1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_REGEXP_JSREGEXP_H_ 6 #define V8_REGEXP_JSREGEXP_H_ 7 8 #include "src/allocation.h" 9 #include "src/assembler.h" 10 #include "src/regexp/regexp-ast.h" 11 #include "src/regexp/regexp-macro-assembler.h" 12 13 namespace v8 { 14 namespace internal { 15 16 class NodeVisitor; 17 class RegExpCompiler; 18 class RegExpMacroAssembler; 19 class RegExpNode; 20 class RegExpTree; 21 class BoyerMooreLookahead; 22 23 class RegExpImpl { 24 public: 25 // Whether V8 is compiled with native regexp support or not. 26 static bool UsesNativeRegExp() { 27 #ifdef V8_INTERPRETED_REGEXP 28 return false; 29 #else 30 return true; 31 #endif 32 } 33 34 // Returns a string representation of a regular expression. 35 // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4. 36 // This function calls the garbage collector if necessary. 37 static Handle<String> ToString(Handle<Object> value); 38 39 // Parses the RegExp pattern and prepares the JSRegExp object with 40 // generic data and choice of implementation - as well as what 41 // the implementation wants to store in the data field. 42 // Returns false if compilation fails. 43 MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re, 44 Handle<String> pattern, 45 JSRegExp::Flags flags); 46 47 // See ECMA-262 section 15.10.6.2. 48 // This function calls the garbage collector if necessary. 49 V8_EXPORT_PRIVATE MUST_USE_RESULT static MaybeHandle<Object> Exec( 50 Handle<JSRegExp> regexp, Handle<String> subject, int index, 51 Handle<RegExpMatchInfo> last_match_info); 52 53 // Prepares a JSRegExp object with Irregexp-specific data. 54 static void IrregexpInitialize(Handle<JSRegExp> re, 55 Handle<String> pattern, 56 JSRegExp::Flags flags, 57 int capture_register_count); 58 59 60 static void AtomCompile(Handle<JSRegExp> re, 61 Handle<String> pattern, 62 JSRegExp::Flags flags, 63 Handle<String> match_pattern); 64 65 66 static int AtomExecRaw(Handle<JSRegExp> regexp, 67 Handle<String> subject, 68 int index, 69 int32_t* output, 70 int output_size); 71 72 static Handle<Object> AtomExec(Handle<JSRegExp> regexp, 73 Handle<String> subject, int index, 74 Handle<RegExpMatchInfo> last_match_info); 75 76 enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 }; 77 78 // Prepare a RegExp for being executed one or more times (using 79 // IrregexpExecOnce) on the subject. 80 // This ensures that the regexp is compiled for the subject, and that 81 // the subject is flat. 82 // Returns the number of integer spaces required by IrregexpExecOnce 83 // as its "registers" argument. If the regexp cannot be compiled, 84 // an exception is set as pending, and this function returns negative. 85 static int IrregexpPrepare(Handle<JSRegExp> regexp, 86 Handle<String> subject); 87 88 // Execute a regular expression on the subject, starting from index. 89 // If matching succeeds, return the number of matches. This can be larger 90 // than one in the case of global regular expressions. 91 // The captures and subcaptures are stored into the registers vector. 92 // If matching fails, returns RE_FAILURE. 93 // If execution fails, sets a pending exception and returns RE_EXCEPTION. 94 static int IrregexpExecRaw(Handle<JSRegExp> regexp, 95 Handle<String> subject, 96 int index, 97 int32_t* output, 98 int output_size); 99 100 // Execute an Irregexp bytecode pattern. 101 // On a successful match, the result is a JSArray containing 102 // captured positions. On a failure, the result is the null value. 103 // Returns an empty handle in case of an exception. 104 MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec( 105 Handle<JSRegExp> regexp, Handle<String> subject, int index, 106 Handle<RegExpMatchInfo> last_match_info); 107 108 // Set last match info. If match is NULL, then setting captures is omitted. 109 static Handle<RegExpMatchInfo> SetLastMatchInfo( 110 Handle<RegExpMatchInfo> last_match_info, Handle<String> subject, 111 int capture_count, int32_t* match); 112 113 class GlobalCache { 114 public: 115 GlobalCache(Handle<JSRegExp> regexp, 116 Handle<String> subject, 117 Isolate* isolate); 118 119 INLINE(~GlobalCache()); 120 121 // Fetch the next entry in the cache for global regexp match results. 122 // This does not set the last match info. Upon failure, NULL is returned. 123 // The cause can be checked with Result(). The previous 124 // result is still in available in memory when a failure happens. 125 INLINE(int32_t* FetchNext()); 126 127 INLINE(int32_t* LastSuccessfulMatch()); 128 129 INLINE(bool HasException()) { return num_matches_ < 0; } 130 131 private: 132 int AdvanceZeroLength(int last_index); 133 134 int num_matches_; 135 int max_matches_; 136 int current_match_index_; 137 int registers_per_match_; 138 // Pointer to the last set of captures. 139 int32_t* register_array_; 140 int register_array_size_; 141 Handle<JSRegExp> regexp_; 142 Handle<String> subject_; 143 }; 144 145 // For acting on the JSRegExp data FixedArray. 146 static int IrregexpMaxRegisterCount(FixedArray* re); 147 static void SetIrregexpMaxRegisterCount(FixedArray* re, int value); 148 static void SetIrregexpCaptureNameMap(FixedArray* re, 149 Handle<FixedArray> value); 150 static int IrregexpNumberOfCaptures(FixedArray* re); 151 static int IrregexpNumberOfRegisters(FixedArray* re); 152 static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte); 153 static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte); 154 155 // Limit the space regexps take up on the heap. In order to limit this we 156 // would like to keep track of the amount of regexp code on the heap. This 157 // is not tracked, however. As a conservative approximation we track the 158 // total regexp code compiled including code that has subsequently been freed 159 // and the total executable memory at any point. 160 static const size_t kRegExpExecutableMemoryLimit = 16 * MB; 161 static const size_t kRegExpCompiledLimit = 1 * MB; 162 static const int kRegExpTooLargeToOptimize = 20 * KB; 163 164 private: 165 static bool CompileIrregexp(Handle<JSRegExp> re, 166 Handle<String> sample_subject, bool is_one_byte); 167 static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, 168 Handle<String> sample_subject, 169 bool is_one_byte); 170 }; 171 172 173 // Represents the location of one element relative to the intersection of 174 // two sets. Corresponds to the four areas of a Venn diagram. 175 enum ElementInSetsRelation { 176 kInsideNone = 0, 177 kInsideFirst = 1, 178 kInsideSecond = 2, 179 kInsideBoth = 3 180 }; 181 182 183 // A set of unsigned integers that behaves especially well on small 184 // integers (< 32). May do zone-allocation. 185 class OutSet: public ZoneObject { 186 public: 187 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { } 188 OutSet* Extend(unsigned value, Zone* zone); 189 bool Get(unsigned value) const; 190 static const unsigned kFirstLimit = 32; 191 192 private: 193 // Destructively set a value in this set. In most cases you want 194 // to use Extend instead to ensure that only one instance exists 195 // that contains the same values. 196 void Set(unsigned value, Zone* zone); 197 198 // The successors are a list of sets that contain the same values 199 // as this set and the one more value that is not present in this 200 // set. 201 ZoneList<OutSet*>* successors(Zone* zone) { return successors_; } 202 203 OutSet(uint32_t first, ZoneList<unsigned>* remaining) 204 : first_(first), remaining_(remaining), successors_(NULL) { } 205 uint32_t first_; 206 ZoneList<unsigned>* remaining_; 207 ZoneList<OutSet*>* successors_; 208 friend class Trace; 209 }; 210 211 212 // A mapping from integers, specified as ranges, to a set of integers. 213 // Used for mapping character ranges to choices. 214 class DispatchTable : public ZoneObject { 215 public: 216 explicit DispatchTable(Zone* zone) : tree_(zone) { } 217 218 class Entry { 219 public: 220 Entry() : from_(0), to_(0), out_set_(NULL) { } 221 Entry(uc32 from, uc32 to, OutSet* out_set) 222 : from_(from), to_(to), out_set_(out_set) { 223 DCHECK(from <= to); 224 } 225 uc32 from() { return from_; } 226 uc32 to() { return to_; } 227 void set_to(uc32 value) { to_ = value; } 228 void AddValue(int value, Zone* zone) { 229 out_set_ = out_set_->Extend(value, zone); 230 } 231 OutSet* out_set() { return out_set_; } 232 private: 233 uc32 from_; 234 uc32 to_; 235 OutSet* out_set_; 236 }; 237 238 class Config { 239 public: 240 typedef uc32 Key; 241 typedef Entry Value; 242 static const uc32 kNoKey; 243 static const Entry NoValue() { return Value(); } 244 static inline int Compare(uc32 a, uc32 b) { 245 if (a == b) 246 return 0; 247 else if (a < b) 248 return -1; 249 else 250 return 1; 251 } 252 }; 253 254 void AddRange(CharacterRange range, int value, Zone* zone); 255 OutSet* Get(uc32 value); 256 void Dump(); 257 258 template <typename Callback> 259 void ForEach(Callback* callback) { 260 return tree()->ForEach(callback); 261 } 262 263 private: 264 // There can't be a static empty set since it allocates its 265 // successors in a zone and caches them. 266 OutSet* empty() { return &empty_; } 267 OutSet empty_; 268 ZoneSplayTree<Config>* tree() { return &tree_; } 269 ZoneSplayTree<Config> tree_; 270 }; 271 272 273 // Categorizes character ranges into BMP, non-BMP, lead, and trail surrogates. 274 class UnicodeRangeSplitter { 275 public: 276 UnicodeRangeSplitter(Zone* zone, ZoneList<CharacterRange>* base); 277 void Call(uc32 from, DispatchTable::Entry entry); 278 279 ZoneList<CharacterRange>* bmp() { return bmp_; } 280 ZoneList<CharacterRange>* lead_surrogates() { return lead_surrogates_; } 281 ZoneList<CharacterRange>* trail_surrogates() { return trail_surrogates_; } 282 ZoneList<CharacterRange>* non_bmp() const { return non_bmp_; } 283 284 private: 285 static const int kBase = 0; 286 // Separate ranges into 287 static const int kBmpCodePoints = 1; 288 static const int kLeadSurrogates = 2; 289 static const int kTrailSurrogates = 3; 290 static const int kNonBmpCodePoints = 4; 291 292 Zone* zone_; 293 DispatchTable table_; 294 ZoneList<CharacterRange>* bmp_; 295 ZoneList<CharacterRange>* lead_surrogates_; 296 ZoneList<CharacterRange>* trail_surrogates_; 297 ZoneList<CharacterRange>* non_bmp_; 298 }; 299 300 301 #define FOR_EACH_NODE_TYPE(VISIT) \ 302 VISIT(End) \ 303 VISIT(Action) \ 304 VISIT(Choice) \ 305 VISIT(BackReference) \ 306 VISIT(Assertion) \ 307 VISIT(Text) 308 309 310 class Trace; 311 struct PreloadState; 312 class GreedyLoopState; 313 class AlternativeGenerationList; 314 315 struct NodeInfo { 316 NodeInfo() 317 : being_analyzed(false), 318 been_analyzed(false), 319 follows_word_interest(false), 320 follows_newline_interest(false), 321 follows_start_interest(false), 322 at_end(false), 323 visited(false), 324 replacement_calculated(false) { } 325 326 // Returns true if the interests and assumptions of this node 327 // matches the given one. 328 bool Matches(NodeInfo* that) { 329 return (at_end == that->at_end) && 330 (follows_word_interest == that->follows_word_interest) && 331 (follows_newline_interest == that->follows_newline_interest) && 332 (follows_start_interest == that->follows_start_interest); 333 } 334 335 // Updates the interests of this node given the interests of the 336 // node preceding it. 337 void AddFromPreceding(NodeInfo* that) { 338 at_end |= that->at_end; 339 follows_word_interest |= that->follows_word_interest; 340 follows_newline_interest |= that->follows_newline_interest; 341 follows_start_interest |= that->follows_start_interest; 342 } 343 344 bool HasLookbehind() { 345 return follows_word_interest || 346 follows_newline_interest || 347 follows_start_interest; 348 } 349 350 // Sets the interests of this node to include the interests of the 351 // following node. 352 void AddFromFollowing(NodeInfo* that) { 353 follows_word_interest |= that->follows_word_interest; 354 follows_newline_interest |= that->follows_newline_interest; 355 follows_start_interest |= that->follows_start_interest; 356 } 357 358 void ResetCompilationState() { 359 being_analyzed = false; 360 been_analyzed = false; 361 } 362 363 bool being_analyzed: 1; 364 bool been_analyzed: 1; 365 366 // These bits are set of this node has to know what the preceding 367 // character was. 368 bool follows_word_interest: 1; 369 bool follows_newline_interest: 1; 370 bool follows_start_interest: 1; 371 372 bool at_end: 1; 373 bool visited: 1; 374 bool replacement_calculated: 1; 375 }; 376 377 378 // Details of a quick mask-compare check that can look ahead in the 379 // input stream. 380 class QuickCheckDetails { 381 public: 382 QuickCheckDetails() 383 : characters_(0), 384 mask_(0), 385 value_(0), 386 cannot_match_(false) { } 387 explicit QuickCheckDetails(int characters) 388 : characters_(characters), 389 mask_(0), 390 value_(0), 391 cannot_match_(false) { } 392 bool Rationalize(bool one_byte); 393 // Merge in the information from another branch of an alternation. 394 void Merge(QuickCheckDetails* other, int from_index); 395 // Advance the current position by some amount. 396 void Advance(int by, bool one_byte); 397 void Clear(); 398 bool cannot_match() { return cannot_match_; } 399 void set_cannot_match() { cannot_match_ = true; } 400 struct Position { 401 Position() : mask(0), value(0), determines_perfectly(false) { } 402 uc16 mask; 403 uc16 value; 404 bool determines_perfectly; 405 }; 406 int characters() { return characters_; } 407 void set_characters(int characters) { characters_ = characters; } 408 Position* positions(int index) { 409 DCHECK(index >= 0); 410 DCHECK(index < characters_); 411 return positions_ + index; 412 } 413 uint32_t mask() { return mask_; } 414 uint32_t value() { return value_; } 415 416 private: 417 // How many characters do we have quick check information from. This is 418 // the same for all branches of a choice node. 419 int characters_; 420 Position positions_[4]; 421 // These values are the condensate of the above array after Rationalize(). 422 uint32_t mask_; 423 uint32_t value_; 424 // If set to true, there is no way this quick check can match at all. 425 // E.g., if it requires to be at the start of the input, and isn't. 426 bool cannot_match_; 427 }; 428 429 430 extern int kUninitializedRegExpNodePlaceHolder; 431 432 433 class RegExpNode: public ZoneObject { 434 public: 435 explicit RegExpNode(Zone* zone) 436 : replacement_(NULL), on_work_list_(false), trace_count_(0), zone_(zone) { 437 bm_info_[0] = bm_info_[1] = NULL; 438 } 439 virtual ~RegExpNode(); 440 virtual void Accept(NodeVisitor* visitor) = 0; 441 // Generates a goto to this node or actually generates the code at this point. 442 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; 443 // How many characters must this node consume at a minimum in order to 444 // succeed. If we have found at least 'still_to_find' characters that 445 // must be consumed there is no need to ask any following nodes whether 446 // they are sure to eat any more characters. The not_at_start argument is 447 // used to indicate that we know we are not at the start of the input. In 448 // this case anchored branches will always fail and can be ignored when 449 // determining how many characters are consumed on success. 450 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0; 451 // Emits some quick code that checks whether the preloaded characters match. 452 // Falls through on certain failure, jumps to the label on possible success. 453 // If the node cannot make a quick check it does nothing and returns false. 454 bool EmitQuickCheck(RegExpCompiler* compiler, 455 Trace* bounds_check_trace, 456 Trace* trace, 457 bool preload_has_checked_bounds, 458 Label* on_possible_success, 459 QuickCheckDetails* details_return, 460 bool fall_through_on_failure); 461 // For a given number of characters this returns a mask and a value. The 462 // next n characters are anded with the mask and compared with the value. 463 // A comparison failure indicates the node cannot match the next n characters. 464 // A comparison success indicates the node may match. 465 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 466 RegExpCompiler* compiler, 467 int characters_filled_in, 468 bool not_at_start) = 0; 469 static const int kNodeIsTooComplexForGreedyLoops = kMinInt; 470 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } 471 // Only returns the successor for a text node of length 1 that matches any 472 // character and that has no guards on it. 473 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( 474 RegExpCompiler* compiler) { 475 return NULL; 476 } 477 478 // Collects information on the possible code units (mod 128) that can match if 479 // we look forward. This is used for a Boyer-Moore-like string searching 480 // implementation. TODO(erikcorry): This should share more code with 481 // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit 482 // the number of nodes we are willing to look at in order to create this data. 483 static const int kRecursionBudget = 200; 484 bool KeepRecursing(RegExpCompiler* compiler); 485 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 486 BoyerMooreLookahead* bm, bool not_at_start) { 487 UNREACHABLE(); 488 } 489 490 // If we know that the input is one-byte then there are some nodes that can 491 // never match. This method returns a node that can be substituted for 492 // itself, or NULL if the node can never match. 493 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) { 494 return this; 495 } 496 // Helper for FilterOneByte. 497 RegExpNode* replacement() { 498 DCHECK(info()->replacement_calculated); 499 return replacement_; 500 } 501 RegExpNode* set_replacement(RegExpNode* replacement) { 502 info()->replacement_calculated = true; 503 replacement_ = replacement; 504 return replacement; // For convenience. 505 } 506 507 // We want to avoid recalculating the lookahead info, so we store it on the 508 // node. Only info that is for this node is stored. We can tell that the 509 // info is for this node when offset == 0, so the information is calculated 510 // relative to this node. 511 void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) { 512 if (offset == 0) set_bm_info(not_at_start, bm); 513 } 514 515 Label* label() { return &label_; } 516 // If non-generic code is generated for a node (i.e. the node is not at the 517 // start of the trace) then it cannot be reused. This variable sets a limit 518 // on how often we allow that to happen before we insist on starting a new 519 // trace and generating generic code for a node that can be reused by flushing 520 // the deferred actions in the current trace and generating a goto. 521 static const int kMaxCopiesCodeGenerated = 10; 522 523 bool on_work_list() { return on_work_list_; } 524 void set_on_work_list(bool value) { on_work_list_ = value; } 525 526 NodeInfo* info() { return &info_; } 527 528 BoyerMooreLookahead* bm_info(bool not_at_start) { 529 return bm_info_[not_at_start ? 1 : 0]; 530 } 531 532 Zone* zone() const { return zone_; } 533 534 protected: 535 enum LimitResult { DONE, CONTINUE }; 536 RegExpNode* replacement_; 537 538 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); 539 540 void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) { 541 bm_info_[not_at_start ? 1 : 0] = bm; 542 } 543 544 private: 545 static const int kFirstCharBudget = 10; 546 Label label_; 547 bool on_work_list_; 548 NodeInfo info_; 549 // This variable keeps track of how many times code has been generated for 550 // this node (in different traces). We don't keep track of where the 551 // generated code is located unless the code is generated at the start of 552 // a trace, in which case it is generic and can be reused by flushing the 553 // deferred operations in the current trace and generating a goto. 554 int trace_count_; 555 BoyerMooreLookahead* bm_info_[2]; 556 557 Zone* zone_; 558 }; 559 560 561 class SeqRegExpNode: public RegExpNode { 562 public: 563 explicit SeqRegExpNode(RegExpNode* on_success) 564 : RegExpNode(on_success->zone()), on_success_(on_success) { } 565 RegExpNode* on_success() { return on_success_; } 566 void set_on_success(RegExpNode* node) { on_success_ = node; } 567 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 568 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 569 BoyerMooreLookahead* bm, bool not_at_start) { 570 on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); 571 if (offset == 0) set_bm_info(not_at_start, bm); 572 } 573 574 protected: 575 RegExpNode* FilterSuccessor(int depth, bool ignore_case); 576 577 private: 578 RegExpNode* on_success_; 579 }; 580 581 582 class ActionNode: public SeqRegExpNode { 583 public: 584 enum ActionType { 585 SET_REGISTER, 586 INCREMENT_REGISTER, 587 STORE_POSITION, 588 BEGIN_SUBMATCH, 589 POSITIVE_SUBMATCH_SUCCESS, 590 EMPTY_MATCH_CHECK, 591 CLEAR_CAPTURES 592 }; 593 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success); 594 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success); 595 static ActionNode* StorePosition(int reg, 596 bool is_capture, 597 RegExpNode* on_success); 598 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); 599 static ActionNode* BeginSubmatch(int stack_pointer_reg, 600 int position_reg, 601 RegExpNode* on_success); 602 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg, 603 int restore_reg, 604 int clear_capture_count, 605 int clear_capture_from, 606 RegExpNode* on_success); 607 static ActionNode* EmptyMatchCheck(int start_register, 608 int repetition_register, 609 int repetition_limit, 610 RegExpNode* on_success); 611 virtual void Accept(NodeVisitor* visitor); 612 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 613 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 614 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 615 RegExpCompiler* compiler, 616 int filled_in, 617 bool not_at_start) { 618 return on_success()->GetQuickCheckDetails( 619 details, compiler, filled_in, not_at_start); 620 } 621 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 622 BoyerMooreLookahead* bm, bool not_at_start); 623 ActionType action_type() { return action_type_; } 624 // TODO(erikcorry): We should allow some action nodes in greedy loops. 625 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } 626 627 private: 628 union { 629 struct { 630 int reg; 631 int value; 632 } u_store_register; 633 struct { 634 int reg; 635 } u_increment_register; 636 struct { 637 int reg; 638 bool is_capture; 639 } u_position_register; 640 struct { 641 int stack_pointer_register; 642 int current_position_register; 643 int clear_register_count; 644 int clear_register_from; 645 } u_submatch; 646 struct { 647 int start_register; 648 int repetition_register; 649 int repetition_limit; 650 } u_empty_match_check; 651 struct { 652 int range_from; 653 int range_to; 654 } u_clear_captures; 655 } data_; 656 ActionNode(ActionType action_type, RegExpNode* on_success) 657 : SeqRegExpNode(on_success), 658 action_type_(action_type) { } 659 ActionType action_type_; 660 friend class DotPrinter; 661 }; 662 663 664 class TextNode: public SeqRegExpNode { 665 public: 666 TextNode(ZoneList<TextElement>* elms, bool read_backward, 667 RegExpNode* on_success) 668 : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {} 669 TextNode(RegExpCharacterClass* that, bool read_backward, 670 RegExpNode* on_success) 671 : SeqRegExpNode(on_success), 672 elms_(new (zone()) ZoneList<TextElement>(1, zone())), 673 read_backward_(read_backward) { 674 elms_->Add(TextElement::CharClass(that), zone()); 675 } 676 // Create TextNode for a single character class for the given ranges. 677 static TextNode* CreateForCharacterRanges(Zone* zone, 678 ZoneList<CharacterRange>* ranges, 679 bool read_backward, 680 RegExpNode* on_success); 681 // Create TextNode for a surrogate pair with a range given for the 682 // lead and the trail surrogate each. 683 static TextNode* CreateForSurrogatePair(Zone* zone, CharacterRange lead, 684 CharacterRange trail, 685 bool read_backward, 686 RegExpNode* on_success); 687 virtual void Accept(NodeVisitor* visitor); 688 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 689 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 690 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 691 RegExpCompiler* compiler, 692 int characters_filled_in, 693 bool not_at_start); 694 ZoneList<TextElement>* elements() { return elms_; } 695 bool read_backward() { return read_backward_; } 696 void MakeCaseIndependent(Isolate* isolate, bool is_one_byte); 697 virtual int GreedyLoopTextLength(); 698 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( 699 RegExpCompiler* compiler); 700 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 701 BoyerMooreLookahead* bm, bool not_at_start); 702 void CalculateOffsets(); 703 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 704 705 private: 706 enum TextEmitPassType { 707 NON_LATIN1_MATCH, // Check for characters that can't match. 708 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. 709 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. 710 CASE_CHARACTER_MATCH, // Case-independent single character check. 711 CHARACTER_CLASS_MATCH // Character class. 712 }; 713 static bool SkipPass(int pass, bool ignore_case); 714 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH; 715 static const int kLastPass = CHARACTER_CLASS_MATCH; 716 void TextEmitPass(RegExpCompiler* compiler, 717 TextEmitPassType pass, 718 bool preloaded, 719 Trace* trace, 720 bool first_element_checked, 721 int* checked_up_to); 722 int Length(); 723 ZoneList<TextElement>* elms_; 724 bool read_backward_; 725 }; 726 727 728 class AssertionNode: public SeqRegExpNode { 729 public: 730 enum AssertionType { 731 AT_END, 732 AT_START, 733 AT_BOUNDARY, 734 AT_NON_BOUNDARY, 735 AFTER_NEWLINE 736 }; 737 static AssertionNode* AtEnd(RegExpNode* on_success) { 738 return new(on_success->zone()) AssertionNode(AT_END, on_success); 739 } 740 static AssertionNode* AtStart(RegExpNode* on_success) { 741 return new(on_success->zone()) AssertionNode(AT_START, on_success); 742 } 743 static AssertionNode* AtBoundary(RegExpNode* on_success) { 744 return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success); 745 } 746 static AssertionNode* AtNonBoundary(RegExpNode* on_success) { 747 return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success); 748 } 749 static AssertionNode* AfterNewline(RegExpNode* on_success) { 750 return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success); 751 } 752 virtual void Accept(NodeVisitor* visitor); 753 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 754 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 755 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 756 RegExpCompiler* compiler, 757 int filled_in, 758 bool not_at_start); 759 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 760 BoyerMooreLookahead* bm, bool not_at_start); 761 AssertionType assertion_type() { return assertion_type_; } 762 763 private: 764 void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace); 765 enum IfPrevious { kIsNonWord, kIsWord }; 766 void BacktrackIfPrevious(RegExpCompiler* compiler, 767 Trace* trace, 768 IfPrevious backtrack_if_previous); 769 AssertionNode(AssertionType t, RegExpNode* on_success) 770 : SeqRegExpNode(on_success), assertion_type_(t) { } 771 AssertionType assertion_type_; 772 }; 773 774 775 class BackReferenceNode: public SeqRegExpNode { 776 public: 777 BackReferenceNode(int start_reg, int end_reg, bool read_backward, 778 RegExpNode* on_success) 779 : SeqRegExpNode(on_success), 780 start_reg_(start_reg), 781 end_reg_(end_reg), 782 read_backward_(read_backward) {} 783 virtual void Accept(NodeVisitor* visitor); 784 int start_register() { return start_reg_; } 785 int end_register() { return end_reg_; } 786 bool read_backward() { return read_backward_; } 787 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 788 virtual int EatsAtLeast(int still_to_find, 789 int recursion_depth, 790 bool not_at_start); 791 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 792 RegExpCompiler* compiler, 793 int characters_filled_in, 794 bool not_at_start) { 795 return; 796 } 797 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 798 BoyerMooreLookahead* bm, bool not_at_start); 799 800 private: 801 int start_reg_; 802 int end_reg_; 803 bool read_backward_; 804 }; 805 806 807 class EndNode: public RegExpNode { 808 public: 809 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; 810 EndNode(Action action, Zone* zone) : RegExpNode(zone), action_(action) {} 811 virtual void Accept(NodeVisitor* visitor); 812 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 813 virtual int EatsAtLeast(int still_to_find, 814 int recursion_depth, 815 bool not_at_start) { return 0; } 816 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 817 RegExpCompiler* compiler, 818 int characters_filled_in, 819 bool not_at_start) { 820 // Returning 0 from EatsAtLeast should ensure we never get here. 821 UNREACHABLE(); 822 } 823 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 824 BoyerMooreLookahead* bm, bool not_at_start) { 825 // Returning 0 from EatsAtLeast should ensure we never get here. 826 UNREACHABLE(); 827 } 828 829 private: 830 Action action_; 831 }; 832 833 834 class NegativeSubmatchSuccess: public EndNode { 835 public: 836 NegativeSubmatchSuccess(int stack_pointer_reg, 837 int position_reg, 838 int clear_capture_count, 839 int clear_capture_start, 840 Zone* zone) 841 : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone), 842 stack_pointer_register_(stack_pointer_reg), 843 current_position_register_(position_reg), 844 clear_capture_count_(clear_capture_count), 845 clear_capture_start_(clear_capture_start) { } 846 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 847 848 private: 849 int stack_pointer_register_; 850 int current_position_register_; 851 int clear_capture_count_; 852 int clear_capture_start_; 853 }; 854 855 856 class Guard: public ZoneObject { 857 public: 858 enum Relation { LT, GEQ }; 859 Guard(int reg, Relation op, int value) 860 : reg_(reg), 861 op_(op), 862 value_(value) { } 863 int reg() { return reg_; } 864 Relation op() { return op_; } 865 int value() { return value_; } 866 867 private: 868 int reg_; 869 Relation op_; 870 int value_; 871 }; 872 873 874 class GuardedAlternative { 875 public: 876 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { } 877 void AddGuard(Guard* guard, Zone* zone); 878 RegExpNode* node() { return node_; } 879 void set_node(RegExpNode* node) { node_ = node; } 880 ZoneList<Guard*>* guards() { return guards_; } 881 882 private: 883 RegExpNode* node_; 884 ZoneList<Guard*>* guards_; 885 }; 886 887 888 class AlternativeGeneration; 889 890 891 class ChoiceNode: public RegExpNode { 892 public: 893 explicit ChoiceNode(int expected_size, Zone* zone) 894 : RegExpNode(zone), 895 alternatives_(new(zone) 896 ZoneList<GuardedAlternative>(expected_size, zone)), 897 table_(NULL), 898 not_at_start_(false), 899 being_calculated_(false) { } 900 virtual void Accept(NodeVisitor* visitor); 901 void AddAlternative(GuardedAlternative node) { 902 alternatives()->Add(node, zone()); 903 } 904 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; } 905 DispatchTable* GetTable(bool ignore_case); 906 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 907 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 908 int EatsAtLeastHelper(int still_to_find, 909 int budget, 910 RegExpNode* ignore_this_node, 911 bool not_at_start); 912 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 913 RegExpCompiler* compiler, 914 int characters_filled_in, 915 bool not_at_start); 916 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 917 BoyerMooreLookahead* bm, bool not_at_start); 918 919 bool being_calculated() { return being_calculated_; } 920 bool not_at_start() { return not_at_start_; } 921 void set_not_at_start() { not_at_start_ = true; } 922 void set_being_calculated(bool b) { being_calculated_ = b; } 923 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { 924 return true; 925 } 926 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 927 virtual bool read_backward() { return false; } 928 929 protected: 930 int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative); 931 ZoneList<GuardedAlternative>* alternatives_; 932 933 private: 934 friend class DispatchTableConstructor; 935 friend class Analysis; 936 void GenerateGuard(RegExpMacroAssembler* macro_assembler, 937 Guard* guard, 938 Trace* trace); 939 int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least); 940 void EmitOutOfLineContinuation(RegExpCompiler* compiler, 941 Trace* trace, 942 GuardedAlternative alternative, 943 AlternativeGeneration* alt_gen, 944 int preload_characters, 945 bool next_expects_preload); 946 void SetUpPreLoad(RegExpCompiler* compiler, 947 Trace* current_trace, 948 PreloadState* preloads); 949 void AssertGuardsMentionRegisters(Trace* trace); 950 int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace); 951 Trace* EmitGreedyLoop(RegExpCompiler* compiler, 952 Trace* trace, 953 AlternativeGenerationList* alt_gens, 954 PreloadState* preloads, 955 GreedyLoopState* greedy_loop_state, 956 int text_length); 957 void EmitChoices(RegExpCompiler* compiler, 958 AlternativeGenerationList* alt_gens, 959 int first_choice, 960 Trace* trace, 961 PreloadState* preloads); 962 DispatchTable* table_; 963 // If true, this node is never checked at the start of the input. 964 // Allows a new trace to start with at_start() set to false. 965 bool not_at_start_; 966 bool being_calculated_; 967 }; 968 969 970 class NegativeLookaroundChoiceNode : public ChoiceNode { 971 public: 972 explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail, 973 GuardedAlternative then_do_this, 974 Zone* zone) 975 : ChoiceNode(2, zone) { 976 AddAlternative(this_must_fail); 977 AddAlternative(then_do_this); 978 } 979 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 980 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 981 RegExpCompiler* compiler, 982 int characters_filled_in, 983 bool not_at_start); 984 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 985 BoyerMooreLookahead* bm, bool not_at_start) { 986 alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm, 987 not_at_start); 988 if (offset == 0) set_bm_info(not_at_start, bm); 989 } 990 // For a negative lookahead we don't emit the quick check for the 991 // alternative that is expected to fail. This is because quick check code 992 // starts by loading enough characters for the alternative that takes fewest 993 // characters, but on a negative lookahead the negative branch did not take 994 // part in that calculation (EatsAtLeast) so the assumptions don't hold. 995 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { 996 return !is_first; 997 } 998 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 999 }; 1000 1001 1002 class LoopChoiceNode: public ChoiceNode { 1003 public: 1004 LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, Zone* zone) 1005 : ChoiceNode(2, zone), 1006 loop_node_(NULL), 1007 continue_node_(NULL), 1008 body_can_be_zero_length_(body_can_be_zero_length), 1009 read_backward_(read_backward) {} 1010 void AddLoopAlternative(GuardedAlternative alt); 1011 void AddContinueAlternative(GuardedAlternative alt); 1012 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 1013 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 1014 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 1015 RegExpCompiler* compiler, 1016 int characters_filled_in, 1017 bool not_at_start); 1018 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 1019 BoyerMooreLookahead* bm, bool not_at_start); 1020 RegExpNode* loop_node() { return loop_node_; } 1021 RegExpNode* continue_node() { return continue_node_; } 1022 bool body_can_be_zero_length() { return body_can_be_zero_length_; } 1023 virtual bool read_backward() { return read_backward_; } 1024 virtual void Accept(NodeVisitor* visitor); 1025 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 1026 1027 private: 1028 // AddAlternative is made private for loop nodes because alternatives 1029 // should not be added freely, we need to keep track of which node 1030 // goes back to the node itself. 1031 void AddAlternative(GuardedAlternative node) { 1032 ChoiceNode::AddAlternative(node); 1033 } 1034 1035 RegExpNode* loop_node_; 1036 RegExpNode* continue_node_; 1037 bool body_can_be_zero_length_; 1038 bool read_backward_; 1039 }; 1040 1041 1042 // Improve the speed that we scan for an initial point where a non-anchored 1043 // regexp can match by using a Boyer-Moore-like table. This is done by 1044 // identifying non-greedy non-capturing loops in the nodes that eat any 1045 // character one at a time. For example in the middle of the regexp 1046 // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly 1047 // inserted at the start of any non-anchored regexp. 1048 // 1049 // When we have found such a loop we look ahead in the nodes to find the set of 1050 // characters that can come at given distances. For example for the regexp 1051 // /.?foo/ we know that there are at least 3 characters ahead of us, and the 1052 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in 1053 // the lookahead info where the set of characters is reasonably constrained. In 1054 // our example this is from index 1 to 2 (0 is not constrained). We can now 1055 // look 3 characters ahead and if we don't find one of [f, o] (the union of 1056 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2). 1057 // 1058 // For Unicode input strings we do the same, but modulo 128. 1059 // 1060 // We also look at the first string fed to the regexp and use that to get a hint 1061 // of the character frequencies in the inputs. This affects the assessment of 1062 // whether the set of characters is 'reasonably constrained'. 1063 // 1064 // We also have another lookahead mechanism (called quick check in the code), 1065 // which uses a wide load of multiple characters followed by a mask and compare 1066 // to determine whether a match is possible at this point. 1067 enum ContainedInLattice { 1068 kNotYet = 0, 1069 kLatticeIn = 1, 1070 kLatticeOut = 2, 1071 kLatticeUnknown = 3 // Can also mean both in and out. 1072 }; 1073 1074 1075 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) { 1076 return static_cast<ContainedInLattice>(a | b); 1077 } 1078 1079 1080 ContainedInLattice AddRange(ContainedInLattice a, 1081 const int* ranges, 1082 int ranges_size, 1083 Interval new_range); 1084 1085 1086 class BoyerMoorePositionInfo : public ZoneObject { 1087 public: 1088 explicit BoyerMoorePositionInfo(Zone* zone) 1089 : map_(new(zone) ZoneList<bool>(kMapSize, zone)), 1090 map_count_(0), 1091 w_(kNotYet), 1092 s_(kNotYet), 1093 d_(kNotYet), 1094 surrogate_(kNotYet) { 1095 for (int i = 0; i < kMapSize; i++) { 1096 map_->Add(false, zone); 1097 } 1098 } 1099 1100 bool& at(int i) { return map_->at(i); } 1101 1102 static const int kMapSize = 128; 1103 static const int kMask = kMapSize - 1; 1104 1105 int map_count() const { return map_count_; } 1106 1107 void Set(int character); 1108 void SetInterval(const Interval& interval); 1109 void SetAll(); 1110 bool is_non_word() { return w_ == kLatticeOut; } 1111 bool is_word() { return w_ == kLatticeIn; } 1112 1113 private: 1114 ZoneList<bool>* map_; 1115 int map_count_; // Number of set bits in the map. 1116 ContainedInLattice w_; // The \w character class. 1117 ContainedInLattice s_; // The \s character class. 1118 ContainedInLattice d_; // The \d character class. 1119 ContainedInLattice surrogate_; // Surrogate UTF-16 code units. 1120 }; 1121 1122 1123 class BoyerMooreLookahead : public ZoneObject { 1124 public: 1125 BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone); 1126 1127 int length() { return length_; } 1128 int max_char() { return max_char_; } 1129 RegExpCompiler* compiler() { return compiler_; } 1130 1131 int Count(int map_number) { 1132 return bitmaps_->at(map_number)->map_count(); 1133 } 1134 1135 BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); } 1136 1137 void Set(int map_number, int character) { 1138 if (character > max_char_) return; 1139 BoyerMoorePositionInfo* info = bitmaps_->at(map_number); 1140 info->Set(character); 1141 } 1142 1143 void SetInterval(int map_number, const Interval& interval) { 1144 if (interval.from() > max_char_) return; 1145 BoyerMoorePositionInfo* info = bitmaps_->at(map_number); 1146 if (interval.to() > max_char_) { 1147 info->SetInterval(Interval(interval.from(), max_char_)); 1148 } else { 1149 info->SetInterval(interval); 1150 } 1151 } 1152 1153 void SetAll(int map_number) { 1154 bitmaps_->at(map_number)->SetAll(); 1155 } 1156 1157 void SetRest(int from_map) { 1158 for (int i = from_map; i < length_; i++) SetAll(i); 1159 } 1160 void EmitSkipInstructions(RegExpMacroAssembler* masm); 1161 1162 private: 1163 // This is the value obtained by EatsAtLeast. If we do not have at least this 1164 // many characters left in the sample string then the match is bound to fail. 1165 // Therefore it is OK to read a character this far ahead of the current match 1166 // point. 1167 int length_; 1168 RegExpCompiler* compiler_; 1169 // 0xff for Latin1, 0xffff for UTF-16. 1170 int max_char_; 1171 ZoneList<BoyerMoorePositionInfo*>* bitmaps_; 1172 1173 int GetSkipTable(int min_lookahead, 1174 int max_lookahead, 1175 Handle<ByteArray> boolean_skip_table); 1176 bool FindWorthwhileInterval(int* from, int* to); 1177 int FindBestInterval( 1178 int max_number_of_chars, int old_biggest_points, int* from, int* to); 1179 }; 1180 1181 1182 // There are many ways to generate code for a node. This class encapsulates 1183 // the current way we should be generating. In other words it encapsulates 1184 // the current state of the code generator. The effect of this is that we 1185 // generate code for paths that the matcher can take through the regular 1186 // expression. A given node in the regexp can be code-generated several times 1187 // as it can be part of several traces. For example for the regexp: 1188 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part 1189 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code 1190 // to match foo is generated only once (the traces have a common prefix). The 1191 // code to store the capture is deferred and generated (twice) after the places 1192 // where baz has been matched. 1193 class Trace { 1194 public: 1195 // A value for a property that is either known to be true, know to be false, 1196 // or not known. 1197 enum TriBool { 1198 UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 1199 }; 1200 1201 class DeferredAction { 1202 public: 1203 DeferredAction(ActionNode::ActionType action_type, int reg) 1204 : action_type_(action_type), reg_(reg), next_(NULL) { } 1205 DeferredAction* next() { return next_; } 1206 bool Mentions(int reg); 1207 int reg() { return reg_; } 1208 ActionNode::ActionType action_type() { return action_type_; } 1209 private: 1210 ActionNode::ActionType action_type_; 1211 int reg_; 1212 DeferredAction* next_; 1213 friend class Trace; 1214 }; 1215 1216 class DeferredCapture : public DeferredAction { 1217 public: 1218 DeferredCapture(int reg, bool is_capture, Trace* trace) 1219 : DeferredAction(ActionNode::STORE_POSITION, reg), 1220 cp_offset_(trace->cp_offset()), 1221 is_capture_(is_capture) { } 1222 int cp_offset() { return cp_offset_; } 1223 bool is_capture() { return is_capture_; } 1224 private: 1225 int cp_offset_; 1226 bool is_capture_; 1227 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } 1228 }; 1229 1230 class DeferredSetRegister : public DeferredAction { 1231 public: 1232 DeferredSetRegister(int reg, int value) 1233 : DeferredAction(ActionNode::SET_REGISTER, reg), 1234 value_(value) { } 1235 int value() { return value_; } 1236 private: 1237 int value_; 1238 }; 1239 1240 class DeferredClearCaptures : public DeferredAction { 1241 public: 1242 explicit DeferredClearCaptures(Interval range) 1243 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), 1244 range_(range) { } 1245 Interval range() { return range_; } 1246 private: 1247 Interval range_; 1248 }; 1249 1250 class DeferredIncrementRegister : public DeferredAction { 1251 public: 1252 explicit DeferredIncrementRegister(int reg) 1253 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { } 1254 }; 1255 1256 Trace() 1257 : cp_offset_(0), 1258 actions_(NULL), 1259 backtrack_(NULL), 1260 stop_node_(NULL), 1261 loop_label_(NULL), 1262 characters_preloaded_(0), 1263 bound_checked_up_to_(0), 1264 flush_budget_(100), 1265 at_start_(UNKNOWN) { } 1266 1267 // End the trace. This involves flushing the deferred actions in the trace 1268 // and pushing a backtrack location onto the backtrack stack. Once this is 1269 // done we can start a new trace or go to one that has already been 1270 // generated. 1271 void Flush(RegExpCompiler* compiler, RegExpNode* successor); 1272 int cp_offset() { return cp_offset_; } 1273 DeferredAction* actions() { return actions_; } 1274 // A trivial trace is one that has no deferred actions or other state that 1275 // affects the assumptions used when generating code. There is no recorded 1276 // backtrack location in a trivial trace, so with a trivial trace we will 1277 // generate code that, on a failure to match, gets the backtrack location 1278 // from the backtrack stack rather than using a direct jump instruction. We 1279 // always start code generation with a trivial trace and non-trivial traces 1280 // are created as we emit code for nodes or add to the list of deferred 1281 // actions in the trace. The location of the code generated for a node using 1282 // a trivial trace is recorded in a label in the node so that gotos can be 1283 // generated to that code. 1284 bool is_trivial() { 1285 return backtrack_ == NULL && 1286 actions_ == NULL && 1287 cp_offset_ == 0 && 1288 characters_preloaded_ == 0 && 1289 bound_checked_up_to_ == 0 && 1290 quick_check_performed_.characters() == 0 && 1291 at_start_ == UNKNOWN; 1292 } 1293 TriBool at_start() { return at_start_; } 1294 void set_at_start(TriBool at_start) { at_start_ = at_start; } 1295 Label* backtrack() { return backtrack_; } 1296 Label* loop_label() { return loop_label_; } 1297 RegExpNode* stop_node() { return stop_node_; } 1298 int characters_preloaded() { return characters_preloaded_; } 1299 int bound_checked_up_to() { return bound_checked_up_to_; } 1300 int flush_budget() { return flush_budget_; } 1301 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; } 1302 bool mentions_reg(int reg); 1303 // Returns true if a deferred position store exists to the specified 1304 // register and stores the offset in the out-parameter. Otherwise 1305 // returns false. 1306 bool GetStoredPosition(int reg, int* cp_offset); 1307 // These set methods and AdvanceCurrentPositionInTrace should be used only on 1308 // new traces - the intention is that traces are immutable after creation. 1309 void add_action(DeferredAction* new_action) { 1310 DCHECK(new_action->next_ == NULL); 1311 new_action->next_ = actions_; 1312 actions_ = new_action; 1313 } 1314 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; } 1315 void set_stop_node(RegExpNode* node) { stop_node_ = node; } 1316 void set_loop_label(Label* label) { loop_label_ = label; } 1317 void set_characters_preloaded(int count) { characters_preloaded_ = count; } 1318 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; } 1319 void set_flush_budget(int to) { flush_budget_ = to; } 1320 void set_quick_check_performed(QuickCheckDetails* d) { 1321 quick_check_performed_ = *d; 1322 } 1323 void InvalidateCurrentCharacter(); 1324 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler); 1325 1326 private: 1327 int FindAffectedRegisters(OutSet* affected_registers, Zone* zone); 1328 void PerformDeferredActions(RegExpMacroAssembler* macro, 1329 int max_register, 1330 const OutSet& affected_registers, 1331 OutSet* registers_to_pop, 1332 OutSet* registers_to_clear, 1333 Zone* zone); 1334 void RestoreAffectedRegisters(RegExpMacroAssembler* macro, 1335 int max_register, 1336 const OutSet& registers_to_pop, 1337 const OutSet& registers_to_clear); 1338 int cp_offset_; 1339 DeferredAction* actions_; 1340 Label* backtrack_; 1341 RegExpNode* stop_node_; 1342 Label* loop_label_; 1343 int characters_preloaded_; 1344 int bound_checked_up_to_; 1345 QuickCheckDetails quick_check_performed_; 1346 int flush_budget_; 1347 TriBool at_start_; 1348 }; 1349 1350 1351 class GreedyLoopState { 1352 public: 1353 explicit GreedyLoopState(bool not_at_start); 1354 1355 Label* label() { return &label_; } 1356 Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; } 1357 1358 private: 1359 Label label_; 1360 Trace counter_backtrack_trace_; 1361 }; 1362 1363 1364 struct PreloadState { 1365 static const int kEatsAtLeastNotYetInitialized = -1; 1366 bool preload_is_current_; 1367 bool preload_has_checked_bounds_; 1368 int preload_characters_; 1369 int eats_at_least_; 1370 void init() { 1371 eats_at_least_ = kEatsAtLeastNotYetInitialized; 1372 } 1373 }; 1374 1375 1376 class NodeVisitor { 1377 public: 1378 virtual ~NodeVisitor() { } 1379 #define DECLARE_VISIT(Type) \ 1380 virtual void Visit##Type(Type##Node* that) = 0; 1381 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1382 #undef DECLARE_VISIT 1383 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); } 1384 }; 1385 1386 1387 // Node visitor used to add the start set of the alternatives to the 1388 // dispatch table of a choice node. 1389 class DispatchTableConstructor: public NodeVisitor { 1390 public: 1391 DispatchTableConstructor(DispatchTable* table, bool ignore_case, 1392 Zone* zone) 1393 : table_(table), 1394 choice_index_(-1), 1395 ignore_case_(ignore_case), 1396 zone_(zone) { } 1397 1398 void BuildTable(ChoiceNode* node); 1399 1400 void AddRange(CharacterRange range) { 1401 table()->AddRange(range, choice_index_, zone_); 1402 } 1403 1404 void AddInverse(ZoneList<CharacterRange>* ranges); 1405 1406 #define DECLARE_VISIT(Type) \ 1407 virtual void Visit##Type(Type##Node* that); 1408 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1409 #undef DECLARE_VISIT 1410 1411 DispatchTable* table() { return table_; } 1412 void set_choice_index(int value) { choice_index_ = value; } 1413 1414 protected: 1415 DispatchTable* table_; 1416 int choice_index_; 1417 bool ignore_case_; 1418 Zone* zone_; 1419 }; 1420 1421 1422 // Assertion propagation moves information about assertions such as 1423 // \b to the affected nodes. For instance, in /.\b./ information must 1424 // be propagated to the first '.' that whatever follows needs to know 1425 // if it matched a word or a non-word, and to the second '.' that it 1426 // has to check if it succeeds a word or non-word. In this case the 1427 // result will be something like: 1428 // 1429 // +-------+ +------------+ 1430 // | . | | . | 1431 // +-------+ ---> +------------+ 1432 // | word? | | check word | 1433 // +-------+ +------------+ 1434 class Analysis: public NodeVisitor { 1435 public: 1436 Analysis(Isolate* isolate, JSRegExp::Flags flags, bool is_one_byte) 1437 : isolate_(isolate), 1438 flags_(flags), 1439 is_one_byte_(is_one_byte), 1440 error_message_(NULL) {} 1441 void EnsureAnalyzed(RegExpNode* node); 1442 1443 #define DECLARE_VISIT(Type) \ 1444 virtual void Visit##Type(Type##Node* that); 1445 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1446 #undef DECLARE_VISIT 1447 virtual void VisitLoopChoice(LoopChoiceNode* that); 1448 1449 bool has_failed() { return error_message_ != NULL; } 1450 const char* error_message() { 1451 DCHECK(error_message_ != NULL); 1452 return error_message_; 1453 } 1454 void fail(const char* error_message) { 1455 error_message_ = error_message; 1456 } 1457 1458 Isolate* isolate() const { return isolate_; } 1459 1460 bool ignore_case() const { return (flags_ & JSRegExp::kIgnoreCase) != 0; } 1461 bool unicode() const { return (flags_ & JSRegExp::kUnicode) != 0; } 1462 1463 private: 1464 Isolate* isolate_; 1465 JSRegExp::Flags flags_; 1466 bool is_one_byte_; 1467 const char* error_message_; 1468 1469 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); 1470 }; 1471 1472 1473 struct RegExpCompileData { 1474 RegExpCompileData() 1475 : tree(NULL), 1476 node(NULL), 1477 simple(true), 1478 contains_anchor(false), 1479 capture_count(0) { } 1480 RegExpTree* tree; 1481 RegExpNode* node; 1482 bool simple; 1483 bool contains_anchor; 1484 Handle<FixedArray> capture_name_map; 1485 Handle<String> error; 1486 int capture_count; 1487 }; 1488 1489 1490 class RegExpEngine: public AllStatic { 1491 public: 1492 struct CompilationResult { 1493 CompilationResult(Isolate* isolate, const char* error_message) 1494 : error_message(error_message), 1495 code(isolate->heap()->the_hole_value()), 1496 num_registers(0) {} 1497 CompilationResult(Object* code, int registers) 1498 : error_message(NULL), code(code), num_registers(registers) {} 1499 const char* error_message; 1500 Object* code; 1501 int num_registers; 1502 }; 1503 1504 static CompilationResult Compile(Isolate* isolate, Zone* zone, 1505 RegExpCompileData* input, 1506 JSRegExp::Flags flags, 1507 Handle<String> pattern, 1508 Handle<String> sample_subject, 1509 bool is_one_byte); 1510 1511 static bool TooMuchRegExpCode(Handle<String> pattern); 1512 1513 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case); 1514 }; 1515 1516 1517 class RegExpResultsCache : public AllStatic { 1518 public: 1519 enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS }; 1520 1521 // Attempt to retrieve a cached result. On failure, 0 is returned as a Smi. 1522 // On success, the returned result is guaranteed to be a COW-array. 1523 static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern, 1524 FixedArray** last_match_out, ResultsCacheType type); 1525 // Attempt to add value_array to the cache specified by type. On success, 1526 // value_array is turned into a COW-array. 1527 static void Enter(Isolate* isolate, Handle<String> key_string, 1528 Handle<Object> key_pattern, Handle<FixedArray> value_array, 1529 Handle<FixedArray> last_match_cache, ResultsCacheType type); 1530 static void Clear(FixedArray* cache); 1531 static const int kRegExpResultsCacheSize = 0x100; 1532 1533 private: 1534 static const int kArrayEntriesPerCacheEntry = 4; 1535 static const int kStringOffset = 0; 1536 static const int kPatternOffset = 1; 1537 static const int kArrayOffset = 2; 1538 static const int kLastMatchOffset = 3; 1539 }; 1540 1541 } // namespace internal 1542 } // namespace v8 1543 1544 #endif // V8_REGEXP_JSREGEXP_H_ 1545