Home | History | Annotate | Download | only in llvmpipe
      1 /**************************************************************************
      2  *
      3  * Copyright 2007 VMware, Inc.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28 /*
     29  * Binning code for triangles
     30  */
     31 
     32 #include "util/u_math.h"
     33 #include "util/u_memory.h"
     34 #include "util/u_rect.h"
     35 #include "util/u_sse.h"
     36 #include "lp_perf.h"
     37 #include "lp_setup_context.h"
     38 #include "lp_rast.h"
     39 #include "lp_state_fs.h"
     40 #include "lp_state_setup.h"
     41 #include "lp_context.h"
     42 
     43 #include <inttypes.h>
     44 
     45 #define NUM_CHANNELS 4
     46 
     47 #if defined(PIPE_ARCH_SSE)
     48 #include <emmintrin.h>
     49 #elif defined(_ARCH_PWR8) && defined(PIPE_ARCH_LITTLE_ENDIAN)
     50 #include <altivec.h>
     51 #include "util/u_pwr8.h"
     52 #endif
     53 
     54 static inline int
     55 subpixel_snap(float a)
     56 {
     57    return util_iround(FIXED_ONE * a);
     58 }
     59 
     60 static inline float
     61 fixed_to_float(int a)
     62 {
     63    return a * (1.0f / FIXED_ONE);
     64 }
     65 
     66 
     67 /* Position and area in fixed point coordinates */
     68 struct fixed_position {
     69    int32_t x[4];
     70    int32_t y[4];
     71    int32_t dx01;
     72    int32_t dy01;
     73    int32_t dx20;
     74    int32_t dy20;
     75    int64_t area;
     76 };
     77 
     78 
     79 /**
     80  * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
     81  * immediately after it.
     82  * The memory is allocated from the per-scene pool, not per-tile.
     83  * \param tri_size  returns number of bytes allocated
     84  * \param num_inputs  number of fragment shader inputs
     85  * \return pointer to triangle space
     86  */
     87 struct lp_rast_triangle *
     88 lp_setup_alloc_triangle(struct lp_scene *scene,
     89                         unsigned nr_inputs,
     90                         unsigned nr_planes,
     91                         unsigned *tri_size)
     92 {
     93    unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
     94    unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
     95    struct lp_rast_triangle *tri;
     96 
     97    STATIC_ASSERT(sizeof(struct lp_rast_plane) % 8 == 0);
     98 
     99    *tri_size = (sizeof(struct lp_rast_triangle) +
    100                 3 * input_array_sz +
    101                 plane_sz);
    102 
    103    tri = lp_scene_alloc_aligned( scene, *tri_size, 16 );
    104    if (!tri)
    105       return NULL;
    106 
    107    tri->inputs.stride = input_array_sz;
    108 
    109    {
    110       char *a = (char *)tri;
    111       char *b = (char *)&GET_PLANES(tri)[nr_planes];
    112       assert(b - a == *tri_size);
    113    }
    114 
    115    return tri;
    116 }
    117 
    118 void
    119 lp_setup_print_vertex(struct lp_setup_context *setup,
    120                       const char *name,
    121                       const float (*v)[4])
    122 {
    123    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
    124    int i, j;
    125 
    126    debug_printf("   wpos (%s[0]) xyzw %f %f %f %f\n",
    127                 name,
    128                 v[0][0], v[0][1], v[0][2], v[0][3]);
    129 
    130    for (i = 0; i < key->num_inputs; i++) {
    131       const float *in = v[key->inputs[i].src_index];
    132 
    133       debug_printf("  in[%d] (%s[%d]) %s%s%s%s ",
    134                    i,
    135                    name, key->inputs[i].src_index,
    136                    (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
    137                    (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
    138                    (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
    139                    (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
    140 
    141       for (j = 0; j < 4; j++)
    142          if (key->inputs[i].usage_mask & (1<<j))
    143             debug_printf("%.5f ", in[j]);
    144 
    145       debug_printf("\n");
    146    }
    147 }
    148 
    149 
    150 /**
    151  * Print triangle vertex attribs (for debug).
    152  */
    153 void
    154 lp_setup_print_triangle(struct lp_setup_context *setup,
    155                         const float (*v0)[4],
    156                         const float (*v1)[4],
    157                         const float (*v2)[4])
    158 {
    159    debug_printf("triangle\n");
    160 
    161    {
    162       const float ex = v0[0][0] - v2[0][0];
    163       const float ey = v0[0][1] - v2[0][1];
    164       const float fx = v1[0][0] - v2[0][0];
    165       const float fy = v1[0][1] - v2[0][1];
    166 
    167       /* det = cross(e,f).z */
    168       const float det = ex * fy - ey * fx;
    169       if (det < 0.0f)
    170          debug_printf("   - ccw\n");
    171       else if (det > 0.0f)
    172          debug_printf("   - cw\n");
    173       else
    174          debug_printf("   - zero area\n");
    175    }
    176 
    177    lp_setup_print_vertex(setup, "v0", v0);
    178    lp_setup_print_vertex(setup, "v1", v1);
    179    lp_setup_print_vertex(setup, "v2", v2);
    180 }
    181 
    182 
    183 #define MAX_PLANES 8
    184 static unsigned
    185 lp_rast_tri_tab[MAX_PLANES+1] = {
    186    0,               /* should be impossible */
    187    LP_RAST_OP_TRIANGLE_1,
    188    LP_RAST_OP_TRIANGLE_2,
    189    LP_RAST_OP_TRIANGLE_3,
    190    LP_RAST_OP_TRIANGLE_4,
    191    LP_RAST_OP_TRIANGLE_5,
    192    LP_RAST_OP_TRIANGLE_6,
    193    LP_RAST_OP_TRIANGLE_7,
    194    LP_RAST_OP_TRIANGLE_8
    195 };
    196 
    197 static unsigned
    198 lp_rast_32_tri_tab[MAX_PLANES+1] = {
    199    0,               /* should be impossible */
    200    LP_RAST_OP_TRIANGLE_32_1,
    201    LP_RAST_OP_TRIANGLE_32_2,
    202    LP_RAST_OP_TRIANGLE_32_3,
    203    LP_RAST_OP_TRIANGLE_32_4,
    204    LP_RAST_OP_TRIANGLE_32_5,
    205    LP_RAST_OP_TRIANGLE_32_6,
    206    LP_RAST_OP_TRIANGLE_32_7,
    207    LP_RAST_OP_TRIANGLE_32_8
    208 };
    209 
    210 
    211 
    212 /**
    213  * The primitive covers the whole tile- shade whole tile.
    214  *
    215  * \param tx, ty  the tile position in tiles, not pixels
    216  */
    217 static boolean
    218 lp_setup_whole_tile(struct lp_setup_context *setup,
    219                     const struct lp_rast_shader_inputs *inputs,
    220                     int tx, int ty)
    221 {
    222    struct lp_scene *scene = setup->scene;
    223 
    224    LP_COUNT(nr_fully_covered_64);
    225 
    226    /* if variant is opaque and scissor doesn't effect the tile */
    227    if (inputs->opaque) {
    228       /* Several things prevent this optimization from working:
    229        * - For layered rendering we can't determine if this covers the same layer
    230        * as previous rendering (or in case of clears those actually always cover
    231        * all layers so optimization is impossible). Need to use fb_max_layer and
    232        * not setup->layer_slot to determine this since even if there's currently
    233        * no slot assigned previous rendering could have used one.
    234        * - If there were any Begin/End query commands in the scene then those
    235        * would get removed which would be very wrong. Furthermore, if queries
    236        * were just active we also can't do the optimization since to get
    237        * accurate query results we unfortunately need to execute the rendering
    238        * commands.
    239        */
    240       if (!scene->fb.zsbuf && scene->fb_max_layer == 0 && !scene->had_queries) {
    241          /*
    242           * All previous rendering will be overwritten so reset the bin.
    243           */
    244          lp_scene_bin_reset( scene, tx, ty );
    245       }
    246 
    247       LP_COUNT(nr_shade_opaque_64);
    248       return lp_scene_bin_cmd_with_state( scene, tx, ty,
    249                                           setup->fs.stored,
    250                                           LP_RAST_OP_SHADE_TILE_OPAQUE,
    251                                           lp_rast_arg_inputs(inputs) );
    252    } else {
    253       LP_COUNT(nr_shade_64);
    254       return lp_scene_bin_cmd_with_state( scene, tx, ty,
    255                                           setup->fs.stored,
    256                                           LP_RAST_OP_SHADE_TILE,
    257                                           lp_rast_arg_inputs(inputs) );
    258    }
    259 }
    260 
    261 
    262 /**
    263  * Do basic setup for triangle rasterization and determine which
    264  * framebuffer tiles are touched.  Put the triangle in the scene's
    265  * bins for the tiles which we overlap.
    266  */
    267 static boolean
    268 do_triangle_ccw(struct lp_setup_context *setup,
    269                 struct fixed_position* position,
    270                 const float (*v0)[4],
    271                 const float (*v1)[4],
    272                 const float (*v2)[4],
    273                 boolean frontfacing )
    274 {
    275    struct lp_scene *scene = setup->scene;
    276    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
    277    struct lp_rast_triangle *tri;
    278    struct lp_rast_plane *plane;
    279    struct u_rect bbox;
    280    unsigned tri_bytes;
    281    int nr_planes = 3;
    282    unsigned viewport_index = 0;
    283    unsigned layer = 0;
    284    const float (*pv)[4];
    285 
    286    /* Area should always be positive here */
    287    assert(position->area > 0);
    288 
    289    if (0)
    290       lp_setup_print_triangle(setup, v0, v1, v2);
    291 
    292    if (setup->flatshade_first) {
    293       pv = v0;
    294    }
    295    else {
    296       pv = v2;
    297    }
    298    if (setup->viewport_index_slot > 0) {
    299       unsigned *udata = (unsigned*)pv[setup->viewport_index_slot];
    300       viewport_index = lp_clamp_viewport_idx(*udata);
    301    }
    302    if (setup->layer_slot > 0) {
    303       layer = *(unsigned*)pv[setup->layer_slot];
    304       layer = MIN2(layer, scene->fb_max_layer);
    305    }
    306 
    307    /* Bounding rectangle (in pixels) */
    308    {
    309       /* Yes this is necessary to accurately calculate bounding boxes
    310        * with the two fill-conventions we support.  GL (normally) ends
    311        * up needing a bottom-left fill convention, which requires
    312        * slightly different rounding.
    313        */
    314       int adj = (setup->bottom_edge_rule != 0) ? 1 : 0;
    315 
    316       /* Inclusive x0, exclusive x1 */
    317       bbox.x0 =  MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER;
    318       bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER;
    319 
    320       /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */
    321       bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER;
    322       bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER;
    323    }
    324 
    325    if (bbox.x1 < bbox.x0 ||
    326        bbox.y1 < bbox.y0) {
    327       if (0) debug_printf("empty bounding box\n");
    328       LP_COUNT(nr_culled_tris);
    329       return TRUE;
    330    }
    331 
    332    if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) {
    333       if (0) debug_printf("offscreen\n");
    334       LP_COUNT(nr_culled_tris);
    335       return TRUE;
    336    }
    337 
    338    /* Can safely discard negative regions, but need to keep hold of
    339     * information about when the triangle extends past screen
    340     * boundaries.  See trimmed_box in lp_setup_bin_triangle().
    341     */
    342    bbox.x0 = MAX2(bbox.x0, 0);
    343    bbox.y0 = MAX2(bbox.y0, 0);
    344 
    345    nr_planes = 3;
    346    /*
    347     * Determine how many scissor planes we need, that is drop scissor
    348     * edges if the bounding box of the tri is fully inside that edge.
    349     */
    350    if (setup->scissor_test) {
    351       /* why not just use draw_regions */
    352       boolean s_planes[4];
    353       scissor_planes_needed(s_planes, &bbox, &setup->scissors[viewport_index]);
    354       nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3];
    355    }
    356 
    357    tri = lp_setup_alloc_triangle(scene,
    358                                  key->num_inputs,
    359                                  nr_planes,
    360                                  &tri_bytes);
    361    if (!tri)
    362       return FALSE;
    363 
    364 #if 0
    365    tri->v[0][0] = v0[0][0];
    366    tri->v[1][0] = v1[0][0];
    367    tri->v[2][0] = v2[0][0];
    368    tri->v[0][1] = v0[0][1];
    369    tri->v[1][1] = v1[0][1];
    370    tri->v[2][1] = v2[0][1];
    371 #endif
    372 
    373    LP_COUNT(nr_tris);
    374 
    375    /* Setup parameter interpolants:
    376     */
    377    setup->setup.variant->jit_function(v0, v1, v2,
    378                                       frontfacing,
    379                                       GET_A0(&tri->inputs),
    380                                       GET_DADX(&tri->inputs),
    381                                       GET_DADY(&tri->inputs));
    382 
    383    tri->inputs.frontfacing = frontfacing;
    384    tri->inputs.disable = FALSE;
    385    tri->inputs.opaque = setup->fs.current.variant->opaque;
    386    tri->inputs.layer = layer;
    387    tri->inputs.viewport_index = viewport_index;
    388 
    389    if (0)
    390       lp_dump_setup_coef(&setup->setup.variant->key,
    391                          (const float (*)[4])GET_A0(&tri->inputs),
    392                          (const float (*)[4])GET_DADX(&tri->inputs),
    393                          (const float (*)[4])GET_DADY(&tri->inputs));
    394 
    395    plane = GET_PLANES(tri);
    396 
    397 #if defined(PIPE_ARCH_SSE)
    398    if (1) {
    399       __m128i vertx, verty;
    400       __m128i shufx, shufy;
    401       __m128i dcdx, dcdy;
    402       __m128i cdx02, cdx13, cdy02, cdy13, c02, c13;
    403       __m128i c01, c23, unused;
    404       __m128i dcdx_neg_mask;
    405       __m128i dcdy_neg_mask;
    406       __m128i dcdx_zero_mask;
    407       __m128i top_left_flag, c_dec;
    408       __m128i eo, p0, p1, p2;
    409       __m128i zero = _mm_setzero_si128();
    410 
    411       vertx = _mm_load_si128((__m128i *)position->x); /* vertex x coords */
    412       verty = _mm_load_si128((__m128i *)position->y); /* vertex y coords */
    413 
    414       shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
    415       shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
    416 
    417       dcdx = _mm_sub_epi32(verty, shufy);
    418       dcdy = _mm_sub_epi32(vertx, shufx);
    419 
    420       dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
    421       dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
    422       dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
    423 
    424       top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0);
    425 
    426       c_dec = _mm_or_si128(dcdx_neg_mask,
    427                            _mm_and_si128(dcdx_zero_mask,
    428                                          _mm_xor_si128(dcdy_neg_mask,
    429                                                        top_left_flag)));
    430 
    431       /*
    432        * 64 bit arithmetic.
    433        * Note we need _signed_ mul (_mm_mul_epi32) which we emulate.
    434        */
    435       cdx02 = mm_mullohi_epi32(dcdx, vertx, &cdx13);
    436       cdy02 = mm_mullohi_epi32(dcdy, verty, &cdy13);
    437       c02 = _mm_sub_epi64(cdx02, cdy02);
    438       c13 = _mm_sub_epi64(cdx13, cdy13);
    439       c02 = _mm_sub_epi64(c02, _mm_shuffle_epi32(c_dec,
    440                                                  _MM_SHUFFLE(2,2,0,0)));
    441       c13 = _mm_sub_epi64(c13, _mm_shuffle_epi32(c_dec,
    442                                                  _MM_SHUFFLE(3,3,1,1)));
    443 
    444       /*
    445        * Useful for very small fbs/tris (or fewer subpixel bits) only:
    446        * c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
    447        *                   mm_mullo_epi32(dcdy, verty));
    448        *
    449        * c = _mm_sub_epi32(c, c_dec);
    450        */
    451 
    452       /* Scale up to match c:
    453        */
    454       dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
    455       dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
    456 
    457       /*
    458        * Calculate trivial reject values:
    459        * Note eo cannot overflow even if dcdx/dcdy would already have
    460        * 31 bits (which they shouldn't have). This is because eo
    461        * is never negative (albeit if we rely on that need to be careful...)
    462        */
    463       eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
    464                          _mm_and_si128(dcdx_neg_mask, dcdx));
    465 
    466       /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
    467 
    468       /*
    469        * Pointless transpose which gets undone immediately in
    470        * rasterization.
    471        * It is actually difficult to do away with it - would essentially
    472        * need GET_PLANES_DX, GET_PLANES_DY etc., but the calculations
    473        * for this then would need to depend on the number of planes.
    474        * The transpose is quite special here due to c being 64bit...
    475        * The store has to be unaligned (unless we'd make the plane size
    476        * a multiple of 128), and of course storing eo separately...
    477        */
    478       c01 = _mm_unpacklo_epi64(c02, c13);
    479       c23 = _mm_unpackhi_epi64(c02, c13);
    480       transpose2_64_2_32(&c01, &c23, &dcdx, &dcdy,
    481                          &p0, &p1, &p2, &unused);
    482       _mm_storeu_si128((__m128i *)&plane[0], p0);
    483       plane[0].eo = (uint32_t)_mm_cvtsi128_si32(eo);
    484       _mm_storeu_si128((__m128i *)&plane[1], p1);
    485       eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(3,2,0,1));
    486       plane[1].eo = (uint32_t)_mm_cvtsi128_si32(eo);
    487       _mm_storeu_si128((__m128i *)&plane[2], p2);
    488       eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(0,0,0,2));
    489       plane[2].eo = (uint32_t)_mm_cvtsi128_si32(eo);
    490    } else
    491 #elif defined(_ARCH_PWR8) && defined(PIPE_ARCH_LITTLE_ENDIAN)
    492    /*
    493     * XXX this code is effectively disabled for all practical purposes,
    494     * as the allowed fb size is tiny if FIXED_ORDER is 8.
    495     */
    496    if (setup->fb.width <= MAX_FIXED_LENGTH32 &&
    497        setup->fb.height <= MAX_FIXED_LENGTH32 &&
    498        (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 &&
    499        (bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32) {
    500       unsigned int bottom_edge;
    501       __m128i vertx, verty;
    502       __m128i shufx, shufy;
    503       __m128i dcdx, dcdy, c;
    504       __m128i unused;
    505       __m128i dcdx_neg_mask;
    506       __m128i dcdy_neg_mask;
    507       __m128i dcdx_zero_mask;
    508       __m128i top_left_flag;
    509       __m128i c_inc_mask, c_inc;
    510       __m128i eo, p0, p1, p2;
    511       __m128i_union vshuf_mask;
    512       __m128i zero = vec_splats((unsigned char) 0);
    513       PIPE_ALIGN_VAR(16) int32_t temp_vec[4];
    514 
    515 #ifdef PIPE_ARCH_LITTLE_ENDIAN
    516       vshuf_mask.i[0] = 0x07060504;
    517       vshuf_mask.i[1] = 0x0B0A0908;
    518       vshuf_mask.i[2] = 0x03020100;
    519       vshuf_mask.i[3] = 0x0F0E0D0C;
    520 #else
    521       vshuf_mask.i[0] = 0x00010203;
    522       vshuf_mask.i[1] = 0x0C0D0E0F;
    523       vshuf_mask.i[2] = 0x04050607;
    524       vshuf_mask.i[3] = 0x08090A0B;
    525 #endif
    526 
    527       /* vertex x coords */
    528       vertx = vec_load_si128((const uint32_t *) position->x);
    529       /* vertex y coords */
    530       verty = vec_load_si128((const uint32_t *) position->y);
    531 
    532       shufx = vec_perm (vertx, vertx, vshuf_mask.m128i);
    533       shufy = vec_perm (verty, verty, vshuf_mask.m128i);
    534 
    535       dcdx = vec_sub_epi32(verty, shufy);
    536       dcdy = vec_sub_epi32(vertx, shufx);
    537 
    538       dcdx_neg_mask = vec_srai_epi32(dcdx, 31);
    539       dcdx_zero_mask = vec_cmpeq_epi32(dcdx, zero);
    540       dcdy_neg_mask = vec_srai_epi32(dcdy, 31);
    541 
    542       bottom_edge = (setup->bottom_edge_rule == 0) ? ~0 : 0;
    543       top_left_flag = (__m128i) vec_splats(bottom_edge);
    544 
    545       c_inc_mask = vec_or(dcdx_neg_mask,
    546                                 vec_and(dcdx_zero_mask,
    547                                               vec_xor(dcdy_neg_mask,
    548                                                             top_left_flag)));
    549 
    550       c_inc = vec_srli_epi32(c_inc_mask, 31);
    551 
    552       c = vec_sub_epi32(vec_mullo_epi32(dcdx, vertx),
    553                         vec_mullo_epi32(dcdy, verty));
    554 
    555       c = vec_add_epi32(c, c_inc);
    556 
    557       /* Scale up to match c:
    558        */
    559       dcdx = vec_slli_epi32(dcdx, FIXED_ORDER);
    560       dcdy = vec_slli_epi32(dcdy, FIXED_ORDER);
    561 
    562       /* Calculate trivial reject values:
    563        */
    564       eo = vec_sub_epi32(vec_andnot_si128(dcdy_neg_mask, dcdy),
    565                          vec_and(dcdx_neg_mask, dcdx));
    566 
    567       /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
    568 
    569       /* Pointless transpose which gets undone immediately in
    570        * rasterization:
    571        */
    572       transpose4_epi32(&c, &dcdx, &dcdy, &eo,
    573                        &p0, &p1, &p2, &unused);
    574 
    575 #define STORE_PLANE(plane, vec) do {                  \
    576          vec_store_si128((uint32_t *)&temp_vec, vec); \
    577          plane.c    = (int64_t)temp_vec[0];           \
    578          plane.dcdx = temp_vec[1];                    \
    579          plane.dcdy = temp_vec[2];                    \
    580          plane.eo   = temp_vec[3];                    \
    581       } while(0)
    582 
    583       STORE_PLANE(plane[0], p0);
    584       STORE_PLANE(plane[1], p1);
    585       STORE_PLANE(plane[2], p2);
    586 #undef STORE_PLANE
    587    } else
    588 #endif
    589    {
    590       int i;
    591       plane[0].dcdy = position->dx01;
    592       plane[1].dcdy = position->x[1] - position->x[2];
    593       plane[2].dcdy = position->dx20;
    594       plane[0].dcdx = position->dy01;
    595       plane[1].dcdx = position->y[1] - position->y[2];
    596       plane[2].dcdx = position->dy20;
    597 
    598       for (i = 0; i < 3; i++) {
    599          /* half-edge constants, will be iterated over the whole render
    600           * target.
    601           */
    602          plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) -
    603                       IMUL64(plane[i].dcdy, position->y[i]);
    604 
    605          /* correct for top-left vs. bottom-left fill convention.
    606           */
    607          if (plane[i].dcdx < 0) {
    608             /* both fill conventions want this - adjust for left edges */
    609             plane[i].c++;
    610          }
    611          else if (plane[i].dcdx == 0) {
    612             if (setup->bottom_edge_rule == 0){
    613                /* correct for top-left fill convention:
    614                 */
    615                if (plane[i].dcdy > 0) plane[i].c++;
    616             }
    617             else {
    618                /* correct for bottom-left fill convention:
    619                 */
    620                if (plane[i].dcdy < 0) plane[i].c++;
    621             }
    622          }
    623 
    624          /* Scale up to match c:
    625           */
    626          assert((plane[i].dcdx << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdx);
    627          assert((plane[i].dcdy << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdy);
    628          plane[i].dcdx <<= FIXED_ORDER;
    629          plane[i].dcdy <<= FIXED_ORDER;
    630 
    631          /* find trivial reject offsets for each edge for a single-pixel
    632           * sized block.  These will be scaled up at each recursive level to
    633           * match the active blocksize.  Scaling in this way works best if
    634           * the blocks are square.
    635           */
    636          plane[i].eo = 0;
    637          if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
    638          if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
    639       }
    640    }
    641 
    642    if (0) {
    643       debug_printf("p0: %"PRIx64"/%08x/%08x/%08x\n",
    644                    plane[0].c,
    645                    plane[0].dcdx,
    646                    plane[0].dcdy,
    647                    plane[0].eo);
    648 
    649       debug_printf("p1: %"PRIx64"/%08x/%08x/%08x\n",
    650                    plane[1].c,
    651                    plane[1].dcdx,
    652                    plane[1].dcdy,
    653                    plane[1].eo);
    654 
    655       debug_printf("p2: %"PRIx64"/%08x/%08x/%08x\n",
    656                    plane[2].c,
    657                    plane[2].dcdx,
    658                    plane[2].dcdy,
    659                    plane[2].eo);
    660    }
    661 
    662 
    663    /*
    664     * When rasterizing scissored tris, use the intersection of the
    665     * triangle bounding box and the scissor rect to generate the
    666     * scissor planes.
    667     *
    668     * This permits us to cut off the triangle "tails" that are present
    669     * in the intermediate recursive levels caused when two of the
    670     * triangles edges don't diverge quickly enough to trivially reject
    671     * exterior blocks from the triangle.
    672     *
    673     * It's not really clear if it's worth worrying about these tails,
    674     * but since we generate the planes for each scissored tri, it's
    675     * free to trim them in this case.
    676     *
    677     * Note that otherwise, the scissor planes only vary in 'C' value,
    678     * and even then only on state-changes.  Could alternatively store
    679     * these planes elsewhere.
    680     * (Or only store the c value together with a bit indicating which
    681     * scissor edge this is, so rasterization would treat them differently
    682     * (easier to evaluate) to ordinary planes.)
    683     */
    684    if (nr_planes > 3) {
    685       /* why not just use draw_regions */
    686       const struct u_rect *scissor = &setup->scissors[viewport_index];
    687       struct lp_rast_plane *plane_s = &plane[3];
    688       boolean s_planes[4];
    689       scissor_planes_needed(s_planes, &bbox, scissor);
    690 
    691       if (s_planes[0]) {
    692          plane_s->dcdx = -1 << 8;
    693          plane_s->dcdy = 0;
    694          plane_s->c = (1-scissor->x0) << 8;
    695          plane_s->eo = 1 << 8;
    696          plane_s++;
    697       }
    698       if (s_planes[1]) {
    699          plane_s->dcdx = 1 << 8;
    700          plane_s->dcdy = 0;
    701          plane_s->c = (scissor->x1+1) << 8;
    702          plane_s->eo = 0 << 8;
    703          plane_s++;
    704       }
    705       if (s_planes[2]) {
    706          plane_s->dcdx = 0;
    707          plane_s->dcdy = 1 << 8;
    708          plane_s->c = (1-scissor->y0) << 8;
    709          plane_s->eo = 1 << 8;
    710          plane_s++;
    711       }
    712       if (s_planes[3]) {
    713          plane_s->dcdx = 0;
    714          plane_s->dcdy = -1 << 8;
    715          plane_s->c = (scissor->y1+1) << 8;
    716          plane_s->eo = 0;
    717          plane_s++;
    718       }
    719       assert(plane_s == &plane[nr_planes]);
    720    }
    721 
    722    return lp_setup_bin_triangle(setup, tri, &bbox, nr_planes, viewport_index);
    723 }
    724 
    725 /*
    726  * Round to nearest less or equal power of two of the input.
    727  *
    728  * Undefined if no bit set exists, so code should check against 0 first.
    729  */
    730 static inline uint32_t
    731 floor_pot(uint32_t n)
    732 {
    733 #if defined(PIPE_CC_GCC) && (defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64))
    734    if (n == 0)
    735       return 0;
    736 
    737    __asm__("bsr %1,%0"
    738           : "=r" (n)
    739           : "rm" (n));
    740    return 1 << n;
    741 #else
    742    n |= (n >>  1);
    743    n |= (n >>  2);
    744    n |= (n >>  4);
    745    n |= (n >>  8);
    746    n |= (n >> 16);
    747    return n - (n >> 1);
    748 #endif
    749 }
    750 
    751 
    752 boolean
    753 lp_setup_bin_triangle( struct lp_setup_context *setup,
    754                        struct lp_rast_triangle *tri,
    755                        const struct u_rect *bbox,
    756                        int nr_planes,
    757                        unsigned viewport_index )
    758 {
    759    struct lp_scene *scene = setup->scene;
    760    struct u_rect trimmed_box = *bbox;
    761    int i;
    762    /* What is the largest power-of-two boundary this triangle crosses:
    763     */
    764    int dx = floor_pot((bbox->x0 ^ bbox->x1) |
    765 		      (bbox->y0 ^ bbox->y1));
    766 
    767    /* The largest dimension of the rasterized area of the triangle
    768     * (aligned to a 4x4 grid), rounded down to the nearest power of two:
    769     */
    770    int max_sz = ((bbox->x1 - (bbox->x0 & ~3)) |
    771                  (bbox->y1 - (bbox->y0 & ~3)));
    772    int sz = floor_pot(max_sz);
    773    boolean use_32bits = max_sz <= MAX_FIXED_LENGTH32;
    774 
    775    /* Now apply scissor, etc to the bounding box.  Could do this
    776     * earlier, but it confuses the logic for tri-16 and would force
    777     * the rasterizer to also respect scissor, etc, just for the rare
    778     * cases where a small triangle extends beyond the scissor.
    779     */
    780    u_rect_find_intersection(&setup->draw_regions[viewport_index],
    781                             &trimmed_box);
    782 
    783    /* Determine which tile(s) intersect the triangle's bounding box
    784     */
    785    if (dx < TILE_SIZE)
    786    {
    787       int ix0 = bbox->x0 / TILE_SIZE;
    788       int iy0 = bbox->y0 / TILE_SIZE;
    789       unsigned px = bbox->x0 & 63 & ~3;
    790       unsigned py = bbox->y0 & 63 & ~3;
    791 
    792       assert(iy0 == bbox->y1 / TILE_SIZE &&
    793 	     ix0 == bbox->x1 / TILE_SIZE);
    794 
    795       if (nr_planes == 3) {
    796          if (sz < 4)
    797          {
    798             /* Triangle is contained in a single 4x4 stamp:
    799              */
    800             assert(px + 4 <= TILE_SIZE);
    801             assert(py + 4 <= TILE_SIZE);
    802             return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
    803                                                 setup->fs.stored,
    804                                                 use_32bits ?
    805                                                 LP_RAST_OP_TRIANGLE_32_3_4 :
    806                                                 LP_RAST_OP_TRIANGLE_3_4,
    807                                                 lp_rast_arg_triangle_contained(tri, px, py) );
    808          }
    809 
    810          if (sz < 16)
    811          {
    812             /* Triangle is contained in a single 16x16 block:
    813              */
    814 
    815             /*
    816              * The 16x16 block is only 4x4 aligned, and can exceed the tile
    817              * dimensions if the triangle is 16 pixels in one dimension but 4
    818              * in the other. So budge the 16x16 back inside the tile.
    819              */
    820             px = MIN2(px, TILE_SIZE - 16);
    821             py = MIN2(py, TILE_SIZE - 16);
    822 
    823             assert(px + 16 <= TILE_SIZE);
    824             assert(py + 16 <= TILE_SIZE);
    825 
    826             return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
    827                                                 setup->fs.stored,
    828                                                 use_32bits ?
    829                                                 LP_RAST_OP_TRIANGLE_32_3_16 :
    830                                                 LP_RAST_OP_TRIANGLE_3_16,
    831                                                 lp_rast_arg_triangle_contained(tri, px, py) );
    832          }
    833       }
    834       else if (nr_planes == 4 && sz < 16)
    835       {
    836          px = MIN2(px, TILE_SIZE - 16);
    837          py = MIN2(py, TILE_SIZE - 16);
    838 
    839          assert(px + 16 <= TILE_SIZE);
    840          assert(py + 16 <= TILE_SIZE);
    841 
    842          return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
    843                                             setup->fs.stored,
    844                                             use_32bits ?
    845                                             LP_RAST_OP_TRIANGLE_32_4_16 :
    846                                             LP_RAST_OP_TRIANGLE_4_16,
    847                                             lp_rast_arg_triangle_contained(tri, px, py));
    848       }
    849 
    850 
    851       /* Triangle is contained in a single tile:
    852        */
    853       return lp_scene_bin_cmd_with_state(
    854          scene, ix0, iy0, setup->fs.stored,
    855          use_32bits ? lp_rast_32_tri_tab[nr_planes] : lp_rast_tri_tab[nr_planes],
    856          lp_rast_arg_triangle(tri, (1<<nr_planes)-1));
    857    }
    858    else
    859    {
    860       struct lp_rast_plane *plane = GET_PLANES(tri);
    861       int64_t c[MAX_PLANES];
    862       int64_t ei[MAX_PLANES];
    863 
    864       int64_t eo[MAX_PLANES];
    865       int64_t xstep[MAX_PLANES];
    866       int64_t ystep[MAX_PLANES];
    867       int x, y;
    868 
    869       int ix0 = trimmed_box.x0 / TILE_SIZE;
    870       int iy0 = trimmed_box.y0 / TILE_SIZE;
    871       int ix1 = trimmed_box.x1 / TILE_SIZE;
    872       int iy1 = trimmed_box.y1 / TILE_SIZE;
    873 
    874       for (i = 0; i < nr_planes; i++) {
    875          c[i] = (plane[i].c +
    876                  IMUL64(plane[i].dcdy, iy0) * TILE_SIZE -
    877                  IMUL64(plane[i].dcdx, ix0) * TILE_SIZE);
    878 
    879          ei[i] = (plane[i].dcdy -
    880                   plane[i].dcdx -
    881                   (int64_t)plane[i].eo) << TILE_ORDER;
    882 
    883          eo[i] = (int64_t)plane[i].eo << TILE_ORDER;
    884          xstep[i] = -(((int64_t)plane[i].dcdx) << TILE_ORDER);
    885          ystep[i] = ((int64_t)plane[i].dcdy) << TILE_ORDER;
    886       }
    887 
    888 
    889 
    890       /* Test tile-sized blocks against the triangle.
    891        * Discard blocks fully outside the tri.  If the block is fully
    892        * contained inside the tri, bin an lp_rast_shade_tile command.
    893        * Else, bin a lp_rast_triangle command.
    894        */
    895       for (y = iy0; y <= iy1; y++)
    896       {
    897          boolean in = FALSE;  /* are we inside the triangle? */
    898          int64_t cx[MAX_PLANES];
    899 
    900          for (i = 0; i < nr_planes; i++)
    901             cx[i] = c[i];
    902 
    903          for (x = ix0; x <= ix1; x++)
    904          {
    905             int out = 0;
    906             int partial = 0;
    907 
    908             for (i = 0; i < nr_planes; i++) {
    909                int64_t planeout = cx[i] + eo[i];
    910                int64_t planepartial = cx[i] + ei[i] - 1;
    911                out |= (int) (planeout >> 63);
    912                partial |= ((int) (planepartial >> 63)) & (1<<i);
    913             }
    914 
    915             if (out) {
    916                /* do nothing */
    917                if (in)
    918                   break;  /* exiting triangle, all done with this row */
    919                LP_COUNT(nr_empty_64);
    920             }
    921             else if (partial) {
    922                /* Not trivially accepted by at least one plane -
    923                 * rasterize/shade partial tile
    924                 */
    925                int count = util_bitcount(partial);
    926                in = TRUE;
    927 
    928                if (!lp_scene_bin_cmd_with_state( scene, x, y,
    929                                                  setup->fs.stored,
    930                                                  use_32bits ?
    931                                                  lp_rast_32_tri_tab[count] :
    932                                                  lp_rast_tri_tab[count],
    933                                                  lp_rast_arg_triangle(tri, partial) ))
    934                   goto fail;
    935 
    936                LP_COUNT(nr_partially_covered_64);
    937             }
    938             else {
    939                /* triangle covers the whole tile- shade whole tile */
    940                LP_COUNT(nr_fully_covered_64);
    941                in = TRUE;
    942                if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
    943                   goto fail;
    944             }
    945 
    946             /* Iterate cx values across the region: */
    947             for (i = 0; i < nr_planes; i++)
    948                cx[i] += xstep[i];
    949          }
    950 
    951          /* Iterate c values down the region: */
    952          for (i = 0; i < nr_planes; i++)
    953             c[i] += ystep[i];
    954       }
    955    }
    956 
    957    return TRUE;
    958 
    959 fail:
    960    /* Need to disable any partially binned triangle.  This is easier
    961     * than trying to locate all the triangle, shade-tile, etc,
    962     * commands which may have been binned.
    963     */
    964    tri->inputs.disable = TRUE;
    965    return FALSE;
    966 }
    967 
    968 
    969 /**
    970  * Try to draw the triangle, restart the scene on failure.
    971  */
    972 static void retry_triangle_ccw( struct lp_setup_context *setup,
    973                                 struct fixed_position* position,
    974                                 const float (*v0)[4],
    975                                 const float (*v1)[4],
    976                                 const float (*v2)[4],
    977                                 boolean front)
    978 {
    979    if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
    980    {
    981       if (!lp_setup_flush_and_restart(setup))
    982          return;
    983 
    984       if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
    985          return;
    986    }
    987 }
    988 
    989 /**
    990  * Calculate fixed position data for a triangle
    991  * It is unfortunate we need to do that here (as we need area
    992  * calculated in fixed point), as there's quite some code duplication
    993  * to what is done in the jit setup prog.
    994  */
    995 static inline void
    996 calc_fixed_position(struct lp_setup_context *setup,
    997                     struct fixed_position* position,
    998                     const float (*v0)[4],
    999                     const float (*v1)[4],
   1000                     const float (*v2)[4])
   1001 {
   1002    /*
   1003     * The rounding may not be quite the same with PIPE_ARCH_SSE
   1004     * (util_iround right now only does nearest/even on x87,
   1005     * otherwise nearest/away-from-zero).
   1006     * Both should be acceptable, I think.
   1007     */
   1008 #if defined(PIPE_ARCH_SSE)
   1009    __m128 v0r, v1r;
   1010    __m128 vxy0xy2, vxy1xy0;
   1011    __m128i vxy0xy2i, vxy1xy0i;
   1012    __m128i dxdy0120, x0x2y0y2, x1x0y1y0, x0120, y0120;
   1013    __m128 pix_offset = _mm_set1_ps(setup->pixel_offset);
   1014    __m128 fixed_one = _mm_set1_ps((float)FIXED_ONE);
   1015    v0r = _mm_castpd_ps(_mm_load_sd((double *)v0[0]));
   1016    vxy0xy2 = _mm_loadh_pi(v0r, (__m64 *)v2[0]);
   1017    v1r = _mm_castpd_ps(_mm_load_sd((double *)v1[0]));
   1018    vxy1xy0 = _mm_movelh_ps(v1r, vxy0xy2);
   1019    vxy0xy2 = _mm_sub_ps(vxy0xy2, pix_offset);
   1020    vxy1xy0 = _mm_sub_ps(vxy1xy0, pix_offset);
   1021    vxy0xy2 = _mm_mul_ps(vxy0xy2, fixed_one);
   1022    vxy1xy0 = _mm_mul_ps(vxy1xy0, fixed_one);
   1023    vxy0xy2i = _mm_cvtps_epi32(vxy0xy2);
   1024    vxy1xy0i = _mm_cvtps_epi32(vxy1xy0);
   1025    dxdy0120 = _mm_sub_epi32(vxy0xy2i, vxy1xy0i);
   1026    _mm_store_si128((__m128i *)&position->dx01, dxdy0120);
   1027    /*
   1028     * For the mul, would need some more shuffles, plus emulation
   1029     * for the signed mul (without sse41), so don't bother.
   1030     */
   1031    x0x2y0y2 = _mm_shuffle_epi32(vxy0xy2i, _MM_SHUFFLE(3,1,2,0));
   1032    x1x0y1y0 = _mm_shuffle_epi32(vxy1xy0i, _MM_SHUFFLE(3,1,2,0));
   1033    x0120 = _mm_unpacklo_epi32(x0x2y0y2, x1x0y1y0);
   1034    y0120 = _mm_unpackhi_epi32(x0x2y0y2, x1x0y1y0);
   1035    _mm_store_si128((__m128i *)&position->x[0], x0120);
   1036    _mm_store_si128((__m128i *)&position->y[0], y0120);
   1037 
   1038 #else
   1039    position->x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
   1040    position->x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
   1041    position->x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
   1042    position->x[3] = 0; // should be unused
   1043 
   1044    position->y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
   1045    position->y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
   1046    position->y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
   1047    position->y[3] = 0; // should be unused
   1048 
   1049    position->dx01 = position->x[0] - position->x[1];
   1050    position->dy01 = position->y[0] - position->y[1];
   1051 
   1052    position->dx20 = position->x[2] - position->x[0];
   1053    position->dy20 = position->y[2] - position->y[0];
   1054 #endif
   1055 
   1056    position->area = IMUL64(position->dx01, position->dy20) -
   1057          IMUL64(position->dx20, position->dy01);
   1058 }
   1059 
   1060 
   1061 /**
   1062  * Rotate a triangle, flipping its clockwise direction,
   1063  * Swaps values for xy[0] and xy[1]
   1064  */
   1065 static inline void
   1066 rotate_fixed_position_01( struct fixed_position* position )
   1067 {
   1068    int x, y;
   1069 
   1070    x = position->x[1];
   1071    y = position->y[1];
   1072    position->x[1] = position->x[0];
   1073    position->y[1] = position->y[0];
   1074    position->x[0] = x;
   1075    position->y[0] = y;
   1076 
   1077    position->dx01 = -position->dx01;
   1078    position->dy01 = -position->dy01;
   1079    position->dx20 = position->x[2] - position->x[0];
   1080    position->dy20 = position->y[2] - position->y[0];
   1081 
   1082    position->area = -position->area;
   1083 }
   1084 
   1085 
   1086 /**
   1087  * Rotate a triangle, flipping its clockwise direction,
   1088  * Swaps values for xy[1] and xy[2]
   1089  */
   1090 static inline void
   1091 rotate_fixed_position_12( struct fixed_position* position )
   1092 {
   1093    int x, y;
   1094 
   1095    x = position->x[2];
   1096    y = position->y[2];
   1097    position->x[2] = position->x[1];
   1098    position->y[2] = position->y[1];
   1099    position->x[1] = x;
   1100    position->y[1] = y;
   1101 
   1102    x = position->dx01;
   1103    y = position->dy01;
   1104    position->dx01 = -position->dx20;
   1105    position->dy01 = -position->dy20;
   1106    position->dx20 = -x;
   1107    position->dy20 = -y;
   1108 
   1109    position->area = -position->area;
   1110 }
   1111 
   1112 
   1113 /**
   1114  * Draw triangle if it's CW, cull otherwise.
   1115  */
   1116 static void triangle_cw(struct lp_setup_context *setup,
   1117                         const float (*v0)[4],
   1118                         const float (*v1)[4],
   1119                         const float (*v2)[4])
   1120 {
   1121    PIPE_ALIGN_VAR(16) struct fixed_position position;
   1122 
   1123    calc_fixed_position(setup, &position, v0, v1, v2);
   1124 
   1125    if (position.area < 0) {
   1126       if (setup->flatshade_first) {
   1127          rotate_fixed_position_12(&position);
   1128          retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
   1129       } else {
   1130          rotate_fixed_position_01(&position);
   1131          retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
   1132       }
   1133    }
   1134 }
   1135 
   1136 
   1137 static void triangle_ccw(struct lp_setup_context *setup,
   1138                          const float (*v0)[4],
   1139                          const float (*v1)[4],
   1140                          const float (*v2)[4])
   1141 {
   1142    PIPE_ALIGN_VAR(16) struct fixed_position position;
   1143 
   1144    calc_fixed_position(setup, &position, v0, v1, v2);
   1145 
   1146    if (position.area > 0)
   1147       retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
   1148 }
   1149 
   1150 /**
   1151  * Draw triangle whether it's CW or CCW.
   1152  */
   1153 static void triangle_both(struct lp_setup_context *setup,
   1154                           const float (*v0)[4],
   1155                           const float (*v1)[4],
   1156                           const float (*v2)[4])
   1157 {
   1158    PIPE_ALIGN_VAR(16) struct fixed_position position;
   1159    struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
   1160 
   1161    if (lp_context->active_statistics_queries &&
   1162        !llvmpipe_rasterization_disabled(lp_context)) {
   1163       lp_context->pipeline_statistics.c_primitives++;
   1164    }
   1165 
   1166    calc_fixed_position(setup, &position, v0, v1, v2);
   1167 
   1168    if (0) {
   1169       assert(!util_is_inf_or_nan(v0[0][0]));
   1170       assert(!util_is_inf_or_nan(v0[0][1]));
   1171       assert(!util_is_inf_or_nan(v1[0][0]));
   1172       assert(!util_is_inf_or_nan(v1[0][1]));
   1173       assert(!util_is_inf_or_nan(v2[0][0]));
   1174       assert(!util_is_inf_or_nan(v2[0][1]));
   1175    }
   1176 
   1177    if (position.area > 0)
   1178       retry_triangle_ccw( setup, &position, v0, v1, v2, setup->ccw_is_frontface );
   1179    else if (position.area < 0) {
   1180       if (setup->flatshade_first) {
   1181          rotate_fixed_position_12( &position );
   1182          retry_triangle_ccw( setup, &position, v0, v2, v1, !setup->ccw_is_frontface );
   1183       } else {
   1184          rotate_fixed_position_01( &position );
   1185          retry_triangle_ccw( setup, &position, v1, v0, v2, !setup->ccw_is_frontface );
   1186       }
   1187    }
   1188 }
   1189 
   1190 
   1191 static void triangle_nop( struct lp_setup_context *setup,
   1192 			  const float (*v0)[4],
   1193 			  const float (*v1)[4],
   1194 			  const float (*v2)[4] )
   1195 {
   1196 }
   1197 
   1198 
   1199 void
   1200 lp_setup_choose_triangle( struct lp_setup_context *setup )
   1201 {
   1202    switch (setup->cullmode) {
   1203    case PIPE_FACE_NONE:
   1204       setup->triangle = triangle_both;
   1205       break;
   1206    case PIPE_FACE_BACK:
   1207       setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
   1208       break;
   1209    case PIPE_FACE_FRONT:
   1210       setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
   1211       break;
   1212    default:
   1213       setup->triangle = triangle_nop;
   1214       break;
   1215    }
   1216 }
   1217