInstruction* first_instruction = header->GetFirstInstruction();
    368   if (first_instruction != nullptr && first_instruction->IsSuspendCheck()) {
    369     // Called from DeadBlockElimination. Update SuspendCheck pointer.
    370     info->SetSuspendCheck(first_instruction->AsSuspendCheck());
    371   }
    372 }
    373 
    374 void HGraph::ComputeTryBlockInformation() {
    375   // Iterate in reverse post order to propagate try membership information from
    376   // predecessors to their successors.
    377   for (HBasicBlock* block : GetReversePostOrder()) {
    378     if (block->IsEntryBlock() || block->IsCatchBlock()) {
    379       // Catch blocks after simplification have only exceptional predecessors
    380       // and hence are never in tries.
    381       continue;
    382     }
    383 
    384     // Infer try membership from the first predecessor. Having simplified loops,
    385     // the first predecessor can never be a back edge and therefore it must have
    386     // been visited already and had its try membership set.
    387     HBasicBlock* first_predecessor = block->GetPredecessors()[0];
    388     DCHECK(!block->IsLoopHeader() || !block->GetLoopInformation()->IsBackEdge(*first_predecessor));
    389     const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors();
    390     if (try_entry != nullptr &&
    391         (block->GetTryCatchInformation() == nullptr ||
    392          try_entry != &block->GetTryCatchInformation()->GetTryEntry())) {
    393       // We are either setting try block membership for the first time or it
    394       // has changed.
    395       block->SetTryCatchInformation(new (arena_) TryCatchInformation(*try_entry));
    396     }
    397   }
    398 }
    399 
    400 void HGraph::SimplifyCFG() {
    401 // Simplify the CFG for future analysis, and code generation:
    402   // (1): Split critical edges.
    403   // (2): Simplify loops by having only one preheader.
    404   // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators
    405   // can be invalidated. We remember the initial size to avoid iterating over the new blocks.
    406   for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) {
    407     HBasicBlock* block = blocks_[block_id];
    408     if (block == nullptr) continue;
    409     if (block->GetSuccessors().size() > 1) {
    410       // Only split normal-flow edges. We cannot split exceptional edges as they
    411       // are synthesized (approximate real control flow), and we do not need to
    412       // anyway. Moves that would be inserted there are performed by the runtime.
    413       ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors();
    414       for (size_t j = 0, e = normal_successors.size(); j < e; ++j) {
    415         HBasicBlock* successor = normal_successors[j];
    416         DCHECK(!successor->IsCatchBlock());
    417         if (successor == exit_block_) {
    418           // (Throw/Return/ReturnVoid)->TryBoundary->Exit. Special case which we
    419           // do not want to split because Goto->Exit is not allowed.
    420           DCHECK(block->IsSingleTryBoundary());
    421         } else if (successor->GetPredecessors().size() > 1) {
    422           SplitCriticalEdge(block, successor);
    423           // SplitCriticalEdge could have invalidated the `normal_successors`
    424           // ArrayRef. We must re-acquire it.
    425           normal_successors = block->GetNormalSuccessors();
    426           DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor);
    427           DCHECK_EQ(e, normal_successors.size());
    428         }
    429       }
    430     }
    431     if (block->IsLoopHeader()) {
    432       SimplifyLoop(block);
    433     } else if (!block->IsEntryBlock() &&
    434                block->GetFirstInstruction() != nullptr &&
    435                block->GetFirstInstruction()->IsSuspendCheck()) {
    436       // We are being called by the dead code elimiation pass, and what used to be
    437       // a loop got dismantled. Just remove the suspend check.
    438       block->RemoveInstruction(block->GetFirstInstruction());
    439     }
    440   }
    441 }
    442 
    443 GraphAnalysisResult HGraph::AnalyzeLoops() const {
    444   // We iterate post order to ensure we visit inner loops before outer loops.
    445   // `PopulateRecursive` needs this guarantee to know whether a natural loop
    446   // contains an irreducible loop.
    447   for (HBasicBlock* block : GetPostOrder()) {
    448     if (block->IsLoopHeader()) {
    449       if (block->IsCatchBlock()) {
    450         // TODO: Dealing with exceptional back edges could be tricky because
    451         //       they only approximate the real control flow. Bail out for now.
    452         return kAnalysisFailThrowCatchLoop;
    453       }
    454       block->GetLoopInformation()->Populate();
    455     }
    456   }
    457   return kAnalysisSuccess;
    458 }
    459 
    460 void HLoopInformation::Dump(std::ostream& os) {
    461   os << "header: " << header_->GetBlockId() << std::endl;
    462   os << "pre header: " << GetPreHeader()->GetBlockId() << std::endl;
    463   for (HBasicBlock* block : back_edges_) {
    464     os << "back edge: " << block->GetBlockId() << std::endl;
    465   }
    466   for (HBasicBlock* block : header_->GetPredecessors()) {
    467     os << "predecessor: " << block->GetBlockId() << std::endl;
    468   }
    469   for (uint32_t idx : blocks_.Indexes()) {
    470     os << "  in loop: " << idx << std::endl;
    471   }
    472 }
    473 
    474 void HGraph::InsertConstant(HConstant* constant) {
    475   // New constants are inserted before the SuspendCheck at the bottom of the
    476   // entry block. Note that this method can be called from the graph builder and
    477   // the entry block therefore may not end with SuspendCheck->Goto yet.
    478   HInstruction* insert_before = nullptr;
    479 
    480   HInstruction* gota = entry_block_->GetLastInstruction();
    481   if (gota != nullptr && gota->IsGoto()) {
    482     HInstruction* suspend_check = gota->GetPrevious();
    483     if (suspend_check != nullptr && suspend_check->IsSuspendCheck()) {
    484       insert_before = suspend_check;
    485     } else {
    486       insert_before = gota;
    487     }
    488   }
    489 
    490   if (insert_before == nullptr) {
    491     entry_block_->AddInstruction(constant);
    492   } else {
    493     entry_block_->InsertInstructionBefore(constant, insert_before);
    494   }
    495 }
    496 
    497 HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) {
    498   // For simplicity, don't bother reviving the cached null constant if it is
    499   // not null and not in a block. Otherwise, we need to clear the instruction
    500   // id and/or any invariants the graph is assuming when adding new instructions.
    501   if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) {
    502     cached_null_constant_ = new (arena_) HNullConstant(dex_pc);
    503     cached_null_constant_->SetReferenceTypeInfo(inexact_object_rti_);
    504     InsertConstant(cached_null_constant_);
    505   }
    506   if (kIsDebugBuild) {
    507     ScopedObjectAccess soa(Thread::Current());
    508     DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid());
    509   }
    510   return cached_null_constant_;
    511 }
    512 
    513 HCurrentMethod* HGraph::GetCurrentMethod() {
    514   // For simplicity, don't bother reviving the cached current method if it is
    515   // not null and not in a block. Otherwise, we need to clear the instruction
    516   // id and/or any invariants the graph is assuming when adding new instructions.
    517   if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) {
    518     cached_current_method_ = new (arena_) HCurrentMethod(
    519         Is64BitInstructionSet(instruction_set_) ? Primitive::kPrimLong : Primitive::kPrimInt,
    520         entry_block_->GetDexPc());
    521     if (entry_block_->GetFirstInstruction() == nullptr) {
    522       entry_block_->AddInstruction(cached_current_method_);
    523     } else {
    524       entry_block_->InsertInstructionBefore(
    525           cached_current_method_, entry_block_->GetFirstInstruction());
    526     }
    527   }
    528   return cached_current_method_;
    529 }
    530 
    531 const char* HGraph::GetMethodName() const {
    532   const DexFile::MethodId& method_id = dex_file_.GetMethodId(method_idx_);
    533   return dex_file_.GetMethodName(method_id);
    534 }
    535 
    536 std::string HGraph::PrettyMethod(bool with_signature) const {
    537   return dex_file_.PrettyMethod(method_idx_, with_signature);
    538 }
    539 
    540 HConstant* HGraph::GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc) {
    541   switch (type) {
    542     case Primitive::Type::kPrimBoolean:
    543       DCHECK(IsUint<1>(value));
    544       FALLTHROUGH_INTENDED;
    545     case Primitive::Type::kPrimByte:
    546     case Primitive::Type::kPrimChar:
    547     case Primitive::Type::kPrimShort:
    548     case Primitive::Type::kPrimInt:
    549       DCHECK(IsInt(Primitive::ComponentSize(type) * kBitsPerByte, value));
    550       return GetIntConstant(static_cast<int32_t>(value), dex_pc);
    551 
    552     case Primitive::Type::kPrimLong:
    553       return GetLongConstant(value, dex_pc);
    554 
    555     default:
    556       LOG(FATAL) << "Unsupported constant type";
    557       UNREACHABLE();
    558   }
    559 }
    560 
    561 void HGraph::CacheFloatConstant(HFloatConstant* constant) {
    562   int32_t value = bit_cast<int32_t, float>(constant->GetValue());
    563   DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end());
    564   cached_float_constants_.Overwrite(value, constant);
    565 }
    566 
    567 void HGraph::CacheDoubleConstant(HDoubleConstant* constant) {
    568   int64_t value = bit_cast<int64_t, double>(constant->GetValue());
    569   DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end());
    570   cached_double_constants_.Overwrite(value, constant);
    571 }
    572 
    573 void HLoopInformation::Add(HBasicBlock* block) {
    574   blocks_.SetBit(block->GetBlockId());
    575 }
    576 
    577 void HLoopInformation::Remove(HBasicBlock* block) {
    578   blocks_.ClearBit(block->GetBlockId());
    579 }
    580 
    581 void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
    582   if (blocks_.IsBitSet(block->GetBlockId())) {
    583     return;
    584   }
    585 
    586   blocks_.SetBit(block->GetBlockId());
    587   block->SetInLoop(this);
    588   if (block->IsLoopHeader()) {
    589     // We're visiting loops in post-order, so inner loops must have been
    590     // populated already.
    591     DCHECK(block->GetLoopInformation()->IsPopulated());
    592     if (block->GetLoopInformation()->IsIrreducible()) {
    593       contains_irreducible_loop_ = true;
    594     }
    595   }
    596   for (HBasicBlock* predecessor : block->GetPredecessors()) {
    597     PopulateRecursive(predecessor);
    598   }
    599 }
    600 
    601 void HLoopInformation::PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized) {
    602   size_t block_id = block->GetBlockId();
    603 
    604   // If `block` is in `finalized`, we know its membership in the loop has been
    605   // decided and it does not need to be revisited.
    606   if (finalized->IsBitSet(block_id)) {
    607     return;
    608   }
    609 
    610   bool is_finalized = false;
    611   if (block->IsLoopHeader()) {
    612     // If we hit a loop header in an irreducible loop, we first check if the
    613     // pre header of that loop belongs to the currently analyzed loop. If it does,
    614     // then we visit the back edges.
    615     // Note that we cannot use GetPreHeader, as the loop may have not been populated
    616     // yet.
    617     HBasicBlock* pre_header = block->GetPredecessors()[0];
    618     PopulateIrreducibleRecursive(pre_header, finalized);
    619     if (blocks_.IsBitSet(pre_header->GetBlockId())) {
    620       block->SetInLoop(this);
    621       blocks_.SetBit(block_id);
    622       finalized->SetBit(block_id);
    623       is_finalized = true;
    624 
    625       HLoopInformation* info = block->GetLoopInformation();
    626       for (HBasicBlock* back_edge : info->GetBackEdges()) {
    627         PopulateIrreducibleRecursive(back_edge, finalized);
    628       }
    629     }
    630   } else {
    631     // Visit all predecessors. If one predecessor is part of the loop, this
    632     // block is also part of this loop.
    633     for (HBasicBlock* predecessor : block->GetPredecessors()) {
    634       PopulateIrreducibleRecursive(predecessor, finalized);
    635       if (!is_finalized && blocks_.IsBitSet(predecessor->GetBlockId())) {
    636         block->SetInLoop(this);
    637         blocks_.SetBit(block_id);
    638         finalized->SetBit(block_id);
    639         is_finalized = true;
    640       }
    641     }
    642   }
    643 
    644   // All predecessors have been recursively visited. Mark finalized if not marked yet.
    645   if (!is_finalized) {
    646     finalized->SetBit(block_id);
    647   }
    648 }
    649 
    650 void HLoopInformation::Populate() {
    651   DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated";
    652   // Populate this loop: starting with the back edge, recursively add predecessors
    653   // that are not already part of that loop. Set the header as part of the loop
    654   // to end the recursion.
    655   // This is a recursive implementation of the algorithm described in
    656   // "Advanced Compiler Design & Implementation" (Muchnick) p192.
    657   HGraph* graph = header_->GetGraph();
    658   blocks_.SetBit(header_->GetBlockId());
    659   header_->SetInLoop(this);
    660 
    661   bool is_irreducible_loop = HasBackEdgeNotDominatedByHeader();
    662 
    663   if (is_irreducible_loop) {
    664     ArenaBitVector visited(graph->GetArena(),
    665                            graph->GetBlocks().size(),
    666                            /* expandable */ false,
    667                            kArenaAllocGraphBuilder);
    668     // Stop marking blocks at the loop header.
    669     visited.SetBit(header_->GetBlockId());
    670 
    671     for (HBasicBlock* back_edge : GetBackEdges()) {
    672       PopulateIrreducibleRecursive(back_edge, &visited);
    673     }
    674   } else {
    675     for (HBasicBlock* back_edge : GetBackEdges()) {
    676       PopulateRecursive(back_edge);
    677     }
    678   }
    679 
    680   if (!is_irreducible_loop && graph->IsCompilingOsr()) {
    681     // When compiling in OSR mode, all loops in the compiled method may be entered
    682     // from the interpreter. We treat this OSR entry point just like an extra entry
    683     // to an irreducible loop, so we need to mark the method's loops as irreducible.
    684     // This does not apply to inlined loops which do not act as OSR entry points.
    685     if (suspend_check_ == nullptr) {
    686       // Just building the graph in OSR mode, this loop is not inlined. We never build an
    687       // inner graph in OSR mode as we can do OSR transition only from the outer method.
    688       is_irreducible_loop = true;
    689     } else {
    690       // Look at the suspend check's environment to determine if the loop was inlined.
    691       DCHECK(suspend_check_->HasEnvironment());
    692       if (!suspend_check_->GetEnvironment()->IsFromInlinedInvoke()) {
    693         is_irreducible_loop = true;
    694       }
    695     }
    696   }
    697   if (is_irreducible_loop) {
    698     irreducible_ = true;
    699     contains_irreducible_loop_ = true;
    700     graph->SetHasIrreducibleLoops(true);
    701   }
    702   graph->SetHasLoops(true);
    703 }
    704 
    705 HBasicBlock* HLoopInformation::GetPreHeader() const {
    706   HBasicBlock* block = header_->GetPredecessors()[0];
    707   DCHECK(irreducible_ || (block == header_->GetDominator()));
    708   return block;
    709 }
    710 
    711 bool HLoopInformation::Contains(const HBasicBlock& block) const {
    712   return blocks_.IsBitSet(block.GetBlockId());
    713 }
    714 
    715 bool HLoopInformation::IsIn(const HLoopInformation& other) const {
    716   return other.blocks_.IsBitSet(header_->GetBlockId());
    717 }
    718 
    719 bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const {
    720   return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId());
    721 }
    722 
    723 size_t HLoopInformation::GetLifetimeEnd() const {
    724   size_t last_position = 0;
    725   for (HBasicBlock* back_edge : GetBackEdges()) {
    726     last_position = std::max(back_edge->GetLifetimeEnd(), last_position);
    727   }
    728   return last_position;
    729 }
    730 
    731 bool HLoopInformation::HasBackEdgeNotDominatedByHeader() const {
    732   for (HBasicBlock* back_edge : GetBackEdges()) {
    733     DCHECK(back_edge->GetDominator() != nullptr);
    734     if (!header_->Dominates(back_edge)) {
    735       return true;
    736     }
    737   }
    738   return false;
    739 }
    740 
    741 bool HLoopInformation::DominatesAllBackEdges(HBasicBlock* block) {
    742   for (HBasicBlock* back_edge : GetBackEdges()) {
    743     if (!block->Dominates(back_edge)) {
    744       return false;
    745     }
    746   }
    747   return true;
    748 }
    749 
    750 
    751 bool HLoopInformation::HasExitEdge() const {
    752   // Determine if this loop has at least one exit edge.
    753   HBlocksInLoopReversePostOrderIterator it_loop(*this);
    754   for (; !it_loop.Done(); it_loop.Advance()) {
    755     for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
    756       if (!Contains(*successor)) {
    757         return true;
    758       }
    759     }
    760   }
    761   return false;
    762 }
    763 
    764 bool HBasicBlock::Dominates(HBasicBlock* other) const {
    765   // Walk up the dominator tree from `other`, to find out if `this`
    766   // is an ancestor.
    767   HBasicBlock* current = other;
    768   while (current != nullptr) {
    769     if (current == this) {
    770       return true;
    771     }
    772     current = current->GetDominator();
    773   }
    774   return false;
    775 }
    776 
    777 static void UpdateInputsUsers(HInstruction* instruction) {
    778   HInputsRef inputs = instruction->GetInputs();
    779   for (size_t i = 0; i < inputs.size(); ++i) {
    780     inputs[i]->AddUseAt(instruction, i);
    781   }
    782   // Environment should be created later.
    783   DCHECK(!instruction->HasEnvironment());
    784 }
    785 
    786 void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial,
    787                                                   HInstruction* replacement) {
    788   DCHECK(initial->GetBlock() == this);
    789   if (initial->IsControlFlow()) {
    790     // We can only replace a control flow instruction with another control flow instruction.
    791     DCHECK(replacement->IsControlFlow());
    792     DCHECK_EQ(replacement->GetId(), -1);
    793     DCHECK_EQ(replacement->GetType(), Primitive::kPrimVoid);
    794     DCHECK_EQ(initial->GetBlock(), this);
    795     DCHECK_EQ(initial->GetType(), Primitive::kPrimVoid);
    796     DCHECK(initial->GetUses().empty());
    797     DCHECK(initial->GetEnvUses().empty());
    798     replacement->SetBlock(this);
    799     replacement->SetId(GetGraph()->GetNextInstructionId());
    800     instructions_.InsertInstructionBefore(replacement, initial);
    801     UpdateInputsUsers(replacement);
    802   } else {
    803     InsertInstructionBefore(replacement, initial);
    804     initial->ReplaceWith(replacement);
    805   }
    806   RemoveInstruction(initial);
    807 }
    808 
    809 static void Add(HInstructionList* instruction_list,
    810                 HBasicBlock* block,
    811                 HInstruction* instruction) {
    812   DCHECK(instruction->GetBlock() == nullptr);
    813   DCHECK_EQ(instruction->GetId(), -1);
    814   instruction->SetBlock(block);
    815   instruction->SetId(block->GetGraph()->GetNextInstructionId());
    816   UpdateInputsUsers(instruction);
    817   instruction_list->AddInstruction(instruction);
    818 }
    819 
    820 void HBasicBlock::AddInstruction(HInstruction* instruction) {
    821   Add(&instructions_, this, instruction);
    822 }
    823 
    824 void HBasicBlock::AddPhi(HPhi* phi) {
    825   Add(&phis_, this, phi);
    826 }
    827 
    828 void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
    829   DCHECK(!cursor->IsPhi());
    830   DCHECK(!instruction->IsPhi());
    831   DCHECK_EQ(instruction->GetId(), -1);
    832   DCHECK_NE(cursor->GetId(), -1);
    833   DCHECK_EQ(cursor->GetBlock(), this);
    834   DCHECK(!instruction->IsControlFlow());
    835   instruction->SetBlock(this);
    836   instruction->SetId(GetGraph()->GetNextInstructionId());
    837   UpdateInputsUsers(instruction);
    838   instructions_.InsertInstructionBefore(instruction, cursor);
    839 }
    840 
    841 void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
    842   DCHECK(!cursor->IsPhi());
    843   DCHECK(!instruction->IsPhi());
    844   DCHECK_EQ(instruction->GetId(), -1);
    845   DCHECK_NE(cursor->GetId(), -1);
    846   DCHECK_EQ(cursor->GetBlock(), this);
    847   DCHECK(!instruction->IsControlFlow());
    848   DCHECK(!cursor->IsControlFlow());
    849   instruction->SetBlock(this);
    850   instruction->SetId(GetGraph()->GetNextInstructionId());
    851   UpdateInputsUsers(instruction);
    852   instructions_.InsertInstructionAfter(instruction, cursor);
    853 }
    854 
    855 void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) {
    856   DCHECK_EQ(phi->GetId(), -1);
    857   DCHECK_NE(cursor->GetId(), -1);
    858   DCHECK_EQ(cursor->GetBlock(), this);
    859   phi->SetBlock(this);
    860   phi->SetId(GetGraph()->GetNextInstructionId());
    861   UpdateInputsUsers(phi);
    862   phis_.InsertInstructionAfter(phi, cursor);
    863 }
    864 
    865 static void Remove(HInstructionList* instruction_list,
    866                    HBasicBlock* block,
    867                    HInstruction* instruction,
    868                    bool ensure_safety) {
    869   DCHECK_EQ(block, instruction->GetBlock());
    870   instruction->SetBlock(nullptr);
    871   instruction_list->RemoveInstruction(instruction);
    872   if (ensure_safety) {
    873     DCHECK(instruction->GetUses().empty());
    874     DCHECK(instruction->GetEnvUses().empty());
    875     RemoveAsUser(instruction);
    876   }
    877 }
    878 
    879 void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) {
    880   DCHECK(!instruction->IsPhi());
    881   Remove(&instructions_, this, instruction, ensure_safety);
    882 }
    883 
    884 void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) {
    885   Remove(&phis_, this, phi, ensure_safety);
    886 }
    887 
    888 void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) {
    889   if (instruction->IsPhi()) {
    890     RemovePhi(instruction->AsPhi(), ensure_safety);
    891   } else {
    892     RemoveInstruction(instruction, ensure_safety);
    893   }
    894 }
    895 
    896 void HEnvironment::CopyFrom(const ArenaVector<HInstruction*>& locals) {
    897   for (size_t i = 0; i < locals.size(); i++) {
    898     HInstruction* instruction = locals[i];
    899     SetRawEnvAt(i, instruction);
    900     if (instruction != nullptr) {
    901       instruction->AddEnvUseAt(this, i);
    902     }
    903   }
    904 }
    905 
    906 void HEnvironment::CopyFrom(HEnvironment* env) {
    907   for (size_t i = 0; i < env->Size(); i++) {
    908     HInstruction* instruction = env->GetInstructionAt(i);
    909     SetRawEnvAt(i, instruction);
    910     if (instruction != nullptr) {
    911       instruction->AddEnvUseAt(this, i);
    912     }
    913   }
    914 }
    915 
    916 void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env,
    917                                                  HBasicBlock* loop_header) {
    918   DCHECK(loop_header->IsLoopHeader());
    919   for (size_t i = 0; i < env->Size(); i++) {
    920     HInstruction* instruction = env->GetInstructionAt(i);
    921     SetRawEnvAt(i, instruction);
    922     if (instruction == nullptr) {
    923       continue;
    924     }
    925     if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) {
    926       // At the end of the loop pre-header, the corresponding value for instruction
    927       // is the first input of the phi.
    928       HInstruction* initial = instruction->AsPhi()->InputAt(0);
    929       SetRawEnvAt(i, initial);
    930       initial->AddEnvUseAt(this, i);
    931     } else {
    932       instruction->AddEnvUseAt(this, i);
    933     }
    934   }
    935 }
    936 
    937 void HEnvironment::RemoveAsUserOfInput(size_t index) const {
    938   const HUserRecord<HEnvironment*>& env_use = vregs_[index];
    939   HInstruction* user = env_use.GetInstruction();
    940   auto before_env_use_node = env_use.GetBeforeUseNode();
    941   user->env_uses_.erase_after(before_env_use_node);
    942   user->FixUpUserRecordsAfterEnvUseRemoval(before_env_use_node);
    943 }
    944 
    945 HInstruction::InstructionKind HInstruction::GetKind() const {
    946   return GetKindInternal();
    947 }
    948 
    949 HInstruction* HInstruction::GetNextDisregardingMoves() const {
    950   HInstruction* next = GetNext();
    951   while (next != nullptr && next->IsParallelMove()) {
    952     next = next->GetNext();
    953   }
    954   return next;
    955 }
    956 
    957 HInstruction* HInstruction::GetPreviousDisregardingMoves() const {
    958   HInstruction* previous = GetPrevious();
    959   while (previous != nullptr && previous->IsParallelMove()) {
    960     previous = previous->GetPrevious();
    961   }
    962   return previous;
    963 }
    964 
    965 void HInstructionList::AddInstruction(HInstruction* instruction) {
    966   if (first_instruction_ == nullptr) {
    967     DCHECK(last_instruction_ == nullptr);
    968     first_instruction_ = last_instruction_ = instruction;
    969   } else {
    970     DCHECK(last_instruction_ != nullptr);
    971     last_instruction_->next_ = instruction;
    972     instruction->previous_ = last_instruction_;
    973     last_instruction_ = instruction;
    974   }
    975 }
    976 
    977 void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
    978   DCHECK(Contains(cursor));
    979   if (cursor == first_instruction_) {
    980     cursor->previous_ = instruction;
    981     instruction->next_ = cursor;
    982     first_instruction_ = instruction;
    983   } else {
    984     instruction->previous_ = cursor->previous_;
    985     instruction->next_ = cursor;
    986     cursor->previous_ = instruction;
    987     instruction->previous_->next_ = instruction;
    988   }
    989 }
    990 
    991 void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
    992   DCHECK(Contains(cursor));
    993   if (cursor == last_instruction_) {
    994     cursor->next_ = instruction;
    995     instruction->previous_ = cursor;
    996     last_instruction_ = instruction;
    997   } else {
    998     instruction->next_ = cursor->next_;
    999     instruction->previous_ = cursor;
   1000     cursor->next_ = instruction;
   1001     instruction->next_->previous_ = instruction;
   1002   }
   1003 }
   1004 
   1005 void HInstructionList::RemoveInstruction(HInstruction* instruction) {
   1006   if (instruction->previous_ != nullptr) {
   1007     instruction->previous_->next_ = instruction->next_;
   1008   }
   1009   if (instruction->next_ != nullptr) {
   1010     instruction->next_->previous_ = instruction->previous_;
   1011   }
   1012   if (instruction == first_instruction_) {
   1013     first_instruction_ = instruction->next_;
   1014   }
   1015   if (instruction == last_instruction_) {
   1016     last_instruction_ = instruction->previous_;
   1017   }
   1018 }
   1019 
   1020 bool HInstructionList::Contains(HInstruction* instruction) const {
   1021   for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
   1022     if (it.Current() == instruction) {
   1023       return true;
   1024     }
   1025   }
   1026   return false;
   1027 }
   1028 
   1029 bool HInstructionList::FoundBefore(const HInstruction* instruction1,
   1030                                    const HInstruction* instruction2) const {
   1031   DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock());
   1032   for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
   1033     if (it.Current() == instruction1) {
   1034       return true;
   1035     }
   1036     if (it.Current() == instruction2) {
   1037       return false;
   1038     }
   1039   }
   1040   LOG(FATAL) << "Did not find an order between two instructions of the same block.";
   1041   return true;
   1042 }
   1043 
   1044 bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const {
   1045   if (other_instruction == this) {
   1046     // An instruction does not strictly dominate itself.
   1047     return false;
   1048   }
   1049   HBasicBlock* block = GetBlock();
   1050   HBasicBlock* other_block = other_instruction->GetBlock();
   1051   if (block != other_block) {
   1052     return GetBlock()->Dominates(other_instruction->GetBlock());
   1053   } else {
   1054     // If both instructions are in the same block, ensure this
   1055     // instruction comes before `other_instruction`.
   1056     if (IsPhi()) {
   1057       if (!other_instruction->IsPhi()) {
   1058         // Phis appear before non phi-instructions so this instruction
   1059         // dominates `other_instruction`.
   1060         return true;
   1061       } else {
   1062         // There is no order among phis.
   1063         LOG(FATAL) << "There is no dominance between phis of a same block.";
   1064         return false;
   1065       }
   1066     } else {
   1067       // `this` is not a phi.
   1068       if (other_instruction->IsPhi()) {
   1069         // Phis appear before non phi-instructions so this instruction
   1070         // does not dominate `other_instruction`.
   1071         return false;
   1072       } else {
   1073         // Check whether this instruction comes before
   1074         // `other_instruction` in the instruction list.
   1075         return block->GetInstructions().FoundBefore(this, other_instruction);
   1076       }
   1077     }
   1078   }
   1079 }
   1080 
   1081 void HInstruction::RemoveEnvironment() {
   1082   RemoveEnvironmentUses(this);
   1083   environment_ = nullptr;
   1084 }
   1085 
   1086 void HInstruction::ReplaceWith(HInstruction* other) {
   1087   DCHECK(other != nullptr);
   1088   // Note: fixup_end remains valid across splice_after().
   1089   auto fixup_end = other->uses_.empty() ? other->uses_.begin() : ++other->uses_.begin();
   1090   other->uses_.splice_after(other->uses_.before_begin(), uses_);
   1091   other->FixUpUserRecordsAfterUseInsertion(fixup_end);
   1092 
   1093   // Note: env_fixup_end remains valid across splice_after().
   1094   auto env_fixup_end =
   1095       other->env_uses_.empty() ? other->env_uses_.begin() : ++other->env_uses_.begin();
   1096   other->env_uses_.splice_after(other->env_uses_.before_begin(), env_uses_);
   1097   other->FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
   1098 
   1099   DCHECK(uses_.empty());
   1100   DCHECK(env_uses_.empty());
   1101 }
   1102 
   1103 void HInstruction::ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) {
   1104   const HUseList<HInstruction*>& uses = GetUses();
   1105   for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
   1106     HInstruction* user = it->GetUser();
   1107     size_t index = it->GetIndex();
   1108     // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
   1109     ++it;
   1110     if (dominator->StrictlyDominates(user)) {
   1111       user->ReplaceInput(replacement, index);
   1112     }
   1113   }
   1114 }
   1115 
   1116 void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) {
   1117   HUserRecord<HInstruction*> input_use = InputRecordAt(index);
   1118   if (input_use.GetInstruction() == replacement) {
   1119     // Nothing to do.
   1120     return;
   1121   }
   1122   HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
   1123   // Note: fixup_end remains valid across splice_after().
   1124   auto fixup_end =
   1125       replacement->uses_.empty() ? replacement->uses_.begin() : ++replacement->uses_.begin();
   1126   replacement->uses_.splice_after(replacement->uses_.before_begin(),
   1127                                   input_use.GetInstruction()->uses_,
   1128                                   before_use_node);
   1129   replacement->FixUpUserRecordsAfterUseInsertion(fixup_end);
   1130   input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
   1131 }
   1132 
   1133 size_t HInstruction::EnvironmentSize() const {
   1134   return HasEnvironment() ? environment_->Size() : 0;
   1135 }
   1136 
   1137 void HVariableInputSizeInstruction::AddInput(HInstruction* input) {
   1138   DCHECK(input->GetBlock() != nullptr);
   1139   inputs_.push_back(HUserRecord<HInstruction*>(input));
   1140   input->AddUseAt(this, inputs_.size() - 1);
   1141 }
   1142 
   1143 void HVariableInputSizeInstruction::InsertInputAt(size_t index, HInstruction* input) {
   1144   inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input));
   1145   input->AddUseAt(this, index);
   1146   // Update indexes in use nodes of inputs that have been pushed further back by the insert().
   1147   for (size_t i = index + 1u, e = inputs_.size(); i < e; ++i) {
   1148     DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i - 1u);
   1149     inputs_[i].GetUseNode()->SetIndex(i);
   1150   }
   1151 }
   1152 
   1153 void HVariableInputSizeInstruction::RemoveInputAt(size_t index) {
   1154   RemoveAsUserOfInput(index);
   1155   inputs_.erase(inputs_.begin() + index);
   1156   // Update indexes in use nodes of inputs that have been pulled forward by the erase().
   1157   for (size_t i = index, e = inputs_.size(); i < e; ++i) {
   1158     DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i + 1u);
   1159     inputs_[i].GetUseNode()->SetIndex(i);
   1160   }
   1161 }
   1162 
   1163 void HVariableInputSizeInstruction::RemoveAllInputs() {
   1164   RemoveAsUserOfAllInputs();
   1165   DCHECK(!HasNonEnvironmentUses());
   1166 
   1167   inputs_.clear();
   1168   DCHECK_EQ(0u, InputCount());
   1169 }
   1170 
   1171 void HConstructorFence::RemoveConstructorFences(HInstruction* instruction) {
   1172   DCHECK(instruction->GetBlock() != nullptr);
   1173   // Removing constructor fences only makes sense for instructions with an object return type.
   1174   DCHECK_EQ(Primitive::kPrimNot, instruction->GetType());
   1175 
   1176   // Efficient implementation that simultaneously (in one pass):
   1177   // * Scans the uses list for all constructor fences.
   1178   // * Deletes that constructor fence from the uses list of `instruction`.
   1179   // * Deletes `instruction` from the constructor fence's inputs.
   1180   // * Deletes the constructor fence if it now has 0 inputs.
   1181 
   1182   const HUseList<HInstruction*>& uses = instruction->GetUses();
   1183   // Warning: Although this is "const", we might mutate the list when calling RemoveInputAt.
   1184   for (auto it = uses.begin(), end = uses.end(); it != end; ) {
   1185     const HUseListNode<HInstruction*>& use_node = *it;
   1186     HInstruction* const use_instruction = use_node.GetUser();
   1187 
   1188     // Advance the iterator immediately once we fetch the use_node.
   1189     // Warning: If the input is removed, the current iterator becomes invalid.
   1190     ++it;
   1191 
   1192     if (use_instruction->IsConstructorFence()) {
   1193       HConstructorFence* ctor_fence = use_instruction->AsConstructorFence();
   1194       size_t input_index = use_node.GetIndex();
   1195 
   1196       // Process the candidate instruction for removal
   1197       // from the graph.
   1198 
   1199       // Constructor fence instructions are never
   1200       // used by other instructions.
   1201       //
   1202       // If we wanted to make this more generic, it
   1203       // could be a runtime if statement.
   1204       DCHECK(!ctor_fence->HasUses());
   1205 
   1206       // A constructor fence's return type is "kPrimVoid"
   1207       // and therefore it can't have any environment uses.
   1208       DCHECK(!ctor_fence->HasEnvironmentUses());
   1209 
   1210       // Remove the inputs first, otherwise removing the instruction
   1211       // will try to remove its uses while we are already removing uses
   1212       // and this operation will fail.
   1213       DCHECK_EQ(instruction, ctor_fence->InputAt(input_index));
   1214 
   1215       // Removing the input will also remove the `use_node`.
   1216       // (Do not look at `use_node` after this, it will be a dangling reference).
   1217       ctor_fence->RemoveInputAt(input_index);
   1218 
   1219       // Once all inputs are removed, the fence is considered dead and
   1220       // is removed.
   1221       if (ctor_fence->InputCount() == 0u) {
   1222         ctor_fence->GetBlock()->RemoveInstruction(ctor_fence);
   1223       }
   1224     }
   1225   }
   1226 
   1227   if (kIsDebugBuild) {
   1228     // Post-condition checks:
   1229     // * None of the uses of `instruction` are a constructor fence.
   1230     // * The `instruction` itself did not get removed from a block.
   1231     for (const HUseListNode<HInstruction*>& use_node : instruction->GetUses()) {
   1232       CHECK(!use_node.GetUser()->IsConstructorFence());
   1233     }
   1234     CHECK(instruction->GetBlock() != nullptr);
   1235   }
   1236 }
   1237 
   1238 HInstruction* HConstructorFence::GetAssociatedAllocation() {
   1239   HInstruction* new_instance_inst = GetPrevious();
   1240   // Check if the immediately preceding instruction is a new-instance/new-array.
   1241   // Otherwise this fence is for protecting final fields.
   1242   if (new_instance_inst != nullptr &&
   1243       (new_instance_inst->IsNewInstance() || new_instance_inst->IsNewArray())) {
   1244     // TODO: Need to update this code to handle multiple inputs.
   1245     DCHECK_EQ(InputCount(), 1u);
   1246     return new_instance_inst;
   1247   } else {
   1248     return nullptr;
   1249   }
   1250 }
   1251 
   1252 #define DEFINE_ACCEPT(name, super)                                             \
   1253 void H##name::Accept(HGraphVisitor* visitor) {                                 \
   1254   visitor->Visit##name(this);                                                  \
   1255 }
   1256 
   1257 FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)
   1258 
   1259 #undef DEFINE_ACCEPT
   1260 
   1261 void HGraphVisitor::VisitInsertionOrder() {
   1262   const ArenaVector<HBasicBlock*>& blocks = graph_->GetBlocks();
   1263   for (HBasicBlock* block : blocks) {
   1264     if (block != nullptr) {
   1265       VisitBasicBlock(block);
   1266     }
   1267   }
   1268 }
   1269 
   1270 void HGraphVisitor::VisitReversePostOrder() {
   1271   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
   1272     VisitBasicBlock(block);
   1273   }
   1274 }
   1275 
   1276 void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
   1277   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
   1278     it.Current()->Accept(this);
   1279   }
   1280   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
   1281     it.Current()->Accept(this);
   1282   }
   1283 }
   1284 
   1285 HConstant* HTypeConversion::TryStaticEvaluation() const {
   1286   HGraph* graph = GetBlock()->GetGraph();
   1287   if (GetInput()->IsIntConstant()) {
   1288     int32_t value = GetInput()->AsIntConstant()->GetValue();
   1289     switch (GetResultType()) {
   1290       case Primitive::kPrimLong:
   1291         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
   1292       case Primitive::kPrimFloat:
   1293         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
   1294       case Primitive::kPrimDouble:
   1295         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
   1296       default:
   1297         return nullptr;
   1298     }
   1299   } else if (GetInput()->IsLongConstant()) {
   1300     int64_t value = GetInput()->AsLongConstant()->GetValue();
   1301     switch (GetResultType()) {
   1302       case Primitive::kPrimInt:
   1303         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
   1304       case Primitive::kPrimFloat:
   1305         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
   1306       case Primitive::kPrimDouble:
   1307         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
   1308       default:
   1309         return nullptr;
   1310     }
   1311   } else if (GetInput()->IsFloatConstant()) {
   1312     float value = GetInput()->AsFloatConstant()->GetValue();
   1313     switch (GetResultType()) {
   1314       case Primitive::kPrimInt:
   1315         if (std::isnan(value))
   1316           return graph->GetIntConstant(0, GetDexPc());
   1317         if (value >= kPrimIntMax)
   1318           return graph->GetIntConstant(kPrimIntMax, GetDexPc());
   1319         if (value <= kPrimIntMin)
   1320           return graph->GetIntConstant(kPrimIntMin, GetDexPc());
   1321         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
   1322       case Primitive::kPrimLong:
   1323         if (std::isnan(value))
   1324           return graph->GetLongConstant(0, GetDexPc());
   1325         if (value >= kPrimLongMax)
   1326           return graph->GetLongConstant(kPrimLongMax, GetDexPc());
   1327         if (value <= kPrimLongMin)
   1328           return graph->GetLongConstant(kPrimLongMin, GetDexPc());
   1329         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
   1330       case Primitive::kPrimDouble:
   1331         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
   1332       default:
   1333         return nullptr;
   1334     }
   1335   } else if (GetInput()->IsDoubleConstant()) {
   1336     double value = GetInput()->AsDoubleConstant()->GetValue();
   1337     switch (GetResultType()) {
   1338       case Primitive::kPrimInt:
   1339         if (std::isnan(value))
   1340           return graph->GetIntConstant(0, GetDexPc());
   1341         if (value >= kPrimIntMax)
   1342           return graph->GetIntConstant(kPrimIntMax, GetDexPc());
   1343         if (value <= kPrimLongMin)
   1344           return graph->GetIntConstant(kPrimIntMin, GetDexPc());
   1345         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
   1346       case Primitive::kPrimLong:
   1347         if (std::isnan(value))
   1348           return graph->GetLongConstant(0, GetDexPc());
   1349         if (value >= kPrimLongMax)
   1350           return graph->GetLongConstant(kPrimLongMax, GetDexPc());
   1351         if (value <= kPrimLongMin)
   1352           return graph->GetLongConstant(kPrimLongMin, GetDexPc());
   1353         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
   1354       case Primitive::kPrimFloat:
   1355         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
   1356       default:
   1357         return nullptr;
   1358     }
   1359   }
   1360   return nullptr;
   1361 }
   1362 
   1363 HConstant* HUnaryOperation::TryStaticEvaluation() const {
   1364   if (GetInput()->IsIntConstant()) {
   1365     return Evaluate(GetInput()->AsIntConstant());
   1366   } else if (GetInput()->IsLongConstant()) {
   1367     return Evaluate(GetInput()->AsLongConstant());
   1368   } else if (kEnableFloatingPointStaticEvaluation) {
   1369     if (GetInput()->IsFloatConstant()) {
   1370       return Evaluate(GetInput()->AsFloatConstant());
   1371     } else if (GetInput()->IsDoubleConstant()) {
   1372       return Evaluate(GetInput()->AsDoubleConstant());
   1373     }
   1374   }
   1375   return nullptr;
   1376 }
   1377 
   1378 HConstant* HBinaryOperation::TryStaticEvaluation() const {
   1379   if (GetLeft()->IsIntConstant() && GetRight()->IsIntConstant()) {
   1380     return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsIntConstant());
   1381   } else if (GetLeft()->IsLongConstant()) {
   1382     if (GetRight()->IsIntConstant()) {
   1383       // The binop(long, int) case is only valid for shifts and rotations.
   1384       DCHECK(IsShl() || IsShr() || IsUShr() || IsRor()) << DebugName();
   1385       return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsIntConstant());
   1386     } else if (GetRight()->IsLongConstant()) {
   1387       return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsLongConstant());
   1388     }
   1389   } else if (GetLeft()->IsNullConstant() && GetRight()->IsNullConstant()) {
   1390     // The binop(null, null) case is only valid for equal and not-equal conditions.
   1391     DCHECK(IsEqual() || IsNotEqual()) << DebugName();
   1392     return Evaluate(GetLeft()->AsNullConstant(), GetRight()->AsNullConstant());
   1393   } else if (kEnableFloatingPointStaticEvaluation) {
   1394     if (GetLeft()->IsFloatConstant() && GetRight()->IsFloatConstant()) {
   1395       return Evaluate(GetLeft()->AsFloatConstant(), GetRight()->AsFloatConstant());
   1396     } else if (GetLeft()->IsDoubleConstant() && GetRight()->IsDoubleConstant()) {
   1397       return Evaluate(GetLeft()->AsDoubleConstant(), GetRight()->AsDoubleConstant());
   1398     }
   1399   }
   1400   return nullptr;
   1401 }
   1402 
   1403 HConstant* HBinaryOperation::GetConstantRight() const {
   1404   if (GetRight()->IsConstant()) {
   1405     return GetRight()->AsConstant();
   1406   } else if (IsCommutative() && GetLeft()->IsConstant()) {
   1407     return GetLeft()->AsConstant();
   1408   } else {
   1409     return nullptr;
   1410   }
   1411 }
   1412 
   1413 // If `GetConstantRight()` returns one of the input, this returns the other
   1414 // one. Otherwise it returns null.
   1415 HInstruction* HBinaryOperation::GetLeastConstantLeft() const {
   1416   HInstruction* most_constant_right = GetConstantRight();
   1417   if (most_constant_right == nullptr) {
   1418     return nullptr;
   1419   } else if (most_constant_right == GetLeft()) {
   1420     return GetRight();
   1421   } else {
   1422     return GetLeft();
   1423   }
   1424 }
   1425 
   1426 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs) {
   1427   switch (rhs) {
   1428     case ComparisonBias::kNoBias:
   1429       return os << "no_bias";
   1430     case ComparisonBias::kGtBias:
   1431       return os << "gt_bias";
   1432     case ComparisonBias::kLtBias:
   1433       return os << "lt_bias";
   1434     default:
   1435       LOG(FATAL) << "Unknown ComparisonBias: " << static_cast<int>(rhs);
   1436       UNREACHABLE();
   1437   }
   1438 }
   1439 
   1440 bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const {
   1441   return this == instruction->GetPreviousDisregardingMoves();
   1442 }
   1443 
   1444 bool HInstruction::Equals(const HInstruction* other) const {
   1445   if (!InstructionTypeEquals(other)) return false;
   1446   DCHECK_EQ(GetKind(), other->GetKind());
   1447   if (!InstructionDataEquals(other)) return false;
   1448   if (GetType() != other->GetType()) return false;
   1449   HConstInputsRef inputs = GetInputs();
   1450   HConstInputsRef other_inputs = other->GetInputs();
   1451   if (inputs.size() != other_inputs.size()) return false;
   1452   for (size_t i = 0; i != inputs.size(); ++i) {
   1453     if (inputs[i] != other_inputs[i]) return false;
   1454   }
   1455 
   1456   DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode());
   1457   return true;
   1458 }
   1459 
   1460 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs) {
   1461 #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break;
   1462   switch (rhs) {
   1463     FOR_EACH_INSTRUCTION(DECLARE_CASE)
   1464     default:
   1465       os << "Unknown instruction kind " << static_cast<int>(rhs);
   1466       break;
   1467   }
   1468 #undef DECLARE_CASE
   1469   return os;
   1470 }
   1471 
   1472 void HInstruction::MoveBefore(HInstruction* cursor, bool do_checks) {
   1473   if (do_checks) {
   1474     DCHECK(!IsPhi());
   1475     DCHECK(!IsControlFlow());
   1476     DCHECK(CanBeMoved() ||
   1477            // HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization.
   1478            IsShouldDeoptimizeFlag());
   1479     DCHECK(!cursor->IsPhi());
   1480   }
   1481 
   1482   next_->previous_ = previous_;
   1483   if (previous_ != nullptr) {
   1484     previous_->next_ = next_;
   1485   }
   1486   if (block_->instructions_.first_instruction_ == this) {
   1487     block_->instructions_.first_instruction_ = next_;
   1488   }
   1489   DCHECK_NE(block_->instructions_.last_instruction_, this);
   1490 
   1491   previous_ = cursor->previous_;
   1492   if (previous_ != nullptr) {
   1493     previous_->next_ = this;
   1494   }
   1495   next_ = cursor;
   1496   cursor->previous_ = this;
   1497   block_ = cursor->block_;
   1498 
   1499   if (block_->instructions_.first_instruction_ == cursor) {
   1500     block_->instructions_.first_instruction_ = this;
   1501   }
   1502 }
   1503 
   1504 void HInstruction::MoveBeforeFirstUserAndOutOfLoops() {
   1505   DCHECK(!CanThrow());
   1506   DCHECK(!HasSideEffects());
   1507   DCHECK(!HasEnvironmentUses());
   1508   DCHECK(HasNonEnvironmentUses());
   1509   DCHECK(!IsPhi());  // Makes no sense for Phi.
   1510   DCHECK_EQ(InputCount(), 0u);
   1511 
   1512   // Find the target block.
   1513   auto uses_it = GetUses().begin();
   1514   auto uses_end = GetUses().end();
   1515   HBasicBlock* target_block = uses_it->GetUser()->GetBlock();
   1516   ++uses_it;
   1517   while (uses_it != uses_end && uses_it->GetUser()->GetBlock() == target_block) {
   1518     ++uses_it;
   1519   }
   1520   if (uses_it != uses_end) {
   1521     // This instruction has uses in two or more blocks. Find the common dominator.
   1522     CommonDominator finder(target_block);
   1523     for (; uses_it != uses_end; ++uses_it) {
   1524       finder.Update(uses_it->GetUser()->GetBlock());
   1525     }
   1526     target_block = finder.Get();
   1527     DCHECK(target_block != nullptr);
   1528   }
   1529   // Move to the first dominator not in a loop.
   1530   while (target_block->IsInLoop()) {
   1531     target_block = target_block->GetDominator();
   1532     DCHECK(target_block != nullptr);
   1533   }
   1534 
   1535   // Find insertion position.
   1536   HInstruction* insert_pos = nullptr;
   1537   for (const HUseListNode<HInstruction*>& use : GetUses()) {
   1538     if (use.GetUser()->GetBlock() == target_block &&
   1539         (insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
   1540       insert_pos = use.GetUser();
   1541     }
   1542   }
   1543   if (insert_pos == nullptr) {
   1544     // No user in `target_block`, insert before the control flow instruction.
   1545     insert_pos = target_block->GetLastInstruction();
   1546     DCHECK(insert_pos->IsControlFlow());
   1547     // Avoid splitting HCondition from HIf to prevent unnecessary materialization.
   1548     if (insert_pos->IsIf()) {
   1549       HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
   1550       if (if_input == insert_pos->GetPrevious()) {
   1551         insert_pos = if_input;
   1552       }
   1553     }
   1554   }
   1555   MoveBefore(insert_pos);
   1556 }
   1557 
   1558 HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor) {
   1559   DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
   1560   DCHECK_EQ(cursor->GetBlock(), this);
   1561 
   1562   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(),
   1563                                                                     cursor->GetDexPc());
   1564   new_block->instructions_.first_instruction_ = cursor;
   1565   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
   1566   instructions_.last_instruction_ = cursor->previous_;
   1567   if (cursor->previous_ == nullptr) {
   1568     instructions_.first_instruction_ = nullptr;
   1569   } else {
   1570     cursor->previous_->next_ = nullptr;
   1571     cursor->previous_ = nullptr;
   1572   }
   1573 
   1574   new_block->instructions_.SetBlockOfInstructions(new_block);
   1575   AddInstruction(new (GetGraph()->GetArena()) HGoto(new_block->GetDexPc()));
   1576 
   1577   for (HBasicBlock* successor : GetSuccessors()) {
   1578     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
   1579   }
   1580   new_block->successors_.swap(successors_);
   1581   DCHECK(successors_.empty());
   1582   AddSuccessor(new_block);
   1583 
   1584   GetGraph()->AddBlock(new_block);
   1585   return new_block;
   1586 }
   1587 
   1588 HBasicBlock* HBasicBlock::CreateImmediateDominator() {
   1589   DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
   1590   DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented.";
   1591 
   1592   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc());
   1593 
   1594   for (HBasicBlock* predecessor : GetPredecessors()) {
   1595     predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block;
   1596   }
   1597   new_block->predecessors_.swap(predecessors_);
   1598   DCHECK(predecessors_.empty());
   1599   AddPredecessor(new_block);
   1600 
   1601   GetGraph()->AddBlock(new_block);
   1602   return new_block;
   1603 }
   1604 
   1605 HBasicBlock* HBasicBlock::SplitBeforeForInlining(HInstruction* cursor) {
   1606   DCHECK_EQ(cursor->GetBlock(), this);
   1607 
   1608   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(),
   1609                                                                     cursor->GetDexPc());
   1610   new_block->instructions_.first_instruction_ = cursor;
   1611   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
   1612   instructions_.last_instruction_ = cursor->previous_;
   1613   if (cursor->previous_ == nullptr) {
   1614     instructions_.first_instruction_ = nullptr;
   1615   } else {
   1616     cursor->previous_->next_ = nullptr;
   1617     cursor->previous_ = nullptr;
   1618   }
   1619 
   1620   new_block->instructions_.SetBlockOfInstructions(new_block);
   1621 
   1622   for (HBasicBlock* successor : GetSuccessors()) {
   1623     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
   1624   }
   1625   new_block->successors_.swap(successors_);
   1626   DCHECK(successors_.empty());
   1627 
   1628   for (HBasicBlock* dominated : GetDominatedBlocks()) {
   1629     dominated->dominator_ = new_block;
   1630   }
   1631   new_block->dominated_blocks_.swap(dominated_blocks_);
   1632   DCHECK(dominated_blocks_.empty());
   1633   return new_block;
   1634 }
   1635 
   1636 HBasicBlock* HBasicBlock::SplitAfterForInlining(HInstruction* cursor) {
   1637   DCHECK(!cursor->IsControlFlow());
   1638   DCHECK_NE(instructions_.last_instruction_, cursor);
   1639   DCHECK_EQ(cursor->GetBlock(), this);
   1640 
   1641   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc());
   1642   new_block->instructions_.first_instruction_ = cursor->GetNext();
   1643   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
   1644   cursor->next_->previous_ = nullptr;
   1645   cursor->next_ = nullptr;
   1646   instructions_.last_instruction_ = cursor;
   1647 
   1648   new_block->instructions_.SetBlockOfInstructions(new_block);
   1649   for (HBasicBlock* successor : GetSuccessors()) {
   1650     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
   1651   }
   1652   new_block->successors_.swap(successors_);
   1653   DCHECK(successors_.empty());
   1654 
   1655   for (HBasicBlock* dominated : GetDominatedBlocks()) {
   1656     dominated->dominator_ = new_block;
   1657   }
   1658   new_block->dominated_blocks_.swap(dominated_blocks_);
   1659   DCHECK(dominated_blocks_.empty());
   1660   return new_block;
   1661 }
   1662 
   1663 const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const {
   1664   if (EndsWithTryBoundary()) {
   1665     HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary();
   1666     if (try_boundary->IsEntry()) {
   1667       DCHECK(!IsTryBlock());
   1668       return try_boundary;
   1669     } else {
   1670       DCHECK(IsTryBlock());
   1671       DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary));
   1672       return nullptr;
   1673     }
   1674   } else if (IsTryBlock()) {
   1675     return &try_catch_information_->GetTryEntry();
   1676   } else {
   1677     return nullptr;
   1678   }
   1679 }
   1680 
   1681 bool HBasicBlock::HasThrowingInstructions() const {
   1682   for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
   1683     if (it.Current()->CanThrow()) {
   1684       return true;
   1685     }
   1686   }
   1687   return false;
   1688 }
   1689 
   1690 static bool HasOnlyOneInstruction(const HBasicBlock& block) {
   1691   return block.GetPhis().IsEmpty()
   1692       && !block.GetInstructions().IsEmpty()
   1693       && block.GetFirstInstruction() == block.GetLastInstruction();
   1694 }
   1695 
   1696 bool HBasicBlock::IsSingleGoto() const {
   1697   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto();
   1698 }
   1699 
   1700 bool HBasicBlock::IsSingleTryBoundary() const {
   1701   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary();
   1702 }
   1703 
   1704 bool HBasicBlock::EndsWithControlFlowInstruction() const {
   1705   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow();
   1706 }
   1707 
   1708 bool HBasicBlock::EndsWithIf() const {
   1709   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf();
   1710 }
   1711 
   1712 bool HBasicBlock::EndsWithTryBoundary() const {
   1713   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary();
   1714 }
   1715 
   1716 bool HBasicBlock::HasSinglePhi() const {
   1717   return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr;
   1718 }
   1719 
   1720 ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const {
   1721   if (EndsWithTryBoundary()) {
   1722     // The normal-flow successor of HTryBoundary is always stored at index zero.
   1723     DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor());
   1724     return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u);
   1725   } else {
   1726     // All successors of blocks not ending with TryBoundary are normal.
   1727     return ArrayRef<HBasicBlock* const>(successors_);
   1728   }
   1729 }
   1730 
   1731 ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const {
   1732   if (EndsWithTryBoundary()) {
   1733     return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers();
   1734   } else {
   1735     // Blocks not ending with TryBoundary do not have exceptional successors.
   1736     return ArrayRef<HBasicBlock* const>();
   1737   }
   1738 }
   1739 
   1740 bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const {
   1741   ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers();
   1742   ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers();
   1743 
   1744   size_t length = handlers1.size();
   1745   if (length != handlers2.size()) {
   1746     return false;
   1747   }
   1748 
   1749   // Exception handlers need to be stored in the same order.
   1750   for (size_t i = 0; i < length; ++i) {
   1751     if (handlers1[i] != handlers2[i]) {
   1752       return false;
   1753     }
   1754   }
   1755   return true;
   1756 }
   1757 
   1758 size_t HInstructionList::CountSize() const {
   1759   size_t size = 0;
   1760   HInstruction* current = first_instruction_;
   1761   for (; current != nullptr; current = current->GetNext()) {
   1762     size++;
   1763   }
   1764   return size;
   1765 }
   1766 
   1767 void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const {
   1768   for (HInstruction* current = first_instruction_;
   1769        current != nullptr;
   1770        current = current->GetNext()) {
   1771     current->SetBlock(block);
   1772   }
   1773 }
   1774 
   1775 void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) {
   1776   DCHECK(Contains(cursor));
   1777   if (!instruction_list.IsEmpty()) {
   1778     if (cursor == last_instruction_) {
   1779       last_instruction_ = instruction_list.last_instruction_;
   1780     } else {
   1781       cursor->next_->previous_ = instruction_list.last_instruction_;
   1782     }
   1783     instruction_list.last_instruction_->next_ = cursor->next_;
   1784     cursor->next_ = instruction_list.first_instruction_;
   1785     instruction_list.first_instruction_->previous_ = cursor;
   1786   }
   1787 }
   1788 
   1789 void HInstructionList::AddBefore(HInstruction* cursor, const HInstructionList& instruction_list) {
   1790   DCHECK(Contains(cursor));
   1791   if (!instruction_list.IsEmpty()) {
   1792     if (cursor == first_instruction_) {
   1793       first_instruction_ = instruction_list.first_instruction_;
   1794     } else {
   1795       cursor->previous_->next_ = instruction_list.first_instruction_;
   1796     }
   1797     instruction_list.last_instruction_->next_ = cursor;
   1798     instruction_list.first_instruction_->previous_ = cursor->previous_;
   1799     cursor->previous_ = instruction_list.last_instruction_;
   1800   }
   1801 }
   1802 
   1803 void HInstructionList::Add(const HInstructionList& instruction_list) {
   1804   if (IsEmpty()) {
   1805     first_instruction_ = instruction_list.first_instruction_;
   1806     last_instruction_ = instruction_list.last_instruction_;
   1807   } else {
   1808     AddAfter(last_instruction_, instruction_list);
   1809   }
   1810 }
   1811 
   1812 // Should be called on instructions in a dead block in post order. This method
   1813 // assumes `insn` has been removed from all users with the exception of catch
   1814 // phis because of missing exceptional edges in the graph. It removes the
   1815 // instruction from catch phi uses, together with inputs of other catch phis in
   1816 // the catch block at the same index, as these must be dead too.
   1817 static void RemoveUsesOfDeadInstruction(HInstruction* insn) {
   1818   DCHECK(!insn->HasEnvironmentUses());
   1819   while (insn->HasNonEnvironmentUses()) {
   1820     const HUseListNode<HInstruction*>& use = insn->GetUses().front();
   1821     size_t use_index = use.GetIndex();
   1822     HBasicBlock* user_block =  use.GetUser()->GetBlock();
   1823     DCHECK(use.GetUser()->IsPhi() && user_block->IsCatchBlock());
   1824     for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
   1825       phi_it.Current()->AsPhi()->RemoveInputAt(use_index);
   1826     }
   1827   }
   1828 }
   1829 
   1830 void HBasicBlock::DisconnectAndDelete() {
   1831   // Dominators must be removed after all the blocks they dominate. This way
   1832   // a loop header is removed last, a requirement for correct loop information
   1833   // iteration.
   1834   DCHECK(dominated_blocks_.empty());
   1835 
   1836   // The following steps gradually remove the block from all its dependants in
   1837   // post order (b/27683071).
   1838 
   1839   // (1) Store a basic block that we'll use in step (5) to find loops to be updated.
   1840   //     We need to do this before step (4) which destroys the predecessor list.
   1841   HBasicBlock* loop_update_start = this;
   1842   if (IsLoopHeader()) {
   1843     HLoopInformation* loop_info = GetLoopInformation();
   1844     // All other blocks in this loop should have been removed because the header
   1845     // was their dominator.
   1846     // Note that we do not remove `this` from `loop_info` as it is unreachable.
   1847     DCHECK(!loop_info->IsIrreducible());
   1848     DCHECK_EQ(loop_info->GetBlocks().NumSetBits(), 1u);
   1849     DCHECK_EQ(static_cast<uint32_t>(loop_info->GetBlocks().GetHighestBitSet()), GetBlockId());
   1850     loop_update_start = loop_info->GetPreHeader();
   1851   }
   1852 
   1853   // (2) Disconnect the block from its successors and update their phis.
   1854   for (HBasicBlock* successor : successors_) {
   1855     // Delete this block from the list of predecessors.
   1856     size_t this_index = successor->GetPredecessorIndexOf(this);
   1857     successor->predecessors_.erase(successor->predecessors_.begin() + this_index);
   1858 
   1859     // Check that `successor` has other predecessors, otherwise `this` is the
   1860     // dominator of `successor` which violates the order DCHECKed at the top.
   1861     DCHECK(!successor->predecessors_.empty());
   1862 
   1863     // Remove this block's entries in the successor's phis. Skip exceptional
   1864     // successors because catch phi inputs do not correspond to predecessor
   1865     // blocks but throwing instructions. The inputs of the catch phis will be
   1866     // updated in step (3).
   1867     if (!successor->IsCatchBlock()) {
   1868       if (successor->predecessors_.size() == 1u) {
   1869         // The successor has just one predecessor left. Replace phis with the only
   1870         // remaining input.
   1871         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
   1872           HPhi* phi = phi_it.Current()->AsPhi();
   1873           phi->ReplaceWith(phi->InputAt(1 - this_index));
   1874           successor->RemovePhi(phi);
   1875         }
   1876       } else {
   1877         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
   1878           phi_it.Current()->AsPhi()->RemoveInputAt(this_index);
   1879         }
   1880       }
   1881     }
   1882   }
   1883   successors_.clear();
   1884 
   1885   // (3) Remove instructions and phis. Instructions should have no remaining uses
   1886   //     except in catch phis. If an instruction is used by a catch phi at `index`,
   1887   //     remove `index`-th input of all phis in the catch block since they are
   1888   //     guaranteed dead. Note that we may miss dead inputs this way but the
   1889   //     graph will always remain consistent.
   1890   for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
   1891     HInstruction* insn = it.Current();
   1892     RemoveUsesOfDeadInstruction(insn);
   1893     RemoveInstruction(insn);
   1894   }
   1895   for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) {
   1896     HPhi* insn = it.Current()->AsPhi();
   1897     RemoveUsesOfDeadInstruction(insn);
   1898     RemovePhi(insn);
   1899   }
   1900 
   1901   // (4) Disconnect the block from its predecessors and update their
   1902   //     control-flow instructions.
   1903   for (HBasicBlock* predecessor : predecessors_) {
   1904     // We should not see any back edges as they would have been removed by step (3).
   1905     DCHECK(!IsInLoop() || !GetLoopInformation()->IsBackEdge(*predecessor));
   1906 
   1907     HInstruction* last_instruction = predecessor->GetLastInstruction();
   1908     if (last_instruction->IsTryBoundary() && !IsCatchBlock()) {
   1909       // This block is the only normal-flow successor of the TryBoundary which
   1910       // makes `predecessor` dead. Since DCE removes blocks in post order,
   1911       // exception handlers of this TryBoundary were already visited and any
   1912       // remaining handlers therefore must be live. We remove `predecessor` from
   1913       // their list of predecessors.
   1914       DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this);
   1915       while (predecessor->GetSuccessors().size() > 1) {
   1916         HBasicBlock* handler = predecessor->GetSuccessors()[1];
   1917         DCHECK(handler->IsCatchBlock());
   1918         predecessor->RemoveSuccessor(handler);
   1919         handler->RemovePredecessor(predecessor);
   1920       }
   1921     }
   1922 
   1923     predecessor->RemoveSuccessor(this);
   1924     uint32_t num_pred_successors = predecessor->GetSuccessors().size();
   1925     if (num_pred_successors == 1u) {
   1926       // If we have one successor after removing one, then we must have
   1927       // had an HIf, HPackedSwitch or HTryBoundary, as they have more than one
   1928       // successor. Replace those with a HGoto.
   1929       DCHECK(last_instruction->IsIf() ||
   1930              last_instruction->IsPackedSwitch() ||
   1931              (last_instruction->IsTryBoundary() && IsCatchBlock()));
   1932       predecessor->RemoveInstruction(last_instruction);
   1933       predecessor->AddInstruction(new (graph_->GetArena()) HGoto(last_instruction->GetDexPc()));
   1934     } else if (num_pred_successors == 0u) {
   1935       // The predecessor has no remaining successors and therefore must be dead.
   1936       // We deliberately leave it without a control-flow instruction so that the
   1937       // GraphChecker fails unless it is not removed during the pass too.
   1938       predecessor->RemoveInstruction(last_instruction);
   1939     } else {
   1940       // There are multiple successors left. The removed block might be a successor
   1941       // of a PackedSwitch which will be completely removed (perhaps replaced with
   1942       // a Goto), or we are deleting a catch block from a TryBoundary. In either
   1943       // case, leave `last_instruction` as is for now.
   1944       DCHECK(last_instruction->IsPackedSwitch() ||
   1945              (last_instruction->IsTryBoundary() && IsCatchBlock()));
   1946     }
   1947   }
   1948   predecessors_.clear();
   1949 
   1950   // (5) Remove the block from all loops it is included in. Skip the inner-most
   1951   //     loop if this is the loop header (see definition of `loop_update_start`)
   1952   //     because the loop header's predecessor list has been destroyed in step (4).
   1953   for (HLoopInformationOutwardIterator it(*loop_update_start); !it.Done(); it.Advance()) {
   1954     HLoopInformation* loop_info = it.Current();
   1955     loop_info->Remove(this);
   1956     if (loop_info->IsBackEdge(*this)) {
   1957       // If this was the last back edge of the loop, we deliberately leave the
   1958       // loop in an inconsistent state and will fail GraphChecker unless the
   1959       // entire loop is removed during the pass.
   1960       loop_info->RemoveBackEdge(this);
   1961     }
   1962   }
   1963 
   1964   // (6) Disconnect from the dominator.
   1965   dominator_->RemoveDominatedBlock(this);
   1966   SetDominator(nullptr);
   1967 
   1968   // (7) Delete from the graph, update reverse post order.
   1969   graph_->DeleteDeadEmptyBlock(this);
   1970   SetGraph(nullptr);
   1971 }
   1972 
   1973 void HBasicBlock::MergeInstructionsWith(HBasicBlock* other) {
   1974   DCHECK(EndsWithControlFlowInstruction());
   1975   RemoveInstruction(GetLastInstruction());
   1976   instructions_.Add(other->GetInstructions());
   1977   other->instructions_.SetBlockOfInstructions(this);
   1978   other->instructions_.Clear();
   1979 }
   1980 
   1981 void HBasicBlock::MergeWith(HBasicBlock* other) {
   1982   DCHECK_EQ(GetGraph(), other->GetGraph());
   1983   DCHECK(ContainsElement(dominated_blocks_, other));
   1984   DCHECK_EQ(GetSingleSuccessor(), other);
   1985   DCHECK_EQ(other->GetSinglePredecessor(), this);
   1986   DCHECK(other->GetPhis().IsEmpty());
   1987 
   1988   // Move instructions from `other` to `this`.
   1989   MergeInstructionsWith(other);
   1990 
   1991   // Remove `other` from the loops it is included in.
   1992   for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) {
   1993     HLoopInformation* loop_info = it.Current();
   1994     loop_info->Remove(other);
   1995     if (loop_info->IsBackEdge(*other)) {
   1996       loop_info->ReplaceBackEdge(other, this);
   1997     }
   1998   }
   1999 
   2000   // Update links to the successors of `other`.
   2001   successors_.clear();
   2002   for (HBasicBlock* successor : other->GetSuccessors()) {
   2003     successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
   2004   }
   2005   successors_.swap(other->successors_);
   2006   DCHECK(other->successors_.empty());
   2007 
   2008   // Update the dominator tree.
   2009   RemoveDominatedBlock(other);
   2010   for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
   2011     dominated->SetDominator(this);
   2012   }
   2013   dominated_blocks_.insert(
   2014       dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
   2015   other->dominated_blocks_.clear();
   2016   other->dominator_ = nullptr;
   2017 
   2018   // Clear the list of predecessors of `other` in preparation of deleting it.
   2019   other->predecessors_.clear();
   2020 
   2021   // Delete `other` from the graph. The function updates reverse post order.
   2022   graph_->DeleteDeadEmptyBlock(other);
   2023   other->SetGraph(nullptr);
   2024 }
   2025 
   2026 void HBasicBlock::MergeWithInlined(HBasicBlock* other) {
   2027   DCHECK_NE(GetGraph(), other->GetGraph());
   2028   DCHECK(GetDominatedBlocks().empty());
   2029   DCHECK(GetSuccessors().empty());
   2030   DCHECK(!EndsWithControlFlowInstruction());
   2031   DCHECK(other->GetSinglePredecessor()->IsEntryBlock());
   2032   DCHECK(other->GetPhis().IsEmpty());
   2033   DCHECK(!other->IsInLoop());
   2034 
   2035   // Move instructions from `other` to `this`.
   2036   instructions_.Add(other->GetInstructions());
   2037   other->instructions_.SetBlockOfInstructions(this);
   2038 
   2039   // Update links to the successors of `other`.
   2040   successors_.clear();
   2041   for (HBasicBlock* successor : other->GetSuccessors()) {
   2042     successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
   2043   }
   2044   successors_.swap(other->successors_);
   2045   DCHECK(other->successors_.empty());
   2046 
   2047   // Update the dominator tree.
   2048   for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
   2049     dominated->SetDominator(this);
   2050   }
   2051   dominated_blocks_.insert(
   2052       dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
   2053   other->dominated_blocks_.clear();
   2054   other->dominator_ = nullptr;
   2055   other->graph_ = nullptr;
   2056 }
   2057 
   2058 void HBasicBlock::ReplaceWith(HBasicBlock* other) {
   2059   while (!GetPredecessors().empty()) {
   2060     HBasicBlock* predecessor = GetPredecessors()[0];
   2061     predecessor->ReplaceSuccessor(this, other);
   2062   }
   2063   while (!GetSuccessors().empty()) {
   2064     HBasicBlock* successor = GetSuccessors()[0];
   2065     successor->ReplacePredecessor(this, other);
   2066   }
   2067   for (HBasicBlock* dominated : GetDominatedBlocks()) {
   2068     other->AddDominatedBlock(dominated);
   2069   }
   2070   GetDominator()->ReplaceDominatedBlock(this, other);
   2071   other->SetDominator(GetDominator());
   2072   dominator_ = nullptr;
   2073   graph_ = nullptr;
   2074 }
   2075 
   2076 void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) {
   2077   DCHECK_EQ(block->GetGraph(), this);
   2078   DCHECK(block->GetSuccessors().empty());
   2079   DCHECK(block->GetPredecessors().empty());
   2080   DCHECK(block->GetDominatedBlocks().empty());
   2081   DCHECK(block->GetDominator() == nullptr);
   2082   DCHECK(block->GetInstructions().IsEmpty());
   2083   DCHECK(block->GetPhis().IsEmpty());
   2084 
   2085   if (block->IsExitBlock()) {
   2086     SetExitBlock(nullptr);
   2087   }
   2088 
   2089   RemoveElement(reverse_post_order_, block);
   2090   blocks_[block->GetBlockId()] = nullptr;
   2091   block->SetGraph(nullptr);
   2092 }
   2093 
   2094 void HGraph::UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
   2095                                                    HBasicBlock* reference,
   2096                                                    bool replace_if_back_edge) {
   2097   if (block->IsLoopHeader()) {
   2098     // Clear the information of which blocks are contained in that loop. Since the
   2099     // information is stored as a bit vector based on block ids, we have to update
   2100     // it, as those block ids were specific to the callee graph and we are now adding
   2101     // these blocks to the caller graph.
   2102     block->GetLoopInformation()->ClearAllBlocks();
   2103   }
   2104 
   2105   // If not already in a loop, update the loop information.
   2106   if (!block->IsInLoop()) {
   2107     block->SetLoopInformation(reference->GetLoopInformation());
   2108   }
   2109 
   2110   // If the block is in a loop, update all its outward loops.
   2111   HLoopInformation* loop_info = block->GetLoopInformation();
   2112   if (loop_info != nullptr) {
   2113     for (HLoopInformationOutwardIterator loop_it(*block);
   2114          !loop_it.Done();
   2115          loop_it.Advance()) {
   2116       loop_it.Current()->Add(block);
   2117     }
   2118     if (replace_if_back_edge && loop_info->IsBackEdge(*reference)) {
   2119       loop_info->ReplaceBackEdge(reference, block);
   2120     }
   2121   }
   2122 
   2123   // Copy TryCatchInformation if `reference` is a try block, not if it is a catch block.
   2124   TryCatchInformation* try_catch_info = reference->IsTryBlock()
   2125       ? reference->GetTryCatchInformation()
   2126       : nullptr;
   2127   block->SetTryCatchInformation(try_catch_info);
   2128 }
   2129 
   2130 HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) {
   2131   DCHECK(HasExitBlock()) << "Unimplemented scenario";
   2132   // Update the environments in this graph to have the invoke's environment
   2133   // as parent.
   2134   {
   2135     // Skip the entry block, we do not need to update the entry's suspend check.
   2136     for (HBasicBlock* block : GetReversePostOrderSkipEntryBlock()) {
   2137       for (HInstructionIterator instr_it(block->GetInstructions());
   2138            !instr_it.Done();
   2139            instr_it.Advance()) {
   2140         HInstruction* current = instr_it.Current();
   2141         if (current->NeedsEnvironment()) {
   2142           DCHECK(current->HasEnvironment());
   2143           current->GetEnvironment()->SetAndCopyParentChain(
   2144               outer_graph->GetArena(), invoke->GetEnvironment());
   2145         }
   2146       }
   2147     }
   2148   }
   2149   outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs());
   2150 
   2151   if (HasBoundsChecks()) {
   2152     outer_graph->SetHasBoundsChecks(true);
   2153   }
   2154   if (HasLoops()) {
   2155     outer_graph->SetHasLoops(true);
   2156   }
   2157   if (HasIrreducibleLoops()) {
   2158     outer_graph->SetHasIrreducibleLoops(true);
   2159   }
   2160   if (HasTryCatch()) {
   2161     outer_graph->SetHasTryCatch(true);
   2162   }
   2163   if (HasSIMD()) {
   2164     outer_graph->SetHasSIMD(true);
   2165   }
   2166 
   2167   HInstruction* return_value = nullptr;
   2168   if (GetBlocks().size() == 3) {
   2169     // Inliner already made sure we don't inline methods that always throw.
   2170     DCHECK(!GetBlocks()[1]->GetLastInstruction()->IsThrow());
   2171     // Simple case of an entry block, a body block, and an exit block.
   2172     // Put the body block's instruction into `invoke`'s block.
   2173     HBasicBlock* body = GetBlocks()[1];
   2174     DCHECK(GetBlocks()[0]->IsEntryBlock());
   2175     DCHECK(GetBlocks()[2]->IsExitBlock());
   2176     DCHECK(!body->IsExitBlock());
   2177     DCHECK(!body->IsInLoop());
   2178     HInstruction* last = body->GetLastInstruction();
   2179 
   2180     // Note that we add instructions before the invoke only to simplify polymorphic inlining.
   2181     invoke->GetBlock()->instructions_.AddBefore(invoke, body->GetInstructions());
   2182     body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock());
   2183 
   2184     // Replace the invoke with the return value of the inlined graph.
   2185     if (last->IsReturn()) {
   2186       return_value = last->InputAt(0);
   2187     } else {
   2188       DCHECK(last->IsReturnVoid());
   2189     }
   2190 
   2191     invoke->GetBlock()->RemoveInstruction(last);
   2192   } else {
   2193     // Need to inline multiple blocks. We split `invoke`'s block
   2194     // into two blocks, merge the first block of the inlined graph into
   2195     // the first half, and replace the exit block of the inlined graph
   2196     // with the second half.
   2197     ArenaAllocator* allocator = outer_graph->GetArena();
   2198     HBasicBlock* at = invoke->GetBlock();
   2199     // Note that we split before the invoke only to simplify polymorphic inlining.
   2200     HBasicBlock* to = at->SplitBeforeForInlining(invoke);
   2201 
   2202     HBasicBlock* first = entry_block_->GetSuccessors()[0];
   2203     DCHECK(!first->IsInLoop());
   2204     at->MergeWithInlined(first);
   2205     exit_block_->ReplaceWith(to);
   2206 
   2207     // Update the meta information surrounding blocks:
   2208     // (1) the graph they are now in,
   2209     // (2) the reverse post order of that graph,
   2210     // (3) their potential loop information, inner and outer,
   2211     // (4) try block membership.
   2212     // Note that we do not need to update catch phi inputs because they
   2213     // correspond to the register file of the outer method which the inlinee
   2214     // cannot modify.
   2215 
   2216     // We don't add the entry block, the exit block, and the first block, which
   2217     // has been merged with `at`.
   2218     static constexpr int kNumberOfSkippedBlocksInCallee = 3;
   2219 
   2220     // We add the `to` block.
   2221     static constexpr int kNumberOfNewBlocksInCaller = 1;
   2222     size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee)
   2223         + kNumberOfNewBlocksInCaller;
   2224 
   2225     // Find the location of `at` in the outer graph's reverse post order. The new
   2226     // blocks will be added after it.
   2227     size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at);
   2228     MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at);
   2229 
   2230     // Do a reverse post order of the blocks in the callee and do (1), (2), (3)
   2231     // and (4) to the blocks that apply.
   2232     for (HBasicBlock* current : GetReversePostOrder()) {
   2233       if (current != exit_block_ && current != entry_block_ && current != first) {
   2234         DCHECK(current->GetTryCatchInformation() == nullptr);
   2235         DCHECK(current->GetGraph() == this);
   2236         current->SetGraph(outer_graph);
   2237         outer_graph->AddBlock(current);
   2238         outer_graph->reverse_post_order_[++index_of_at] = current;
   2239         UpdateLoopAndTryInformationOfNewBlock(current, at,  /* replace_if_back_edge */ false);
   2240       }
   2241     }
   2242 
   2243     // Do (1), (2), (3) and (4) to `to`.
   2244     to->SetGraph(outer_graph);
   2245     outer_graph->AddBlock(to);
   2246     outer_graph->reverse_post_order_[++index_of_at] = to;
   2247     // Only `to` can become a back edge, as the inlined blocks
   2248     // are predecessors of `to`.
   2249     UpdateLoopAndTryInformationOfNewBlock(to, at, /* replace_if_back_edge */ true);
   2250 
   2251     // Update all predecessors of the exit block (now the `to` block)
   2252     // to not `HReturn` but `HGoto` instead. Special case throwing blocks
   2253     // to now get the outer graph exit block as successor. Note that the inliner
   2254     // currently doesn't support inlining methods with try/catch.
   2255     HPhi* return_value_phi = nullptr;
   2256     bool rerun_dominance = false;
   2257     bool rerun_loop_analysis = false;
   2258     for (size_t pred = 0; pred < to->GetPredecessors().size(); ++pred) {
   2259       HBasicBlock* predecessor = to->GetPredecessors()[pred];
   2260       HInstruction* last = predecessor->GetLastInstruction();
   2261       if (last->IsThrow()) {
   2262         DCHECK(!at->IsTryBlock());
   2263         predecessor->ReplaceSuccessor(to, outer_graph->GetExitBlock());
   2264         --pred;
   2265         // We need to re-run dominance information, as the exit block now has
   2266         // a new dominator.
   2267         rerun_dominance = true;
   2268         if (predecessor->GetLoopInformation() != nullptr) {
   2269           // The exit block and blocks post dominated by the exit block do not belong
   2270           // to any loop. Because we do not compute the post dominators, we need to re-run
   2271           // loop analysis to get the loop information correct.
   2272           rerun_loop_analysis = true;
   2273         }
   2274       } else {
   2275         if (last->IsReturnVoid()) {
   2276           DCHECK(return_value == nullptr);
   2277           DCHECK(return_value_phi == nullptr);
   2278         } else {
   2279           DCHECK(last->IsReturn());
   2280           if (return_value_phi != nullptr) {
   2281             return_value_phi->AddInput(last->InputAt(0));
   2282           } else if (return_value == nullptr) {
   2283             return_value = last->InputAt(0);
   2284           } else {
   2285             // There will be multiple returns.
   2286             return_value_phi = new (allocator) HPhi(
   2287                 allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc());
   2288             to->AddPhi(return_value_phi);
   2289             return_value_phi->AddInput(return_value);
   2290             return_value_phi->AddInput(last->InputAt(0));
   2291             return_value = return_value_phi;
   2292           }
   2293         }
   2294         predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc()));
   2295         predecessor->RemoveInstruction(last);
   2296       }
   2297     }
   2298     if (rerun_loop_analysis) {
   2299       DCHECK(!outer_graph->HasIrreducibleLoops())
   2300           << "Recomputing loop information in graphs with irreducible loops "
   2301           << "is unsupported, as it could lead to loop header changes";
   2302       outer_graph->ClearLoopInformation();
   2303       outer_graph->ClearDominanceInformation();
   2304       outer_graph->BuildDominatorTree();
   2305     } else if (rerun_dominance) {
   2306       outer_graph->ClearDominanceInformation();
   2307       outer_graph->ComputeDominanceInformation();
   2308     }
   2309   }
   2310 
   2311   // Walk over the entry block and:
   2312   // - Move constants from the entry block to the outer_graph's entry block,
   2313   // - Replace HParameterValue instructions with their real value.
   2314   // - Remove suspend checks, that hold an environment.
   2315   // We must do this after the other blocks have been inlined, otherwise ids of
   2316   // constants could overlap with the inner graph.
   2317   size_t parameter_index = 0;
   2318   for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) {
   2319     HInstruction* current = it.Current();
   2320     HInstruction* replacement = nullptr;
   2321     if (current->IsNullConstant()) {
   2322       replacement = outer_graph->GetNullConstant(current->GetDexPc());
   2323     } else if (current->IsIntConstant()) {
   2324       replacement = outer_graph->GetIntConstant(
   2325           current->AsIntConstant()->GetValue(), current->GetDexPc());
   2326     } else if (current->IsLongConstant()) {
   2327       replacement = outer_graph->GetLongConstant(
   2328           current->AsLongConstant()->GetValue(), current->GetDexPc());
   2329     } else if (current->IsFloatConstant()) {
   2330       replacement = outer_graph->GetFloatConstant(
   2331           current->AsFloatConstant()->GetValue(), current->GetDexPc());
   2332     } else if (current->IsDoubleConstant()) {
   2333       replacement = outer_graph->GetDoubleConstant(
   2334           current->AsDoubleConstant()->GetValue(), current->GetDexPc());
   2335     } else if (current->IsParameterValue()) {
   2336       if (kIsDebugBuild
   2337           && invoke->IsInvokeStaticOrDirect()
   2338           && invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) {
   2339         // Ensure we do not use the last input of `invoke`, as it
   2340         // contains a clinit check which is not an actual argument.
   2341         size_t last_input_index = invoke->InputCount() - 1;
   2342         DCHECK(parameter_index != last_input_index);
   2343       }
   2344       replacement = invoke->InputAt(parameter_index++);
   2345     } else if (current->IsCurrentMethod()) {
   2346       replacement = outer_graph->GetCurrentMethod();
   2347     } else {
   2348       DCHECK(current->IsGoto() || current->IsSuspendCheck());
   2349       entry_block_->RemoveInstruction(current);
   2350     }
   2351     if (replacement != nullptr) {
   2352       current->ReplaceWith(replacement);
   2353       // If the current is the return value then we need to update the latter.
   2354       if (current == return_value) {
   2355         DCHECK_EQ(entry_block_, return_value->GetBlock());
   2356         return_value = replacement;
   2357       }
   2358     }
   2359   }
   2360 
   2361   return return_value;
   2362 }
   2363 
   2364 /*
   2365  * Loop will be transformed to:
   2366  *       old_pre_header
   2367  *             |
   2368  *          if_block
   2369  *           /    \
   2370  *  true_block   false_block
   2371  *           \    /
   2372  *       new_pre_header
   2373  *             |
   2374  *           header
   2375  */
   2376 void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) {
   2377   DCHECK(header->IsLoopHeader());
   2378   HBasicBlock* old_pre_header = header->GetDominator();
   2379 
   2380   // Need extra block to avoid critical edge.
   2381   HBasicBlock* if_block = new (arena_) HBasicBlock(this, header->GetDexPc());
   2382   HBasicBlock* true_block = new (arena_) HBasicBlock(this, header->GetDexPc());
   2383   HBasicBlock* false_block = new (arena_) HBasicBlock(this, header->GetDexPc());
   2384   HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
   2385   AddBlock(if_block);
   2386   AddBlock(true_block);
   2387   AddBlock(false_block);
   2388   AddBlock(new_pre_header);
   2389 
   2390   header->ReplacePredecessor(old_pre_header, new_pre_header);
   2391   old_pre_header->successors_.clear();
   2392   old_pre_header->dominated_blocks_.clear();
   2393 
   2394   old_pre_header->AddSuccessor(if_block);
   2395   if_block->AddSuccessor(true_block);  // True successor
   2396   if_block->AddSuccessor(false_block);  // False successor
   2397   true_block->AddSuccessor(new_pre_header);
   2398   false_block->AddSuccessor(new_pre_header);
   2399 
   2400   old_pre_header->dominated_blocks_.push_back(if_block);
   2401   if_block->SetDominator(old_pre_header);
   2402   if_block->dominated_blocks_.push_back(true_block);
   2403   true_block->SetDominator(if_block);
   2404   if_block->dominated_blocks_.push_back(false_block);
   2405   false_block->SetDominator(if_block);
   2406   if_block->dominated_blocks_.push_back(new_pre_header);
   2407   new_pre_header->SetDominator(if_block);
   2408   new_pre_header->dominated_blocks_.push_back(header);
   2409   header->SetDominator(new_pre_header);
   2410 
   2411   // Fix reverse post order.
   2412   size_t index_of_header = IndexOfElement(reverse_post_order_, header);
   2413   MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1);
   2414   reverse_post_order_[index_of_header++] = if_block;
   2415   reverse_post_order_[index_of_header++] = true_block;
   2416   reverse_post_order_[index_of_header++] = false_block;
   2417   reverse_post_order_[index_of_header++] = new_pre_header;
   2418 
   2419   // The pre_header can never be a back edge of a loop.
   2420   DCHECK((old_pre_header->GetLoopInformation() == nullptr) ||
   2421          !old_pre_header->GetLoopInformation()->IsBackEdge(*old_pre_header));
   2422   UpdateLoopAndTryInformationOfNewBlock(
   2423       if_block, old_pre_header, /* replace_if_back_edge */ false);
   2424   UpdateLoopAndTryInformationOfNewBlock(
   2425       true_block, old_pre_header, /* replace_if_back_edge */ false);
   2426   UpdateLoopAndTryInformationOfNewBlock(
   2427       false_block, old_pre_header, /* replace_if_back_edge */ false);
   2428   UpdateLoopAndTryInformationOfNewBlock(
   2429       new_pre_header, old_pre_header, /* replace_if_back_edge */ false);
   2430 }
   2431 
   2432 HBasicBlock* HGraph::TransformLoopForVectorization(HBasicBlock* header,
   2433                                                    HBasicBlock* body,
   2434                                                    HBasicBlock* exit) {
   2435   DCHECK(header->IsLoopHeader());
   2436   HLoopInformation* loop = header->GetLoopInformation();
   2437 
   2438   // Add new loop blocks.
   2439   HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
   2440   HBasicBlock* new_header = new (arena_) HBasicBlock(this, header->GetDexPc());
   2441   HBasicBlock* new_body = new (arena_) HBasicBlock(this, header->GetDexPc());
   2442   AddBlock(new_pre_header);
   2443   AddBlock(new_header);
   2444   AddBlock(new_body);
   2445 
   2446   // Set up control flow.
   2447   header->ReplaceSuccessor(exit, new_pre_header);
   2448   new_pre_header->AddSuccessor(new_header);
   2449   new_header->AddSuccessor(exit);
   2450   new_header->AddSuccessor(new_body);
   2451   new_body->AddSuccessor(new_header);
   2452 
   2453   // Set up dominators.
   2454   header->ReplaceDominatedBlock(exit, new_pre_header);
   2455   new_pre_header->SetDominator(header);
   2456   new_pre_header->dominated_blocks_.push_back(new_header);
   2457   new_header->SetDominator(new_pre_header);
   2458   new_header->dominated_blocks_.push_back(new_body);
   2459   new_body->SetDominator(new_header);
   2460   new_header->dominated_blocks_.push_back(exit);
   2461   exit->SetDominator(new_header);
   2462 
   2463   // Fix reverse post order.
   2464   size_t index_of_header = IndexOfElement(reverse_post_order_, header);
   2465   MakeRoomFor(&reverse_post_order_, 2, index_of_header);
   2466   reverse_post_order_[++index_of_header] = new_pre_header;
   2467   reverse_post_order_[++index_of_header] = new_header;
   2468   size_t index_of_body = IndexOfElement(reverse_post_order_, body);
   2469   MakeRoomFor(&reverse_post_order_, 1, index_of_body - 1);
   2470   reverse_post_order_[index_of_body] = new_body;
   2471 
   2472   // Add gotos and suspend check (client must add conditional in header).
   2473   new_pre_header->AddInstruction(new (arena_) HGoto());
   2474   HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(header->GetDexPc());
   2475   new_header->AddInstruction(suspend_check);
   2476   new_body->AddInstruction(new (arena_) HGoto());
   2477   suspend_check->CopyEnvironmentFromWithLoopPhiAdjustment(
   2478       loop->GetSuspendCheck()->GetEnvironment(), header);
   2479 
   2480   // Update loop information.
   2481   new_header->AddBackEdge(new_body);
   2482   new_header->GetLoopInformation()->SetSuspendCheck(suspend_check);
   2483   new_header->GetLoopInformation()->Populate();
   2484   new_pre_header->SetLoopInformation(loop->GetPreHeader()->GetLoopInformation());  // outward
   2485   HLoopInformationOutwardIterator it(*new_header);
   2486   for (it.Advance(); !it.Done(); it.Advance()) {
   2487     it.Current()->Add(new_pre_header);
   2488     it.Current()->Add(new_header);
   2489     it.Current()->Add(new_body);
   2490   }
   2491   return new_pre_header;
   2492 }
   2493 
   2494 static void CheckAgainstUpperBound(ReferenceTypeInfo rti, ReferenceTypeInfo upper_bound_rti)
   2495     REQUIRES_SHARED(Locks::mutator_lock_) {
   2496   if (rti.IsValid()) {
   2497     DCHECK(upper_bound_rti.IsSupertypeOf(rti))
   2498         << " upper_bound_rti: " << upper_bound_rti
   2499         << " rti: " << rti;
   2500     DCHECK(!upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes() || rti.IsExact())
   2501         << " upper_bound_rti: " << upper_bound_rti
   2502         << " rti: " << rti;
   2503   }
   2504 }
   2505 
   2506 void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) {
   2507   if (kIsDebugBuild) {
   2508     DCHECK_EQ(GetType(), Primitive::kPrimNot);
   2509     ScopedObjectAccess soa(Thread::Current());
   2510     DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName();
   2511     if (IsBoundType()) {
   2512       // Having the test here spares us from making the method virtual just for
   2513       // the sake of a DCHECK.
   2514       CheckAgainstUpperBound(rti, AsBoundType()->GetUpperBound());
   2515     }
   2516   }
   2517   reference_type_handle_ = rti.GetTypeHandle();
   2518   SetPackedFlag<kFlagReferenceTypeIsExact>(rti.IsExact());
   2519 }
   2520 
   2521 void HBoundType::SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null) {
   2522   if (kIsDebugBuild) {
   2523     ScopedObjectAccess soa(Thread::Current());
   2524     DCHECK(upper_bound.IsValid());
   2525     DCHECK(!upper_bound_.IsValid()) << "Upper bound should only be set once.";
   2526     CheckAgainstUpperBound(GetReferenceTypeInfo(), upper_bound);
   2527   }
   2528   upper_bound_ = upper_bound;
   2529   SetPackedFlag<kFlagUpperCanBeNull>(can_be_null);
   2530 }
   2531 
   2532 ReferenceTypeInfo ReferenceTypeInfo::Create(TypeHandle type_handle, bool is_exact) {
   2533   if (kIsDebugBuild) {
   2534     ScopedObjectAccess soa(Thread::Current());
   2535     DCHECK(IsValidHandle(type_handle));
   2536     if (!is_exact) {
   2537       DCHECK(!type_handle->CannotBeAssignedFromOtherTypes())
   2538           << "Callers of ReferenceTypeInfo::Create should ensure is_exact is properly computed";
   2539     }
   2540   }
   2541   return ReferenceTypeInfo(type_handle, is_exact);
   2542 }
   2543 
   2544 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) {
   2545   ScopedObjectAccess soa(Thread::Current());
   2546   os << "["
   2547      << " is_valid=" << rhs.IsValid()
   2548      << " type=" << (!rhs.IsValid() ? "?" : mirror::Class::PrettyClass(rhs.GetTypeHandle().Get()))
   2549      << " is_exact=" << rhs.IsExact()
   2550      << " ]";
   2551   return os;
   2552 }
   2553 
   2554 bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) {
   2555   // For now, assume that instructions in different blocks may use the
   2556   // environment.
   2557   // TODO: Use the control flow to decide if this is true.
   2558   if (GetBlock() != other->GetBlock()) {
   2559     return true;
   2560   }
   2561 
   2562   // We know that we are in the same block. Walk from 'this' to 'other',
   2563   // checking to see if there is any instruction with an environment.
   2564   HInstruction* current = this;
   2565   for (; current != other && current != nullptr; current = current->GetNext()) {
   2566     // This is a conservative check, as the instruction result may not be in
   2567     // the referenced environment.
   2568     if (current->HasEnvironment()) {
   2569       return true;
   2570     }
   2571   }
   2572 
   2573   // We should have been called with 'this' before 'other' in the block.
   2574   // Just confirm this.
   2575   DCHECK(current != nullptr);
   2576   return false;
   2577 }
   2578 
   2579 void HInvoke::SetIntrinsic(Intrinsics intrinsic,
   2580                            IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
   2581                            IntrinsicSideEffects side_effects,
   2582                            IntrinsicExceptions exceptions) {
   2583   intrinsic_ = intrinsic;
   2584   IntrinsicOptimizations opt(this);
   2585 
   2586   // Adjust method's side effects from intrinsic table.
   2587   switch (side_effects) {
   2588     case kNoSideEffects: SetSideEffects(SideEffects::None()); break;
   2589     case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break;
   2590     case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break;
   2591     case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break;
   2592   }
   2593 
   2594   if (needs_env_or_cache == kNoEnvironmentOrCache) {
   2595     opt.SetDoesNotNeedDexCache();
   2596     opt.SetDoesNotNeedEnvironment();
   2597   } else {
   2598     // If we need an environment, that means there will be a call, which can trigger GC.
   2599     SetSideEffects(GetSideEffects().Union(SideEffects::CanTriggerGC()));
   2600   }
   2601   // Adjust method's exception status from intrinsic table.
   2602   SetCanThrow(exceptions == kCanThrow);
   2603 }
   2604 
   2605 bool HNewInstance::IsStringAlloc() const {
   2606   ScopedObjectAccess soa(Thread::Current());
   2607   return GetReferenceTypeInfo().IsStringClass();
   2608 }
   2609 
   2610 bool HInvoke::NeedsEnvironment() const {
   2611   if (!IsIntrinsic()) {
   2612     return true;
   2613   }
   2614   IntrinsicOptimizations opt(*this);
   2615   return !opt.GetDoesNotNeedEnvironment();
   2616 }
   2617 
   2618 const DexFile& HInvokeStaticOrDirect::GetDexFileForPcRelativeDexCache() const {
   2619   ArtMethod* caller = GetEnvironment()->GetMethod();
   2620   ScopedObjectAccess soa(Thread::Current());
   2621   // `caller` is null for a top-level graph representing a method whose declaring
   2622   // class was not resolved.
   2623   return caller == nullptr ? GetBlock()->GetGraph()->GetDexFile() : *caller->GetDexFile();
   2624 }
   2625 
   2626 bool HInvokeStaticOrDirect::NeedsDexCacheOfDeclaringClass() const {
   2627   if (GetMethodLoadKind() != MethodLoadKind::kRuntimeCall) {
   2628     return false;
   2629   }
   2630   if (!IsIntrinsic()) {
   2631     return true;
   2632   }
   2633   IntrinsicOptimizations opt(*this);
   2634   return !opt.GetDoesNotNeedDexCache();
   2635 }
   2636 
   2637 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs) {
   2638   switch (rhs) {
   2639     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
   2640       return os << "StringInit";
   2641     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
   2642       return os << "Recursive";
   2643     case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative:
   2644       return os << "BootImageLinkTimePcRelative";
   2645     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
   2646       return os << "DirectAddress";
   2647     case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry:
   2648       return os << "BssEntry";
   2649     case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall:
   2650       return os << "RuntimeCall";
   2651     default:
   2652       LOG(FATAL) << "Unknown MethodLoadKind: " << static_cast<int>(rhs);
   2653       UNREACHABLE();
   2654   }
   2655 }
   2656 
   2657 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) {
   2658   switch (rhs) {
   2659     case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit:
   2660       return os << "explicit";
   2661     case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit:
   2662       return os << "implicit";
   2663     case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone:
   2664       return os << "none";
   2665     default:
   2666       LOG(FATAL) << "Unknown ClinitCheckRequirement: " << static_cast<int>(rhs);
   2667       UNREACHABLE();
   2668   }
   2669 }
   2670 
   2671 bool HLoadClass::InstructionDataEquals(const HInstruction* other) const {
   2672   const HLoadClass* other_load_class = other->AsLoadClass();
   2673   // TODO: To allow GVN for HLoadClass from different dex files, we should compare the type
   2674   // names rather than type indexes. However, we shall also have to re-think the hash code.
   2675   if (type_index_ != other_load_class->type_index_ ||
   2676       GetPackedFields() != other_load_class->GetPackedFields()) {
   2677     return false;
   2678   }
   2679   switch (GetLoadKind()) {
   2680     case LoadKind::kBootImageAddress:
   2681     case LoadKind::kJitTableAddress: {
   2682       ScopedObjectAccess soa(Thread::Current());
   2683       return GetClass().Get() == other_load_class->GetClass().Get();
   2684     }
   2685     default:
   2686       DCHECK(HasTypeReference(GetLoadKind()));
   2687       return IsSameDexFile(GetDexFile(), other_load_class->GetDexFile());
   2688   }
   2689 }
   2690 
   2691 void HLoadClass::SetLoadKind(LoadKind load_kind) {
   2692   SetPackedField<LoadKindField>(load_kind);
   2693 
   2694   if (load_kind != LoadKind::kRuntimeCall &&
   2695       load_kind != LoadKind::kReferrersClass) {
   2696     RemoveAsUserOfInput(0u);
   2697     SetRawInputAt(0u, nullptr);
   2698   }
   2699 
   2700   if (!NeedsEnvironment()) {
   2701     RemoveEnvironment();
   2702     SetSideEffects(SideEffects::None());
   2703   }
   2704 }
   2705 
   2706 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs) {
   2707   switch (rhs) {
   2708     case HLoadClass::LoadKind::kReferrersClass:
   2709       return os << "ReferrersClass";
   2710     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
   2711       return os << "BootImageLinkTimePcRelative";
   2712     case HLoadClass::LoadKind::kBootImageAddress:
   2713       return os << "BootImageAddress";
   2714     case HLoadClass::LoadKind::kBssEntry:
   2715       return os << "BssEntry";
   2716     case HLoadClass::LoadKind::kJitTableAddress:
   2717       return os << "JitTableAddress";
   2718     case HLoadClass::LoadKind::kRuntimeCall:
   2719       return os << "RuntimeCall";
   2720     default:
   2721       LOG(FATAL) << "Unknown HLoadClass::LoadKind: " << static_cast<int>(rhs);
   2722       UNREACHABLE();
   2723   }
   2724 }
   2725 
   2726 bool HLoadString::InstructionDataEquals(const HInstruction* other) const {
   2727   const HLoadString* other_load_string = other->AsLoadString();
   2728   // TODO: To allow GVN for HLoadString from different dex files, we should compare the strings
   2729   // rather than their indexes. However, we shall also have to re-think the hash code.
   2730   if (string_index_ != other_load_string->string_index_ ||
   2731       GetPackedFields() != other_load_string->GetPackedFields()) {
   2732     return false;
   2733   }
   2734   switch (GetLoadKind()) {
   2735     case LoadKind::kBootImageAddress:
   2736     case LoadKind::kJitTableAddress: {
   2737       ScopedObjectAccess soa(Thread::Current());
   2738       return GetString().Get() == other_load_string->GetString().Get();
   2739     }
   2740     default:
   2741       return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile());
   2742   }
   2743 }
   2744 
   2745 void HLoadString::SetLoadKind(LoadKind load_kind) {
   2746   // Once sharpened, the load kind should not be changed again.
   2747   DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall);
   2748   SetPackedField<LoadKindField>(load_kind);
   2749 
   2750   if (load_kind != LoadKind::kRuntimeCall) {
   2751     RemoveAsUserOfInput(0u);
   2752     SetRawInputAt(0u, nullptr);
   2753   }
   2754   if (!NeedsEnvironment()) {
   2755     RemoveEnvironment();
   2756     SetSideEffects(SideEffects::None());
   2757   }
   2758 }
   2759 
   2760 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs) {
   2761   switch (rhs) {
   2762     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
   2763       return os << "BootImageLinkTimePcRelative";
   2764     case HLoadString::LoadKind::kBootImageAddress:
   2765       return os << "BootImageAddress";
   2766     case HLoadString::LoadKind::kBssEntry:
   2767       return os << "BssEntry";
   2768     case HLoadString::LoadKind::kJitTableAddress:
   2769       return os << "JitTableAddress";
   2770     case HLoadString::LoadKind::kRuntimeCall:
   2771       return os << "RuntimeCall";
   2772     default:
   2773       LOG(FATAL) << "Unknown HLoadString::LoadKind: " << static_cast<int>(rhs);
   2774       UNREACHABLE();
   2775   }
   2776 }
   2777 
   2778 void HInstruction::RemoveEnvironmentUsers() {
   2779   for (const HUseListNode<HEnvironment*>& use : GetEnvUses()) {
   2780     HEnvironment* user = use.GetUser();
   2781     user->SetRawEnvAt(use.GetIndex(), nullptr);
   2782   }
   2783   env_uses_.clear();
   2784 }
   2785 
   2786 // Returns an instruction with the opposite Boolean value from 'cond'.
   2787 HInstruction* HGraph::InsertOppositeCondition(HInstruction* cond, HInstruction* cursor) {
   2788   ArenaAllocator* allocator = GetArena();
   2789 
   2790   if (cond->IsCondition() &&
   2791       !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType())) {
   2792     // Can't reverse floating point conditions.  We have to use HBooleanNot in that case.
   2793     HInstruction* lhs = cond->InputAt(0);
   2794     HInstruction* rhs = cond->InputAt(1);
   2795     HInstruction* replacement = nullptr;
   2796     switch (cond->AsCondition()->GetOppositeCondition()) {  // get *opposite*
   2797       case kCondEQ: replacement = new (allocator) HEqual(lhs, rhs); break;
   2798       case kCondNE: replacement = new (allocator) HNotEqual(lhs, rhs); break;
   2799       case kCondLT: replacement = new (allocator) HLessThan(lhs, rhs); break;
   2800       case kCondLE: replacement = new (allocator) HLessThanOrEqual(lhs, rhs); break;
   2801       case kCondGT: replacement = new (allocator) HGreaterThan(lhs, rhs); break;
   2802       case kCondGE: replacement = new (allocator) HGreaterThanOrEqual(lhs, rhs); break;
   2803       case kCondB:  replacement = new (allocator) HBelow(lhs, rhs); break;
   2804       case kCondBE: replacement = new (allocator) HBelowOrEqual(lhs, rhs); break;
   2805       case kCondA:  replacement = new (allocator) HAbove(lhs, rhs); break;
   2806       case kCondAE: replacement = new (allocator) HAboveOrEqual(lhs, rhs); break;
   2807       default:
   2808         LOG(FATAL) << "Unexpected condition";
   2809         UNREACHABLE();
   2810     }
   2811     cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
   2812     return replacement;
   2813   } else if (cond->IsIntConstant()) {
   2814     HIntConstant* int_const = cond->AsIntConstant();
   2815     if (int_const->IsFalse()) {
   2816       return GetIntConstant(1);
   2817     } else {
   2818       DCHECK(int_const->IsTrue()) << int_const->GetValue();
   2819       return GetIntConstant(0);
   2820     }
   2821   } else {
   2822     HInstruction* replacement = new (allocator) HBooleanNot(cond);
   2823     cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
   2824     return replacement;
   2825   }
   2826 }
   2827 
   2828 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs) {
   2829   os << "["
   2830      << " source=" << rhs.GetSource()
   2831      << " destination=" << rhs.GetDestination()
   2832      << " type=" << rhs.GetType()
   2833      << " instruction=";
   2834   if (rhs.GetInstruction() != nullptr) {
   2835     os << rhs.GetInstruction()->DebugName() << ' ' << rhs.GetInstruction()->GetId();
   2836   } else {
   2837     os << "null";
   2838   }
   2839   os << " ]";
   2840   return os;
   2841 }
   2842 
   2843 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs) {
   2844   switch (rhs) {
   2845     case TypeCheckKind::kUnresolvedCheck:
   2846       return os << "unresolved_check";
   2847     case TypeCheckKind::kExactCheck:
   2848       return os << "exact_check";
   2849     case TypeCheckKind::kClassHierarchyCheck:
   2850       return os << "class_hierarchy_check";
   2851     case TypeCheckKind::kAbstractClassCheck:
   2852       return os << "abstract_class_check";
   2853     case TypeCheckKind::kInterfaceCheck:
   2854       return os << "interface_check";
   2855     case TypeCheckKind::kArrayObjectCheck:
   2856       return os << "array_object_check";
   2857     case TypeCheckKind::kArrayCheck:
   2858       return os << "array_check";
   2859     default:
   2860       LOG(FATAL) << "Unknown TypeCheckKind: " << static_cast<int>(rhs);
   2861       UNREACHABLE();
   2862   }
   2863 }
   2864 
   2865 std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind) {
   2866   switch (kind) {
   2867     case MemBarrierKind::kAnyStore:
   2868       return os << "AnyStore";
   2869     case MemBarrierKind::kLoadAny:
   2870       return os << "LoadAny";
   2871     case MemBarrierKind::kStoreStore:
   2872       return os << "StoreStore";
   2873     case MemBarrierKind::kAnyAny:
   2874       return os << "AnyAny";
   2875     case MemBarrierKind::kNTStoreStore:
   2876       return os << "NTStoreStore";
   2877 
   2878     default:
   2879       LOG(FATAL) << "Unknown MemBarrierKind: " << static_cast<int>(kind);
   2880       UNREACHABLE();
   2881   }
   2882 }
   2883 
   2884 }  // namespace art
   2885