Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2013 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef GrPrimitiveProcessor_DEFINED
      9 #define GrPrimitiveProcessor_DEFINED
     10 
     11 #include "GrColor.h"
     12 #include "GrProcessor.h"
     13 #include "GrShaderVar.h"
     14 
     15 /*
     16  * The GrPrimitiveProcessor represents some kind of geometric primitive.  This includes the shape
     17  * of the primitive and the inherent color of the primitive.  The GrPrimitiveProcessor is
     18  * responsible for providing a color and coverage input into the Ganesh rendering pipeline.  Through
     19  * optimization, Ganesh may decide a different color, no color, and / or no coverage are required
     20  * from the GrPrimitiveProcessor, so the GrPrimitiveProcessor must be able to support this
     21  * functionality.
     22  *
     23  * There are two feedback loops between the GrFragmentProcessors, the GrXferProcessor, and the
     24  * GrPrimitiveProcessor. These loops run on the CPU and to determine known properties of the final
     25  * color and coverage inputs to the GrXferProcessor in order to perform optimizations that preserve
     26  * correctness. The GrDrawOp seeds these loops with initial color and coverage, in its
     27  * getProcessorAnalysisInputs implementation. These seed values are processed by the
     28  * subsequent
     29  * stages of the rendering pipeline and the output is then fed back into the GrDrawOp in
     30  * the applyPipelineOptimizations call, where the op can use the information to inform decisions
     31  * about GrPrimitiveProcessor creation.
     32  */
     33 
     34 class GrGLSLPrimitiveProcessor;
     35 
     36 /*
     37  * GrPrimitiveProcessor defines an interface which all subclasses must implement.  All
     38  * GrPrimitiveProcessors must proivide seed color and coverage for the Ganesh color / coverage
     39  * pipelines, and they must provide some notion of equality
     40  */
     41 class GrPrimitiveProcessor : public GrResourceIOProcessor, public GrProgramElement {
     42 public:
     43     struct Attribute {
     44         enum class InputRate : bool {
     45             kPerVertex,
     46             kPerInstance
     47         };
     48 
     49         const char*          fName;
     50         GrVertexAttribType   fType;
     51         int                  fOffsetInRecord;
     52         GrSLPrecision        fPrecision;
     53         InputRate            fInputRate;
     54     };
     55 
     56     int numAttribs() const { return fAttribs.count(); }
     57     const Attribute& getAttrib(int index) const { return fAttribs[index]; }
     58 
     59     bool hasVertexAttribs() const { return SkToBool(fVertexStride); }
     60     bool hasInstanceAttribs() const { return SkToBool(fInstanceStride); }
     61 
     62     /**
     63      * These return the strides of the vertex and instance buffers. Attributes are expected to be
     64      * laid out interleaved in their corresponding buffer (vertex or instance). fOffsetInRecord
     65      * indicates an attribute's location in bytes relative to the first attribute. (These are padded
     66      * to the nearest 4 bytes for performance reasons.)
     67      *
     68      * A common practice is to populate the buffer's memory using an implicit array of structs. In
     69      * this case, it is best to assert:
     70      *
     71      *     stride == sizeof(struct) and
     72      *     offsetof(struct, field[i]) == attrib[i].fOffsetInRecord
     73      *
     74      * NOTE: for instanced draws the vertex buffer has a single record that each instance reuses.
     75      */
     76     int getVertexStride() const { return fVertexStride; }
     77     int getInstanceStride() const { return fInstanceStride; }
     78 
     79     // Only the GrGeometryProcessor subclass actually has a geo shader or vertex attributes, but
     80     // we put these calls on the base class to prevent having to cast
     81     virtual bool willUseGeoShader() const = 0;
     82 
     83     /**
     84      * Computes a transformKey from an array of coord transforms. Will only look at the first
     85      * <numCoords> transforms in the array.
     86      *
     87      * TODO: A better name for this function  would be "compute" instead of "get".
     88      */
     89     uint32_t getTransformKey(const SkTArray<const GrCoordTransform*, true>& coords,
     90                              int numCoords) const;
     91 
     92     /**
     93      * Sets a unique key on the GrProcessorKeyBuilder that is directly associated with this geometry
     94      * processor's GL backend implementation.
     95      *
     96      * TODO: A better name for this function  would be "compute" instead of "get".
     97      */
     98     virtual void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0;
     99 
    100 
    101     /** Returns a new instance of the appropriate *GL* implementation class
    102         for the given GrProcessor; caller is responsible for deleting
    103         the object. */
    104     virtual GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const = 0;
    105 
    106     virtual bool isPathRendering() const { return false; }
    107 
    108     /**
    109      * If non-null, overrides the dest color returned by GrGLSLFragmentShaderBuilder::dstColor().
    110      */
    111     virtual const char* getDestColorOverride() const { return nullptr; }
    112 
    113     virtual float getSampleShading() const {
    114         return 0.0;
    115     }
    116 
    117 protected:
    118     /**
    119      * Subclasses call these from their constructor to register vertex and instance attributes.
    120      */
    121     const Attribute& addVertexAttrib(const char* name, GrVertexAttribType type,
    122                                      GrSLPrecision precision = kDefault_GrSLPrecision) {
    123         precision = (kDefault_GrSLPrecision == precision) ? kMedium_GrSLPrecision : precision;
    124         fAttribs.push_back() = {name, type, fVertexStride, precision,
    125                                 Attribute::InputRate::kPerVertex};
    126         fVertexStride += static_cast<int>(SkAlign4(GrVertexAttribTypeSize(type)));
    127         return fAttribs.back();
    128     }
    129     const Attribute& addInstanceAttrib(const char* name, GrVertexAttribType type,
    130                                        GrSLPrecision precision = kDefault_GrSLPrecision) {
    131         precision = (kDefault_GrSLPrecision == precision) ? kMedium_GrSLPrecision : precision;
    132         fAttribs.push_back() = {name, type, fInstanceStride, precision,
    133                                 Attribute::InputRate::kPerInstance};
    134         fInstanceStride += static_cast<int>(SkAlign4(GrVertexAttribTypeSize(type)));
    135         return fAttribs.back();
    136     }
    137 
    138 private:
    139     void addPendingIOs() const override { GrResourceIOProcessor::addPendingIOs(); }
    140     void removeRefs() const override { GrResourceIOProcessor::removeRefs(); }
    141     void pendingIOComplete() const override { GrResourceIOProcessor::pendingIOComplete(); }
    142     void notifyRefCntIsZero() const final {}
    143     virtual bool hasExplicitLocalCoords() const = 0;
    144 
    145     SkSTArray<8, Attribute>   fAttribs;
    146     int                       fVertexStride = 0;
    147     int                       fInstanceStride = 0;
    148 
    149     typedef GrProcessor INHERITED;
    150 };
    151 
    152 #endif
    153