Home | History | Annotate | Download | only in codeflinger
      1 /* libs/pixelflinger/codeflinger/GGLAssembler.cpp
      2 **
      3 ** Copyright 2006, The Android Open Source Project
      4 **
      5 ** Licensed under the Apache License, Version 2.0 (the "License");
      6 ** you may not use this file except in compliance with the License.
      7 ** You may obtain a copy of the License at
      8 **
      9 **     http://www.apache.org/licenses/LICENSE-2.0
     10 **
     11 ** Unless required by applicable law or agreed to in writing, software
     12 ** distributed under the License is distributed on an "AS IS" BASIS,
     13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14 ** See the License for the specific language governing permissions and
     15 ** limitations under the License.
     16 */
     17 
     18 #define LOG_TAG "GGLAssembler"
     19 
     20 #include <assert.h>
     21 #include <stdint.h>
     22 #include <stdio.h>
     23 #include <stdlib.h>
     24 #include <sys/types.h>
     25 
     26 #include <log/log.h>
     27 
     28 #include "GGLAssembler.h"
     29 
     30 namespace android {
     31 
     32 // ----------------------------------------------------------------------------
     33 
     34 GGLAssembler::GGLAssembler(ARMAssemblerInterface* target)
     35     : ARMAssemblerProxy(target),
     36       RegisterAllocator(ARMAssemblerProxy::getCodegenArch()), mOptLevel(7)
     37 {
     38 }
     39 
     40 GGLAssembler::~GGLAssembler()
     41 {
     42 }
     43 
     44 void GGLAssembler::prolog()
     45 {
     46     ARMAssemblerProxy::prolog();
     47 }
     48 
     49 void GGLAssembler::epilog(uint32_t touched)
     50 {
     51     ARMAssemblerProxy::epilog(touched);
     52 }
     53 
     54 void GGLAssembler::reset(int opt_level)
     55 {
     56     ARMAssemblerProxy::reset();
     57     RegisterAllocator::reset();
     58     mOptLevel = opt_level;
     59 }
     60 
     61 // ---------------------------------------------------------------------------
     62 
     63 int GGLAssembler::scanline(const needs_t& needs, context_t const* c)
     64 {
     65     int err = 0;
     66     int opt_level = mOptLevel;
     67     while (opt_level >= 0) {
     68         reset(opt_level);
     69         err = scanline_core(needs, c);
     70         if (err == 0)
     71             break;
     72         opt_level--;
     73     }
     74 
     75     // XXX: in theory, pcForLabel is not valid before generate()
     76     uint32_t* fragment_start_pc = pcForLabel("fragment_loop");
     77     uint32_t* fragment_end_pc = pcForLabel("epilog");
     78     const int per_fragment_ops = int(fragment_end_pc - fragment_start_pc);
     79 
     80     // build a name for our pipeline
     81     char name[64];
     82     sprintf(name,
     83             "scanline__%08X:%08X_%08X_%08X [%3d ipp]",
     84             needs.p, needs.n, needs.t[0], needs.t[1], per_fragment_ops);
     85 
     86     if (err) {
     87         ALOGE("Error while generating ""%s""\n", name);
     88         disassemble(name);
     89         return -1;
     90     }
     91 
     92     return generate(name);
     93 }
     94 
     95 int GGLAssembler::scanline_core(const needs_t& needs, context_t const* c)
     96 {
     97     int64_t duration = ggl_system_time();
     98 
     99     mBlendFactorCached = 0;
    100     mBlending = 0;
    101     mMasking = 0;
    102     mAA        = GGL_READ_NEEDS(P_AA, needs.p);
    103     mDithering = GGL_READ_NEEDS(P_DITHER, needs.p);
    104     mAlphaTest = GGL_READ_NEEDS(P_ALPHA_TEST, needs.p) + GGL_NEVER;
    105     mDepthTest = GGL_READ_NEEDS(P_DEPTH_TEST, needs.p) + GGL_NEVER;
    106     mFog       = GGL_READ_NEEDS(P_FOG, needs.p) != 0;
    107     mSmooth    = GGL_READ_NEEDS(SHADE, needs.n) != 0;
    108     mBuilderContext.needs = needs;
    109     mBuilderContext.c = c;
    110     mBuilderContext.Rctx = reserveReg(R0); // context always in R0
    111     mCbFormat = c->formats[ GGL_READ_NEEDS(CB_FORMAT, needs.n) ];
    112 
    113     // ------------------------------------------------------------------------
    114 
    115     decodeLogicOpNeeds(needs);
    116 
    117     decodeTMUNeeds(needs, c);
    118 
    119     mBlendSrc  = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_SRC, needs.n));
    120     mBlendDst  = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_DST, needs.n));
    121     mBlendSrcA = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_SRCA, needs.n));
    122     mBlendDstA = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_DSTA, needs.n));
    123 
    124     if (!mCbFormat.c[GGLFormat::ALPHA].h) {
    125         if ((mBlendSrc == GGL_ONE_MINUS_DST_ALPHA) ||
    126             (mBlendSrc == GGL_DST_ALPHA)) {
    127             mBlendSrc = GGL_ONE;
    128         }
    129         if ((mBlendSrcA == GGL_ONE_MINUS_DST_ALPHA) ||
    130             (mBlendSrcA == GGL_DST_ALPHA)) {
    131             mBlendSrcA = GGL_ONE;
    132         }
    133         if ((mBlendDst == GGL_ONE_MINUS_DST_ALPHA) ||
    134             (mBlendDst == GGL_DST_ALPHA)) {
    135             mBlendDst = GGL_ONE;
    136         }
    137         if ((mBlendDstA == GGL_ONE_MINUS_DST_ALPHA) ||
    138             (mBlendDstA == GGL_DST_ALPHA)) {
    139             mBlendDstA = GGL_ONE;
    140         }
    141     }
    142 
    143     // if we need the framebuffer, read it now
    144     const int blending =    blending_codes(mBlendSrc, mBlendDst) |
    145                             blending_codes(mBlendSrcA, mBlendDstA);
    146 
    147     // XXX: handle special cases, destination not modified...
    148     if ((mBlendSrc==GGL_ZERO) && (mBlendSrcA==GGL_ZERO) &&
    149         (mBlendDst==GGL_ONE) && (mBlendDstA==GGL_ONE)) {
    150         // Destination unmodified (beware of logic ops)
    151     } else if ((mBlendSrc==GGL_ZERO) && (mBlendSrcA==GGL_ZERO) &&
    152         (mBlendDst==GGL_ZERO) && (mBlendDstA==GGL_ZERO)) {
    153         // Destination is zero (beware of logic ops)
    154     }
    155 
    156     int fbComponents = 0;
    157     const int masking = GGL_READ_NEEDS(MASK_ARGB, needs.n);
    158     for (int i=0 ; i<4 ; i++) {
    159         const int mask = 1<<i;
    160         component_info_t& info = mInfo[i];
    161         int fs = i==GGLFormat::ALPHA ? mBlendSrcA : mBlendSrc;
    162         int fd = i==GGLFormat::ALPHA ? mBlendDstA : mBlendDst;
    163         if (fs==GGL_SRC_ALPHA_SATURATE && i==GGLFormat::ALPHA)
    164             fs = GGL_ONE;
    165         info.masked =   !!(masking & mask);
    166         info.inDest =   !info.masked && mCbFormat.c[i].h &&
    167                         ((mLogicOp & LOGIC_OP_SRC) || (!mLogicOp));
    168         if (mCbFormat.components >= GGL_LUMINANCE &&
    169                 (i==GGLFormat::GREEN || i==GGLFormat::BLUE)) {
    170             info.inDest = false;
    171         }
    172         info.needed =   (i==GGLFormat::ALPHA) &&
    173                         (isAlphaSourceNeeded() || mAlphaTest != GGL_ALWAYS);
    174         info.replaced = !!(mTextureMachine.replaced & mask);
    175         info.iterated = (!info.replaced && (info.inDest || info.needed));
    176         info.smooth =   mSmooth && info.iterated;
    177         info.fog =      mFog && info.inDest && (i != GGLFormat::ALPHA);
    178         info.blend =    (fs != int(GGL_ONE)) || (fd > int(GGL_ZERO));
    179 
    180         mBlending |= (info.blend ? mask : 0);
    181         mMasking |= (mCbFormat.c[i].h && info.masked) ? mask : 0;
    182         fbComponents |= mCbFormat.c[i].h ? mask : 0;
    183     }
    184 
    185     mAllMasked = (mMasking == fbComponents);
    186     if (mAllMasked) {
    187         mDithering = 0;
    188     }
    189 
    190     fragment_parts_t parts;
    191 
    192     // ------------------------------------------------------------------------
    193     prolog();
    194     // ------------------------------------------------------------------------
    195 
    196     build_scanline_prolog(parts, needs);
    197 
    198     if (registerFile().status())
    199         return registerFile().status();
    200 
    201     // ------------------------------------------------------------------------
    202     label("fragment_loop");
    203     // ------------------------------------------------------------------------
    204     {
    205         Scratch regs(registerFile());
    206 
    207         if (mDithering) {
    208             // update the dither index.
    209             MOV(AL, 0, parts.count.reg,
    210                     reg_imm(parts.count.reg, ROR, GGL_DITHER_ORDER_SHIFT));
    211             ADD(AL, 0, parts.count.reg, parts.count.reg,
    212                     imm( 1 << (32 - GGL_DITHER_ORDER_SHIFT)));
    213             MOV(AL, 0, parts.count.reg,
    214                     reg_imm(parts.count.reg, ROR, 32 - GGL_DITHER_ORDER_SHIFT));
    215         }
    216 
    217         // XXX: could we do an early alpha-test here in some cases?
    218         // It would probaly be used only with smooth-alpha and no texture
    219         // (or no alpha component in the texture).
    220 
    221         // Early z-test
    222         if (mAlphaTest==GGL_ALWAYS) {
    223             build_depth_test(parts, Z_TEST|Z_WRITE);
    224         } else {
    225             // we cannot do the z-write here, because
    226             // it might be killed by the alpha-test later
    227             build_depth_test(parts, Z_TEST);
    228         }
    229 
    230         { // texture coordinates
    231             Scratch scratches(registerFile());
    232 
    233             // texel generation
    234             build_textures(parts, regs);
    235             if (registerFile().status())
    236                 return registerFile().status();
    237         }
    238 
    239         if ((blending & (FACTOR_DST|BLEND_DST)) ||
    240                 (mMasking && !mAllMasked) ||
    241                 (mLogicOp & LOGIC_OP_DST))
    242         {
    243             // blending / logic_op / masking need the framebuffer
    244             mDstPixel.setTo(regs.obtain(), &mCbFormat);
    245 
    246             // load the framebuffer pixel
    247             comment("fetch color-buffer");
    248             load(parts.cbPtr, mDstPixel);
    249         }
    250 
    251         if (registerFile().status())
    252             return registerFile().status();
    253 
    254         pixel_t pixel;
    255         int directTex = mTextureMachine.directTexture;
    256         if (directTex | parts.packed) {
    257             // note: we can't have both here
    258             // iterated color or direct texture
    259             pixel = directTex ? parts.texel[directTex-1] : parts.iterated;
    260             pixel.flags &= ~CORRUPTIBLE;
    261         } else {
    262             if (mDithering) {
    263                 const int ctxtReg = mBuilderContext.Rctx;
    264                 const int mask = GGL_DITHER_SIZE-1;
    265                 parts.dither = reg_t(regs.obtain());
    266                 AND(AL, 0, parts.dither.reg, parts.count.reg, imm(mask));
    267                 ADDR_ADD(AL, 0, parts.dither.reg, ctxtReg, parts.dither.reg);
    268                 LDRB(AL, parts.dither.reg, parts.dither.reg,
    269                         immed12_pre(GGL_OFFSETOF(ditherMatrix)));
    270             }
    271 
    272             // allocate a register for the resulting pixel
    273             pixel.setTo(regs.obtain(), &mCbFormat, FIRST);
    274 
    275             build_component(pixel, parts, GGLFormat::ALPHA,    regs);
    276 
    277             if (mAlphaTest!=GGL_ALWAYS) {
    278                 // only handle the z-write part here. We know z-test
    279                 // was successful, as well as alpha-test.
    280                 build_depth_test(parts, Z_WRITE);
    281             }
    282 
    283             build_component(pixel, parts, GGLFormat::RED,      regs);
    284             build_component(pixel, parts, GGLFormat::GREEN,    regs);
    285             build_component(pixel, parts, GGLFormat::BLUE,     regs);
    286 
    287             pixel.flags |= CORRUPTIBLE;
    288         }
    289 
    290         if (registerFile().status())
    291             return registerFile().status();
    292 
    293         if (pixel.reg == -1) {
    294             // be defensive here. if we're here it's probably
    295             // that this whole fragment is a no-op.
    296             pixel = mDstPixel;
    297         }
    298 
    299         if (!mAllMasked) {
    300             // logic operation
    301             build_logic_op(pixel, regs);
    302 
    303             // masking
    304             build_masking(pixel, regs);
    305 
    306             comment("store");
    307             store(parts.cbPtr, pixel, WRITE_BACK);
    308         }
    309     }
    310 
    311     if (registerFile().status())
    312         return registerFile().status();
    313 
    314     // update the iterated color...
    315     if (parts.reload != 3) {
    316         build_smooth_shade(parts);
    317     }
    318 
    319     // update iterated z
    320     build_iterate_z(parts);
    321 
    322     // update iterated fog
    323     build_iterate_f(parts);
    324 
    325     SUB(AL, S, parts.count.reg, parts.count.reg, imm(1<<16));
    326     B(PL, "fragment_loop");
    327     label("epilog");
    328     epilog(registerFile().touched());
    329 
    330     if ((mAlphaTest!=GGL_ALWAYS) || (mDepthTest!=GGL_ALWAYS)) {
    331         if (mDepthTest!=GGL_ALWAYS) {
    332             label("discard_before_textures");
    333             build_iterate_texture_coordinates(parts);
    334         }
    335         label("discard_after_textures");
    336         build_smooth_shade(parts);
    337         build_iterate_z(parts);
    338         build_iterate_f(parts);
    339         if (!mAllMasked) {
    340             ADDR_ADD(AL, 0, parts.cbPtr.reg, parts.cbPtr.reg, imm(parts.cbPtr.size>>3));
    341         }
    342         SUB(AL, S, parts.count.reg, parts.count.reg, imm(1<<16));
    343         B(PL, "fragment_loop");
    344         epilog(registerFile().touched());
    345     }
    346 
    347     return registerFile().status();
    348 }
    349 
    350 // ---------------------------------------------------------------------------
    351 
    352 void GGLAssembler::build_scanline_prolog(
    353     fragment_parts_t& parts, const needs_t& needs)
    354 {
    355     Scratch scratches(registerFile());
    356     int Rctx = mBuilderContext.Rctx;
    357 
    358     // compute count
    359     comment("compute ct (# of pixels to process)");
    360     parts.count.setTo(obtainReg());
    361     int Rx = scratches.obtain();
    362     int Ry = scratches.obtain();
    363     CONTEXT_LOAD(Rx, iterators.xl);
    364     CONTEXT_LOAD(parts.count.reg, iterators.xr);
    365     CONTEXT_LOAD(Ry, iterators.y);
    366 
    367     // parts.count = iterators.xr - Rx
    368     SUB(AL, 0, parts.count.reg, parts.count.reg, Rx);
    369     SUB(AL, 0, parts.count.reg, parts.count.reg, imm(1));
    370 
    371     if (mDithering) {
    372         // parts.count.reg = 0xNNNNXXDD
    373         // NNNN = count-1
    374         // DD   = dither offset
    375         // XX   = 0xxxxxxx (x = garbage)
    376         Scratch scratches(registerFile());
    377         int tx = scratches.obtain();
    378         int ty = scratches.obtain();
    379         AND(AL, 0, tx, Rx, imm(GGL_DITHER_MASK));
    380         AND(AL, 0, ty, Ry, imm(GGL_DITHER_MASK));
    381         ADD(AL, 0, tx, tx, reg_imm(ty, LSL, GGL_DITHER_ORDER_SHIFT));
    382         ORR(AL, 0, parts.count.reg, tx, reg_imm(parts.count.reg, LSL, 16));
    383     } else {
    384         // parts.count.reg = 0xNNNN0000
    385         // NNNN = count-1
    386         MOV(AL, 0, parts.count.reg, reg_imm(parts.count.reg, LSL, 16));
    387     }
    388 
    389     if (!mAllMasked) {
    390         // compute dst ptr
    391         comment("compute color-buffer pointer");
    392         const int cb_bits = mCbFormat.size*8;
    393         int Rs = scratches.obtain();
    394         parts.cbPtr.setTo(obtainReg(), cb_bits);
    395         CONTEXT_LOAD(Rs, state.buffers.color.stride);
    396         CONTEXT_ADDR_LOAD(parts.cbPtr.reg, state.buffers.color.data);
    397         SMLABB(AL, Rs, Ry, Rs, Rx);  // Rs = Rx + Ry*Rs
    398         base_offset(parts.cbPtr, parts.cbPtr, Rs);
    399         scratches.recycle(Rs);
    400     }
    401 
    402     // init fog
    403     const int need_fog = GGL_READ_NEEDS(P_FOG, needs.p);
    404     if (need_fog) {
    405         comment("compute initial fog coordinate");
    406         Scratch scratches(registerFile());
    407         int dfdx = scratches.obtain();
    408         int ydfdy = scratches.obtain();
    409         int f = ydfdy;
    410         CONTEXT_LOAD(dfdx,  generated_vars.dfdx);
    411         CONTEXT_LOAD(ydfdy, iterators.ydfdy);
    412         MLA(AL, 0, f, Rx, dfdx, ydfdy);
    413         CONTEXT_STORE(f, generated_vars.f);
    414     }
    415 
    416     // init Z coordinate
    417     if ((mDepthTest != GGL_ALWAYS) || GGL_READ_NEEDS(P_MASK_Z, needs.p)) {
    418         parts.z = reg_t(obtainReg());
    419         comment("compute initial Z coordinate");
    420         Scratch scratches(registerFile());
    421         int dzdx = scratches.obtain();
    422         int ydzdy = parts.z.reg;
    423         CONTEXT_LOAD(dzdx,  generated_vars.dzdx);   // 1.31 fixed-point
    424         CONTEXT_LOAD(ydzdy, iterators.ydzdy);       // 1.31 fixed-point
    425         MLA(AL, 0, parts.z.reg, Rx, dzdx, ydzdy);
    426 
    427         // we're going to index zbase of parts.count
    428         // zbase = base + (xl-count + stride*y)*2
    429         int Rs = dzdx;
    430         int zbase = scratches.obtain();
    431         CONTEXT_LOAD(Rs, state.buffers.depth.stride);
    432         CONTEXT_ADDR_LOAD(zbase, state.buffers.depth.data);
    433         SMLABB(AL, Rs, Ry, Rs, Rx);
    434         ADD(AL, 0, Rs, Rs, reg_imm(parts.count.reg, LSR, 16));
    435         ADDR_ADD(AL, 0, zbase, zbase, reg_imm(Rs, LSL, 1));
    436         CONTEXT_ADDR_STORE(zbase, generated_vars.zbase);
    437     }
    438 
    439     // init texture coordinates
    440     init_textures(parts.coords, reg_t(Rx), reg_t(Ry));
    441     scratches.recycle(Ry);
    442 
    443     // iterated color
    444     init_iterated_color(parts, reg_t(Rx));
    445 
    446     // init coverage factor application (anti-aliasing)
    447     if (mAA) {
    448         parts.covPtr.setTo(obtainReg(), 16);
    449         CONTEXT_ADDR_LOAD(parts.covPtr.reg, state.buffers.coverage);
    450         ADDR_ADD(AL, 0, parts.covPtr.reg, parts.covPtr.reg, reg_imm(Rx, LSL, 1));
    451     }
    452 }
    453 
    454 // ---------------------------------------------------------------------------
    455 
    456 void GGLAssembler::build_component( pixel_t& pixel,
    457                                     const fragment_parts_t& parts,
    458                                     int component,
    459                                     Scratch& regs)
    460 {
    461     static char const * comments[] = {"alpha", "red", "green", "blue"};
    462     comment(comments[component]);
    463 
    464     // local register file
    465     Scratch scratches(registerFile());
    466     const int dst_component_size = pixel.component_size(component);
    467 
    468     component_t temp(-1);
    469     build_incoming_component( temp, dst_component_size,
    470             parts, component, scratches, regs);
    471 
    472     if (mInfo[component].inDest) {
    473 
    474         // blending...
    475         build_blending( temp, mDstPixel, component, scratches );
    476 
    477         // downshift component and rebuild pixel...
    478         downshift(pixel, component, temp, parts.dither);
    479     }
    480 }
    481 
    482 void GGLAssembler::build_incoming_component(
    483                                     component_t& temp,
    484                                     int dst_size,
    485                                     const fragment_parts_t& parts,
    486                                     int component,
    487                                     Scratch& scratches,
    488                                     Scratch& global_regs)
    489 {
    490     const uint32_t component_mask = 1<<component;
    491 
    492     // Figure out what we need for the blending stage...
    493     int fs = component==GGLFormat::ALPHA ? mBlendSrcA : mBlendSrc;
    494     int fd = component==GGLFormat::ALPHA ? mBlendDstA : mBlendDst;
    495     if (fs==GGL_SRC_ALPHA_SATURATE && component==GGLFormat::ALPHA) {
    496         fs = GGL_ONE;
    497     }
    498 
    499     // Figure out what we need to extract and for what reason
    500     const int blending = blending_codes(fs, fd);
    501 
    502     // Are we actually going to blend?
    503     const int need_blending = (fs != int(GGL_ONE)) || (fd > int(GGL_ZERO));
    504 
    505     // expand the source if the destination has more bits
    506     int need_expander = false;
    507     for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT-1 ; i++) {
    508         texture_unit_t& tmu = mTextureMachine.tmu[i];
    509         if ((tmu.format_idx) &&
    510             (parts.texel[i].component_size(component) < dst_size)) {
    511             need_expander = true;
    512         }
    513     }
    514 
    515     // do we need to extract this component?
    516     const bool multiTexture = mTextureMachine.activeUnits > 1;
    517     const int blend_needs_alpha_source = (component==GGLFormat::ALPHA) &&
    518                                         (isAlphaSourceNeeded());
    519     int need_extract = mInfo[component].needed;
    520     if (mInfo[component].inDest)
    521     {
    522         need_extract |= ((need_blending ?
    523                 (blending & (BLEND_SRC|FACTOR_SRC)) : need_expander));
    524         need_extract |= (mTextureMachine.mask != mTextureMachine.replaced);
    525         need_extract |= mInfo[component].smooth;
    526         need_extract |= mInfo[component].fog;
    527         need_extract |= mDithering;
    528         need_extract |= multiTexture;
    529     }
    530 
    531     if (need_extract) {
    532         Scratch& regs = blend_needs_alpha_source ? global_regs : scratches;
    533         component_t fragment;
    534 
    535         // iterated color
    536         build_iterated_color(fragment, parts, component, regs);
    537 
    538         // texture environement (decal, modulate, replace)
    539         build_texture_environment(fragment, parts, component, regs);
    540 
    541         // expand the source if the destination has more bits
    542         if (need_expander && (fragment.size() < dst_size)) {
    543             // we're here only if we fetched a texel
    544             // (so we know for sure fragment is CORRUPTIBLE)
    545             expand(fragment, fragment, dst_size);
    546         }
    547 
    548         // We have a few specific things to do for the alpha-channel
    549         if ((component==GGLFormat::ALPHA) &&
    550             (mInfo[component].needed || fragment.size()<dst_size))
    551         {
    552             // convert to integer_t first and make sure
    553             // we don't corrupt a needed register
    554             if (fragment.l) {
    555                 component_t incoming(fragment);
    556                 modify(fragment, regs);
    557                 MOV(AL, 0, fragment.reg, reg_imm(incoming.reg, LSR, incoming.l));
    558                 fragment.h -= fragment.l;
    559                 fragment.l = 0;
    560             }
    561 
    562             // coverage factor application
    563             build_coverage_application(fragment, parts, regs);
    564 
    565             // alpha-test
    566             build_alpha_test(fragment, parts);
    567 
    568             if (blend_needs_alpha_source) {
    569                 // We keep only 8 bits for the blending stage
    570                 const int shift = fragment.h <= 8 ? 0 : fragment.h-8;
    571                 if (fragment.flags & CORRUPTIBLE) {
    572                     fragment.flags &= ~CORRUPTIBLE;
    573                     mAlphaSource.setTo(fragment.reg,
    574                             fragment.size(), fragment.flags);
    575                     if (shift) {
    576                         MOV(AL, 0, mAlphaSource.reg,
    577                             reg_imm(mAlphaSource.reg, LSR, shift));
    578                     }
    579                 } else {
    580                     // XXX: it would better to do this in build_blend_factor()
    581                     // so we can avoid the extra MOV below.
    582                     mAlphaSource.setTo(regs.obtain(),
    583                             fragment.size(), CORRUPTIBLE);
    584                     if (shift) {
    585                         MOV(AL, 0, mAlphaSource.reg,
    586                             reg_imm(fragment.reg, LSR, shift));
    587                     } else {
    588                         MOV(AL, 0, mAlphaSource.reg, fragment.reg);
    589                     }
    590                 }
    591                 mAlphaSource.s -= shift;
    592             }
    593         }
    594 
    595         // fog...
    596         build_fog( fragment, component, regs );
    597 
    598         temp = fragment;
    599     } else {
    600         if (mInfo[component].inDest) {
    601             // extraction not needed and replace
    602             // we just select the right component
    603             if ((mTextureMachine.replaced & component_mask) == 0) {
    604                 // component wasn't replaced, so use it!
    605                 temp = component_t(parts.iterated, component);
    606             }
    607             for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
    608                 const texture_unit_t& tmu = mTextureMachine.tmu[i];
    609                 if ((tmu.mask & component_mask) &&
    610                     ((tmu.replaced & component_mask) == 0)) {
    611                     temp = component_t(parts.texel[i], component);
    612                 }
    613             }
    614         }
    615     }
    616 }
    617 
    618 bool GGLAssembler::isAlphaSourceNeeded() const
    619 {
    620     // XXX: also needed for alpha-test
    621     const int bs = mBlendSrc;
    622     const int bd = mBlendDst;
    623     return  bs==GGL_SRC_ALPHA_SATURATE ||
    624             bs==GGL_SRC_ALPHA || bs==GGL_ONE_MINUS_SRC_ALPHA ||
    625             bd==GGL_SRC_ALPHA || bd==GGL_ONE_MINUS_SRC_ALPHA ;
    626 }
    627 
    628 // ---------------------------------------------------------------------------
    629 
    630 void GGLAssembler::build_smooth_shade(const fragment_parts_t& parts)
    631 {
    632     if (mSmooth && !parts.iterated_packed) {
    633         // update the iterated color in a pipelined way...
    634         comment("update iterated color");
    635         Scratch scratches(registerFile());
    636 
    637         const int reload = parts.reload;
    638         for (int i=0 ; i<4 ; i++) {
    639             if (!mInfo[i].iterated)
    640                 continue;
    641 
    642             int c = parts.argb[i].reg;
    643             int dx = parts.argb_dx[i].reg;
    644 
    645             if (reload & 1) {
    646                 c = scratches.obtain();
    647                 CONTEXT_LOAD(c, generated_vars.argb[i].c);
    648             }
    649             if (reload & 2) {
    650                 dx = scratches.obtain();
    651                 CONTEXT_LOAD(dx, generated_vars.argb[i].dx);
    652             }
    653 
    654             if (mSmooth) {
    655                 ADD(AL, 0, c, c, dx);
    656             }
    657 
    658             if (reload & 1) {
    659                 CONTEXT_STORE(c, generated_vars.argb[i].c);
    660                 scratches.recycle(c);
    661             }
    662             if (reload & 2) {
    663                 scratches.recycle(dx);
    664             }
    665         }
    666     }
    667 }
    668 
    669 // ---------------------------------------------------------------------------
    670 
    671 void GGLAssembler::build_coverage_application(component_t& fragment,
    672         const fragment_parts_t& parts, Scratch& regs)
    673 {
    674     // here fragment.l is guarenteed to be 0
    675     if (mAA) {
    676         // coverages are 1.15 fixed-point numbers
    677         comment("coverage application");
    678 
    679         component_t incoming(fragment);
    680         modify(fragment, regs);
    681 
    682         Scratch scratches(registerFile());
    683         int cf = scratches.obtain();
    684         LDRH(AL, cf, parts.covPtr.reg, immed8_post(2));
    685         if (fragment.h > 31) {
    686             fragment.h--;
    687             SMULWB(AL, fragment.reg, incoming.reg, cf);
    688         } else {
    689             MOV(AL, 0, fragment.reg, reg_imm(incoming.reg, LSL, 1));
    690             SMULWB(AL, fragment.reg, fragment.reg, cf);
    691         }
    692     }
    693 }
    694 
    695 // ---------------------------------------------------------------------------
    696 
    697 void GGLAssembler::build_alpha_test(component_t& fragment,
    698                                     const fragment_parts_t& /*parts*/)
    699 {
    700     if (mAlphaTest != GGL_ALWAYS) {
    701         comment("Alpha Test");
    702         Scratch scratches(registerFile());
    703         int ref = scratches.obtain();
    704         const int shift = GGL_COLOR_BITS-fragment.size();
    705         CONTEXT_LOAD(ref, state.alpha_test.ref);
    706         if (shift) CMP(AL, fragment.reg, reg_imm(ref, LSR, shift));
    707         else       CMP(AL, fragment.reg, ref);
    708         int cc = NV;
    709         switch (mAlphaTest) {
    710         case GGL_NEVER:     cc = NV;    break;
    711         case GGL_LESS:      cc = LT;    break;
    712         case GGL_EQUAL:     cc = EQ;    break;
    713         case GGL_LEQUAL:    cc = LS;    break;
    714         case GGL_GREATER:   cc = HI;    break;
    715         case GGL_NOTEQUAL:  cc = NE;    break;
    716         case GGL_GEQUAL:    cc = HS;    break;
    717         }
    718         B(cc^1, "discard_after_textures");
    719     }
    720 }
    721 
    722 // ---------------------------------------------------------------------------
    723 
    724 void GGLAssembler::build_depth_test(
    725         const fragment_parts_t& parts, uint32_t mask)
    726 {
    727     mask &= Z_TEST|Z_WRITE;
    728     const needs_t& needs = mBuilderContext.needs;
    729     const int zmask = GGL_READ_NEEDS(P_MASK_Z, needs.p);
    730     Scratch scratches(registerFile());
    731 
    732     if (mDepthTest != GGL_ALWAYS || zmask) {
    733         int cc=AL, ic=AL;
    734         switch (mDepthTest) {
    735         case GGL_LESS:      ic = HI;    break;
    736         case GGL_EQUAL:     ic = EQ;    break;
    737         case GGL_LEQUAL:    ic = HS;    break;
    738         case GGL_GREATER:   ic = LT;    break;
    739         case GGL_NOTEQUAL:  ic = NE;    break;
    740         case GGL_GEQUAL:    ic = LS;    break;
    741         case GGL_NEVER:
    742             // this never happens, because it's taken care of when
    743             // computing the needs. but we keep it for completness.
    744             comment("Depth Test (NEVER)");
    745             B(AL, "discard_before_textures");
    746             return;
    747         case GGL_ALWAYS:
    748             // we're here because zmask is enabled
    749             mask &= ~Z_TEST;    // test always passes.
    750             break;
    751         }
    752 
    753         // inverse the condition
    754         cc = ic^1;
    755 
    756         if ((mask & Z_WRITE) && !zmask) {
    757             mask &= ~Z_WRITE;
    758         }
    759 
    760         if (!mask)
    761             return;
    762 
    763         comment("Depth Test");
    764 
    765         int zbase = scratches.obtain();
    766         int depth = scratches.obtain();
    767         int z = parts.z.reg;
    768 
    769         CONTEXT_ADDR_LOAD(zbase, generated_vars.zbase);  // stall
    770         ADDR_SUB(AL, 0, zbase, zbase, reg_imm(parts.count.reg, LSR, 15));
    771             // above does zbase = zbase + ((count >> 16) << 1)
    772 
    773         if (mask & Z_TEST) {
    774             LDRH(AL, depth, zbase);  // stall
    775             CMP(AL, depth, reg_imm(z, LSR, 16));
    776             B(cc, "discard_before_textures");
    777         }
    778         if (mask & Z_WRITE) {
    779             if (mask == Z_WRITE) {
    780                 // only z-write asked, cc is meaningless
    781                 ic = AL;
    782             }
    783             MOV(AL, 0, depth, reg_imm(z, LSR, 16));
    784             STRH(ic, depth, zbase);
    785         }
    786     }
    787 }
    788 
    789 void GGLAssembler::build_iterate_z(const fragment_parts_t& parts)
    790 {
    791     const needs_t& needs = mBuilderContext.needs;
    792     if ((mDepthTest != GGL_ALWAYS) || GGL_READ_NEEDS(P_MASK_Z, needs.p)) {
    793         Scratch scratches(registerFile());
    794         int dzdx = scratches.obtain();
    795         CONTEXT_LOAD(dzdx, generated_vars.dzdx);    // stall
    796         ADD(AL, 0, parts.z.reg, parts.z.reg, dzdx);
    797     }
    798 }
    799 
    800 void GGLAssembler::build_iterate_f(const fragment_parts_t& /*parts*/)
    801 {
    802     const needs_t& needs = mBuilderContext.needs;
    803     if (GGL_READ_NEEDS(P_FOG, needs.p)) {
    804         Scratch scratches(registerFile());
    805         int dfdx = scratches.obtain();
    806         int f = scratches.obtain();
    807         CONTEXT_LOAD(f,     generated_vars.f);
    808         CONTEXT_LOAD(dfdx,  generated_vars.dfdx);   // stall
    809         ADD(AL, 0, f, f, dfdx);
    810         CONTEXT_STORE(f,    generated_vars.f);
    811     }
    812 }
    813 
    814 // ---------------------------------------------------------------------------
    815 
    816 void GGLAssembler::build_logic_op(pixel_t& pixel, Scratch& regs)
    817 {
    818     const needs_t& needs = mBuilderContext.needs;
    819     const int opcode = GGL_READ_NEEDS(LOGIC_OP, needs.n) | GGL_CLEAR;
    820     if (opcode == GGL_COPY)
    821         return;
    822 
    823     comment("logic operation");
    824 
    825     pixel_t s(pixel);
    826     if (!(pixel.flags & CORRUPTIBLE)) {
    827         pixel.reg = regs.obtain();
    828         pixel.flags |= CORRUPTIBLE;
    829     }
    830 
    831     pixel_t d(mDstPixel);
    832     switch(opcode) {
    833     case GGL_CLEAR:         MOV(AL, 0, pixel.reg, imm(0));          break;
    834     case GGL_AND:           AND(AL, 0, pixel.reg, s.reg, d.reg);    break;
    835     case GGL_AND_REVERSE:   BIC(AL, 0, pixel.reg, s.reg, d.reg);    break;
    836     case GGL_COPY:                                                  break;
    837     case GGL_AND_INVERTED:  BIC(AL, 0, pixel.reg, d.reg, s.reg);    break;
    838     case GGL_NOOP:          MOV(AL, 0, pixel.reg, d.reg);           break;
    839     case GGL_XOR:           EOR(AL, 0, pixel.reg, s.reg, d.reg);    break;
    840     case GGL_OR:            ORR(AL, 0, pixel.reg, s.reg, d.reg);    break;
    841     case GGL_NOR:           ORR(AL, 0, pixel.reg, s.reg, d.reg);
    842                             MVN(AL, 0, pixel.reg, pixel.reg);       break;
    843     case GGL_EQUIV:         EOR(AL, 0, pixel.reg, s.reg, d.reg);
    844                             MVN(AL, 0, pixel.reg, pixel.reg);       break;
    845     case GGL_INVERT:        MVN(AL, 0, pixel.reg, d.reg);           break;
    846     case GGL_OR_REVERSE:    // s | ~d == ~(~s & d)
    847                             BIC(AL, 0, pixel.reg, d.reg, s.reg);
    848                             MVN(AL, 0, pixel.reg, pixel.reg);       break;
    849     case GGL_COPY_INVERTED: MVN(AL, 0, pixel.reg, s.reg);           break;
    850     case GGL_OR_INVERTED:   // ~s | d == ~(s & ~d)
    851                             BIC(AL, 0, pixel.reg, s.reg, d.reg);
    852                             MVN(AL, 0, pixel.reg, pixel.reg);       break;
    853     case GGL_NAND:          AND(AL, 0, pixel.reg, s.reg, d.reg);
    854                             MVN(AL, 0, pixel.reg, pixel.reg);       break;
    855     case GGL_SET:           MVN(AL, 0, pixel.reg, imm(0));          break;
    856     };
    857 }
    858 
    859 // ---------------------------------------------------------------------------
    860 
    861 static uint32_t find_bottom(uint32_t val)
    862 {
    863     uint32_t i = 0;
    864     while (!(val & (3<<i)))
    865         i+= 2;
    866     return i;
    867 }
    868 
    869 static void normalize(uint32_t& val, uint32_t& rot)
    870 {
    871     rot = 0;
    872     while (!(val&3)  || (val & 0xFC000000)) {
    873         uint32_t newval;
    874         newval = val >> 2;
    875         newval |= (val&3) << 30;
    876         val = newval;
    877         rot += 2;
    878         if (rot == 32) {
    879             rot = 0;
    880             break;
    881         }
    882     }
    883 }
    884 
    885 void GGLAssembler::build_and_immediate(int d, int s, uint32_t mask, int bits)
    886 {
    887     uint32_t rot;
    888     uint32_t size = ((bits>=32) ? 0 : (1LU << bits)) - 1;
    889     mask &= size;
    890 
    891     if (mask == size) {
    892         if (d != s)
    893             MOV( AL, 0, d, s);
    894         return;
    895     }
    896 
    897     if ((getCodegenArch() == CODEGEN_ARCH_MIPS) ||
    898         (getCodegenArch() == CODEGEN_ARCH_MIPS64)) {
    899         // MIPS can do 16-bit imm in 1 instr, 32-bit in 3 instr
    900         // the below ' while (mask)' code is buggy on mips
    901         // since mips returns true on isValidImmediate()
    902         // then we get multiple AND instr (positive logic)
    903         AND( AL, 0, d, s, imm(mask) );
    904         return;
    905     }
    906     else if (getCodegenArch() == CODEGEN_ARCH_ARM64) {
    907         AND( AL, 0, d, s, imm(mask) );
    908         return;
    909     }
    910 
    911     int negative_logic = !isValidImmediate(mask);
    912     if (negative_logic) {
    913         mask = ~mask & size;
    914     }
    915     normalize(mask, rot);
    916 
    917     if (mask) {
    918         while (mask) {
    919             uint32_t bitpos = find_bottom(mask);
    920             int shift = rot + bitpos;
    921             uint32_t m = mask & (0xff << bitpos);
    922             mask &= ~m;
    923             m >>= bitpos;
    924             int32_t newMask =  (m<<shift) | (m>>(32-shift));
    925             if (!negative_logic) {
    926                 AND( AL, 0, d, s, imm(newMask) );
    927             } else {
    928                 BIC( AL, 0, d, s, imm(newMask) );
    929             }
    930             s = d;
    931         }
    932     } else {
    933         MOV( AL, 0, d, imm(0));
    934     }
    935 }
    936 
    937 void GGLAssembler::build_masking(pixel_t& pixel, Scratch& regs)
    938 {
    939     if (!mMasking || mAllMasked) {
    940         return;
    941     }
    942 
    943     comment("color mask");
    944 
    945     pixel_t fb(mDstPixel);
    946     pixel_t s(pixel);
    947     if (!(pixel.flags & CORRUPTIBLE)) {
    948         pixel.reg = regs.obtain();
    949         pixel.flags |= CORRUPTIBLE;
    950     }
    951 
    952     int mask = 0;
    953     for (int i=0 ; i<4 ; i++) {
    954         const int component_mask = 1<<i;
    955         const int h = fb.format.c[i].h;
    956         const int l = fb.format.c[i].l;
    957         if (h && (!(mMasking & component_mask))) {
    958             mask |= ((1<<(h-l))-1) << l;
    959         }
    960     }
    961 
    962     // There is no need to clear the masked components of the source
    963     // (unless we applied a logic op), because they're already zeroed
    964     // by construction (masked components are not computed)
    965 
    966     if (mLogicOp) {
    967         const needs_t& needs = mBuilderContext.needs;
    968         const int opcode = GGL_READ_NEEDS(LOGIC_OP, needs.n) | GGL_CLEAR;
    969         if (opcode != GGL_CLEAR) {
    970             // clear masked component of source
    971             build_and_immediate(pixel.reg, s.reg, mask, fb.size());
    972             s = pixel;
    973         }
    974     }
    975 
    976     // clear non masked components of destination
    977     build_and_immediate(fb.reg, fb.reg, ~mask, fb.size());
    978 
    979     // or back the channels that were masked
    980     if (s.reg == fb.reg) {
    981          // this is in fact a MOV
    982         if (s.reg == pixel.reg) {
    983             // ugh. this in in fact a nop
    984         } else {
    985             MOV(AL, 0, pixel.reg, fb.reg);
    986         }
    987     } else {
    988         ORR(AL, 0, pixel.reg, s.reg, fb.reg);
    989     }
    990 }
    991 
    992 // ---------------------------------------------------------------------------
    993 
    994 void GGLAssembler::base_offset(
    995         const pointer_t& d, const pointer_t& b, const reg_t& o)
    996 {
    997     switch (b.size) {
    998     case 32:
    999         ADDR_ADD(AL, 0, d.reg, b.reg, reg_imm(o.reg, LSL, 2));
   1000         break;
   1001     case 24:
   1002         if (d.reg == b.reg) {
   1003             ADDR_ADD(AL, 0, d.reg, b.reg, reg_imm(o.reg, LSL, 1));
   1004             ADDR_ADD(AL, 0, d.reg, d.reg, o.reg);
   1005         } else {
   1006             ADDR_ADD(AL, 0, d.reg, o.reg, reg_imm(o.reg, LSL, 1));
   1007             ADDR_ADD(AL, 0, d.reg, d.reg, b.reg);
   1008         }
   1009         break;
   1010     case 16:
   1011         ADDR_ADD(AL, 0, d.reg, b.reg, reg_imm(o.reg, LSL, 1));
   1012         break;
   1013     case 8:
   1014         ADDR_ADD(AL, 0, d.reg, b.reg, o.reg);
   1015         break;
   1016     }
   1017 }
   1018 
   1019 // ----------------------------------------------------------------------------
   1020 // cheezy register allocator...
   1021 // ----------------------------------------------------------------------------
   1022 
   1023 // Modified to support MIPS processors, in a very simple way. We retain the
   1024 // (Arm) limit of 16 total registers, but shift the mapping of those registers
   1025 // from 0-15, to 2-17. Register 0 on Mips cannot be used as GP registers, and
   1026 // register 1 has a traditional use as a temp).
   1027 
   1028 RegisterAllocator::RegisterAllocator(int arch) : mRegs(arch)
   1029 {
   1030 }
   1031 
   1032 void RegisterAllocator::reset()
   1033 {
   1034     mRegs.reset();
   1035 }
   1036 
   1037 int RegisterAllocator::reserveReg(int reg)
   1038 {
   1039     return mRegs.reserve(reg);
   1040 }
   1041 
   1042 int RegisterAllocator::obtainReg()
   1043 {
   1044     return mRegs.obtain();
   1045 }
   1046 
   1047 void RegisterAllocator::recycleReg(int reg)
   1048 {
   1049     mRegs.recycle(reg);
   1050 }
   1051 
   1052 RegisterAllocator::RegisterFile& RegisterAllocator::registerFile()
   1053 {
   1054     return mRegs;
   1055 }
   1056 
   1057 // ----------------------------------------------------------------------------
   1058 
   1059 RegisterAllocator::RegisterFile::RegisterFile(int codegen_arch)
   1060     : mRegs(0), mTouched(0), mStatus(0), mArch(codegen_arch), mRegisterOffset(0)
   1061 {
   1062     if ((mArch == ARMAssemblerInterface::CODEGEN_ARCH_MIPS) ||
   1063         (mArch == ARMAssemblerInterface::CODEGEN_ARCH_MIPS64)) {
   1064         mRegisterOffset = 2;    // ARM has regs 0..15, MIPS offset to 2..17
   1065     }
   1066     reserve(ARMAssemblerInterface::SP);
   1067     reserve(ARMAssemblerInterface::PC);
   1068 }
   1069 
   1070 RegisterAllocator::RegisterFile::RegisterFile(const RegisterFile& rhs, int codegen_arch)
   1071     : mRegs(rhs.mRegs), mTouched(rhs.mTouched), mArch(codegen_arch), mRegisterOffset(0)
   1072 {
   1073     if ((mArch == ARMAssemblerInterface::CODEGEN_ARCH_MIPS) ||
   1074         (mArch == ARMAssemblerInterface::CODEGEN_ARCH_MIPS64)) {
   1075         mRegisterOffset = 2;    // ARM has regs 0..15, MIPS offset to 2..17
   1076     }
   1077 }
   1078 
   1079 RegisterAllocator::RegisterFile::~RegisterFile()
   1080 {
   1081 }
   1082 
   1083 bool RegisterAllocator::RegisterFile::operator == (const RegisterFile& rhs) const
   1084 {
   1085     return (mRegs == rhs.mRegs);
   1086 }
   1087 
   1088 void RegisterAllocator::RegisterFile::reset()
   1089 {
   1090     mRegs = mTouched = mStatus = 0;
   1091     reserve(ARMAssemblerInterface::SP);
   1092     reserve(ARMAssemblerInterface::PC);
   1093 }
   1094 
   1095 // RegisterFile::reserve() take a register parameter in the
   1096 // range 0-15 (Arm compatible), but on a Mips processor, will
   1097 // return the actual allocated register in the range 2-17.
   1098 int RegisterAllocator::RegisterFile::reserve(int reg)
   1099 {
   1100     reg += mRegisterOffset;
   1101     LOG_ALWAYS_FATAL_IF(isUsed(reg),
   1102                         "reserving register %d, but already in use",
   1103                         reg);
   1104     mRegs |= (1<<reg);
   1105     mTouched |= mRegs;
   1106     return reg;
   1107 }
   1108 
   1109 // This interface uses regMask in range 2-17 on MIPS, no translation.
   1110 void RegisterAllocator::RegisterFile::reserveSeveral(uint32_t regMask)
   1111 {
   1112     mRegs |= regMask;
   1113     mTouched |= regMask;
   1114 }
   1115 
   1116 int RegisterAllocator::RegisterFile::isUsed(int reg) const
   1117 {
   1118     LOG_ALWAYS_FATAL_IF(reg>=16+(int)mRegisterOffset, "invalid register %d", reg);
   1119     return mRegs & (1<<reg);
   1120 }
   1121 
   1122 int RegisterAllocator::RegisterFile::obtain()
   1123 {
   1124     const char priorityList[14] = {  0,  1, 2, 3,
   1125                                     12, 14, 4, 5,
   1126                                      6,  7, 8, 9,
   1127                                     10, 11 };
   1128     const int nbreg = sizeof(priorityList);
   1129     int i, r, reg;
   1130     for (i=0 ; i<nbreg ; i++) {
   1131         r = priorityList[i];
   1132         if (!isUsed(r + mRegisterOffset)) {
   1133             break;
   1134         }
   1135     }
   1136     // this is not an error anymore because, we'll try again with
   1137     // a lower optimization level.
   1138     //ALOGE_IF(i >= nbreg, "pixelflinger ran out of registers\n");
   1139     if (i >= nbreg) {
   1140         mStatus |= OUT_OF_REGISTERS;
   1141         // we return SP so we can more easily debug things
   1142         // the code will never be run anyway.
   1143         return ARMAssemblerInterface::SP;
   1144     }
   1145     reg = reserve(r);  // Param in Arm range 0-15, returns range 2-17 on Mips.
   1146     return reg;
   1147 }
   1148 
   1149 bool RegisterAllocator::RegisterFile::hasFreeRegs() const
   1150 {
   1151     uint32_t regs = mRegs >> mRegisterOffset;   // MIPS fix.
   1152     return ((regs & 0xFFFF) == 0xFFFF) ? false : true;
   1153 }
   1154 
   1155 int RegisterAllocator::RegisterFile::countFreeRegs() const
   1156 {
   1157     uint32_t regs = mRegs >> mRegisterOffset;   // MIPS fix.
   1158     int f = ~regs & 0xFFFF;
   1159     // now count number of 1
   1160    f = (f & 0x5555) + ((f>>1) & 0x5555);
   1161    f = (f & 0x3333) + ((f>>2) & 0x3333);
   1162    f = (f & 0x0F0F) + ((f>>4) & 0x0F0F);
   1163    f = (f & 0x00FF) + ((f>>8) & 0x00FF);
   1164    return f;
   1165 }
   1166 
   1167 void RegisterAllocator::RegisterFile::recycle(int reg)
   1168 {
   1169     // commented out, since common failure of running out of regs
   1170     // triggers this assertion. Since the code is not execectued
   1171     // in that case, it does not matter. No reason to FATAL err.
   1172     // LOG_FATAL_IF(!isUsed(reg),
   1173     //         "recycling unallocated register %d",
   1174     //         reg);
   1175     mRegs &= ~(1<<reg);
   1176 }
   1177 
   1178 void RegisterAllocator::RegisterFile::recycleSeveral(uint32_t regMask)
   1179 {
   1180     // commented out, since common failure of running out of regs
   1181     // triggers this assertion. Since the code is not execectued
   1182     // in that case, it does not matter. No reason to FATAL err.
   1183     // LOG_FATAL_IF((mRegs & regMask)!=regMask,
   1184     //         "recycling unallocated registers "
   1185     //         "(recycle=%08x, allocated=%08x, unallocated=%08x)",
   1186     //         regMask, mRegs, mRegs&regMask);
   1187     mRegs &= ~regMask;
   1188 }
   1189 
   1190 uint32_t RegisterAllocator::RegisterFile::touched() const
   1191 {
   1192     return mTouched;
   1193 }
   1194 
   1195 // ----------------------------------------------------------------------------
   1196 
   1197 }; // namespace android
   1198 
   1199