Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef SELECTIONDAGBUILDER_H
     15 #define SELECTIONDAGBUILDER_H
     16 
     17 #include "llvm/Constants.h"
     18 #include "llvm/CodeGen/SelectionDAG.h"
     19 #include "llvm/ADT/APInt.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/CodeGen/SelectionDAGNodes.h"
     22 #include "llvm/CodeGen/ValueTypes.h"
     23 #include "llvm/Support/CallSite.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include <vector>
     26 
     27 namespace llvm {
     28 
     29 class AliasAnalysis;
     30 class AllocaInst;
     31 class BasicBlock;
     32 class BitCastInst;
     33 class BranchInst;
     34 class CallInst;
     35 class DbgValueInst;
     36 class ExtractElementInst;
     37 class ExtractValueInst;
     38 class FCmpInst;
     39 class FPExtInst;
     40 class FPToSIInst;
     41 class FPToUIInst;
     42 class FPTruncInst;
     43 class Function;
     44 class FunctionLoweringInfo;
     45 class GetElementPtrInst;
     46 class GCFunctionInfo;
     47 class ICmpInst;
     48 class IntToPtrInst;
     49 class IndirectBrInst;
     50 class InvokeInst;
     51 class InsertElementInst;
     52 class InsertValueInst;
     53 class Instruction;
     54 class LoadInst;
     55 class MachineBasicBlock;
     56 class MachineInstr;
     57 class MachineRegisterInfo;
     58 class MDNode;
     59 class PHINode;
     60 class PtrToIntInst;
     61 class ReturnInst;
     62 class SDDbgValue;
     63 class SExtInst;
     64 class SelectInst;
     65 class ShuffleVectorInst;
     66 class SIToFPInst;
     67 class StoreInst;
     68 class SwitchInst;
     69 class TargetData;
     70 class TargetLowering;
     71 class TruncInst;
     72 class UIToFPInst;
     73 class UnreachableInst;
     74 class UnwindInst;
     75 class VAArgInst;
     76 class ZExtInst;
     77 
     78 //===----------------------------------------------------------------------===//
     79 /// SelectionDAGBuilder - This is the common target-independent lowering
     80 /// implementation that is parameterized by a TargetLowering object.
     81 ///
     82 class SelectionDAGBuilder {
     83   /// CurDebugLoc - current file + line number.  Changes as we build the DAG.
     84   DebugLoc CurDebugLoc;
     85 
     86   DenseMap<const Value*, SDValue> NodeMap;
     87 
     88   /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
     89   /// to preserve debug information for incoming arguments.
     90   DenseMap<const Value*, SDValue> UnusedArgNodeMap;
     91 
     92   /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
     93   class DanglingDebugInfo {
     94     const DbgValueInst* DI;
     95     DebugLoc dl;
     96     unsigned SDNodeOrder;
     97   public:
     98     DanglingDebugInfo() : DI(0), dl(DebugLoc()), SDNodeOrder(0) { }
     99     DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
    100       DI(di), dl(DL), SDNodeOrder(SDNO) { }
    101     const DbgValueInst* getDI() { return DI; }
    102     DebugLoc getdl() { return dl; }
    103     unsigned getSDNodeOrder() { return SDNodeOrder; }
    104   };
    105 
    106   /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
    107   /// yet seen the referent.  We defer handling these until we do see it.
    108   DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
    109 
    110 public:
    111   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
    112   /// them up and then emit token factor nodes when possible.  This allows us to
    113   /// get simple disambiguation between loads without worrying about alias
    114   /// analysis.
    115   SmallVector<SDValue, 8> PendingLoads;
    116 private:
    117 
    118   /// PendingExports - CopyToReg nodes that copy values to virtual registers
    119   /// for export to other blocks need to be emitted before any terminator
    120   /// instruction, but they have no other ordering requirements. We bunch them
    121   /// up and the emit a single tokenfactor for them just before terminator
    122   /// instructions.
    123   SmallVector<SDValue, 8> PendingExports;
    124 
    125   /// SDNodeOrder - A unique monotonically increasing number used to order the
    126   /// SDNodes we create.
    127   unsigned SDNodeOrder;
    128 
    129   /// Case - A struct to record the Value for a switch case, and the
    130   /// case's target basic block.
    131   struct Case {
    132     Constant* Low;
    133     Constant* High;
    134     MachineBasicBlock* BB;
    135     uint32_t ExtraWeight;
    136 
    137     Case() : Low(0), High(0), BB(0), ExtraWeight(0) { }
    138     Case(Constant* low, Constant* high, MachineBasicBlock* bb,
    139          uint32_t extraweight) : Low(low), High(high), BB(bb),
    140          ExtraWeight(extraweight) { }
    141 
    142     APInt size() const {
    143       const APInt &rHigh = cast<ConstantInt>(High)->getValue();
    144       const APInt &rLow  = cast<ConstantInt>(Low)->getValue();
    145       return (rHigh - rLow + 1ULL);
    146     }
    147   };
    148 
    149   struct CaseBits {
    150     uint64_t Mask;
    151     MachineBasicBlock* BB;
    152     unsigned Bits;
    153 
    154     CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
    155       Mask(mask), BB(bb), Bits(bits) { }
    156   };
    157 
    158   typedef std::vector<Case>           CaseVector;
    159   typedef std::vector<CaseBits>       CaseBitsVector;
    160   typedef CaseVector::iterator        CaseItr;
    161   typedef std::pair<CaseItr, CaseItr> CaseRange;
    162 
    163   /// CaseRec - A struct with ctor used in lowering switches to a binary tree
    164   /// of conditional branches.
    165   struct CaseRec {
    166     CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
    167             CaseRange r) :
    168     CaseBB(bb), LT(lt), GE(ge), Range(r) {}
    169 
    170     /// CaseBB - The MBB in which to emit the compare and branch
    171     MachineBasicBlock *CaseBB;
    172     /// LT, GE - If nonzero, we know the current case value must be less-than or
    173     /// greater-than-or-equal-to these Constants.
    174     const Constant *LT;
    175     const Constant *GE;
    176     /// Range - A pair of iterators representing the range of case values to be
    177     /// processed at this point in the binary search tree.
    178     CaseRange Range;
    179   };
    180 
    181   typedef std::vector<CaseRec> CaseRecVector;
    182 
    183   /// The comparison function for sorting the switch case values in the vector.
    184   /// WARNING: Case ranges should be disjoint!
    185   struct CaseCmp {
    186     bool operator()(const Case &C1, const Case &C2) {
    187       assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
    188       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
    189       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
    190       return CI1->getValue().slt(CI2->getValue());
    191     }
    192   };
    193 
    194   struct CaseBitsCmp {
    195     bool operator()(const CaseBits &C1, const CaseBits &C2) {
    196       return C1.Bits > C2.Bits;
    197     }
    198   };
    199 
    200   size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
    201 
    202   /// CaseBlock - This structure is used to communicate between
    203   /// SelectionDAGBuilder and SDISel for the code generation of additional basic
    204   /// blocks needed by multi-case switch statements.
    205   struct CaseBlock {
    206     CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
    207               const Value *cmpmiddle,
    208               MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
    209               MachineBasicBlock *me,
    210               uint32_t trueweight = 0, uint32_t falseweight = 0)
    211       : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
    212         TrueBB(truebb), FalseBB(falsebb), ThisBB(me),
    213         TrueWeight(trueweight), FalseWeight(falseweight) { }
    214 
    215     // CC - the condition code to use for the case block's setcc node
    216     ISD::CondCode CC;
    217 
    218     // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
    219     // Emit by default LHS op RHS. MHS is used for range comparisons:
    220     // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
    221     const Value *CmpLHS, *CmpMHS, *CmpRHS;
    222 
    223     // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
    224     MachineBasicBlock *TrueBB, *FalseBB;
    225 
    226     // ThisBB - the block into which to emit the code for the setcc and branches
    227     MachineBasicBlock *ThisBB;
    228 
    229     // TrueWeight/FalseWeight - branch weights.
    230     uint32_t TrueWeight, FalseWeight;
    231   };
    232 
    233   struct JumpTable {
    234     JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
    235               MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
    236 
    237     /// Reg - the virtual register containing the index of the jump table entry
    238     //. to jump to.
    239     unsigned Reg;
    240     /// JTI - the JumpTableIndex for this jump table in the function.
    241     unsigned JTI;
    242     /// MBB - the MBB into which to emit the code for the indirect jump.
    243     MachineBasicBlock *MBB;
    244     /// Default - the MBB of the default bb, which is a successor of the range
    245     /// check MBB.  This is when updating PHI nodes in successors.
    246     MachineBasicBlock *Default;
    247   };
    248   struct JumpTableHeader {
    249     JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
    250                     bool E = false):
    251       First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
    252     APInt First;
    253     APInt Last;
    254     const Value *SValue;
    255     MachineBasicBlock *HeaderBB;
    256     bool Emitted;
    257   };
    258   typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
    259 
    260   struct BitTestCase {
    261     BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
    262       Mask(M), ThisBB(T), TargetBB(Tr) { }
    263     uint64_t Mask;
    264     MachineBasicBlock *ThisBB;
    265     MachineBasicBlock *TargetBB;
    266   };
    267 
    268   typedef SmallVector<BitTestCase, 3> BitTestInfo;
    269 
    270   struct BitTestBlock {
    271     BitTestBlock(APInt F, APInt R, const Value* SV,
    272                  unsigned Rg, EVT RgVT, bool E,
    273                  MachineBasicBlock* P, MachineBasicBlock* D,
    274                  const BitTestInfo& C):
    275       First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
    276       Parent(P), Default(D), Cases(C) { }
    277     APInt First;
    278     APInt Range;
    279     const Value *SValue;
    280     unsigned Reg;
    281     EVT RegVT;
    282     bool Emitted;
    283     MachineBasicBlock *Parent;
    284     MachineBasicBlock *Default;
    285     BitTestInfo Cases;
    286   };
    287 
    288 public:
    289   // TLI - This is information that describes the available target features we
    290   // need for lowering.  This indicates when operations are unavailable,
    291   // implemented with a libcall, etc.
    292   const TargetMachine &TM;
    293   const TargetLowering &TLI;
    294   SelectionDAG &DAG;
    295   const TargetData *TD;
    296   AliasAnalysis *AA;
    297 
    298   /// SwitchCases - Vector of CaseBlock structures used to communicate
    299   /// SwitchInst code generation information.
    300   std::vector<CaseBlock> SwitchCases;
    301   /// JTCases - Vector of JumpTable structures used to communicate
    302   /// SwitchInst code generation information.
    303   std::vector<JumpTableBlock> JTCases;
    304   /// BitTestCases - Vector of BitTestBlock structures used to communicate
    305   /// SwitchInst code generation information.
    306   std::vector<BitTestBlock> BitTestCases;
    307 
    308   // Emit PHI-node-operand constants only once even if used by multiple
    309   // PHI nodes.
    310   DenseMap<const Constant *, unsigned> ConstantsOut;
    311 
    312   /// FuncInfo - Information about the function as a whole.
    313   ///
    314   FunctionLoweringInfo &FuncInfo;
    315 
    316   /// OptLevel - What optimization level we're generating code for.
    317   ///
    318   CodeGenOpt::Level OptLevel;
    319 
    320   /// GFI - Garbage collection metadata for the function.
    321   GCFunctionInfo *GFI;
    322 
    323   /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
    324   DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap;
    325 
    326   /// HasTailCall - This is set to true if a call in the current
    327   /// block has been translated as a tail call. In this case,
    328   /// no subsequent DAG nodes should be created.
    329   ///
    330   bool HasTailCall;
    331 
    332   LLVMContext *Context;
    333 
    334   SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
    335                       CodeGenOpt::Level ol)
    336     : SDNodeOrder(0), TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
    337       DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
    338       HasTailCall(false), Context(dag.getContext()) {
    339   }
    340 
    341   void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
    342 
    343   /// clear - Clear out the current SelectionDAG and the associated
    344   /// state and prepare this SelectionDAGBuilder object to be used
    345   /// for a new block. This doesn't clear out information about
    346   /// additional blocks that are needed to complete switch lowering
    347   /// or PHI node updating; that information is cleared out as it is
    348   /// consumed.
    349   void clear();
    350 
    351   /// clearDanglingDebugInfo - Clear the dangling debug information
    352   /// map. This function is seperated from the clear so that debug
    353   /// information that is dangling in a basic block can be properly
    354   /// resolved in a different basic block. This allows the
    355   /// SelectionDAG to resolve dangling debug information attached
    356   /// to PHI nodes.
    357   void clearDanglingDebugInfo();
    358 
    359   /// getRoot - Return the current virtual root of the Selection DAG,
    360   /// flushing any PendingLoad items. This must be done before emitting
    361   /// a store or any other node that may need to be ordered after any
    362   /// prior load instructions.
    363   ///
    364   SDValue getRoot();
    365 
    366   /// getControlRoot - Similar to getRoot, but instead of flushing all the
    367   /// PendingLoad items, flush all the PendingExports items. It is necessary
    368   /// to do this before emitting a terminator instruction.
    369   ///
    370   SDValue getControlRoot();
    371 
    372   DebugLoc getCurDebugLoc() const { return CurDebugLoc; }
    373 
    374   unsigned getSDNodeOrder() const { return SDNodeOrder; }
    375 
    376   void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
    377 
    378   /// AssignOrderingToNode - Assign an ordering to the node. The order is gotten
    379   /// from how the code appeared in the source. The ordering is used by the
    380   /// scheduler to effectively turn off scheduling.
    381   void AssignOrderingToNode(const SDNode *Node);
    382 
    383   void visit(const Instruction &I);
    384 
    385   void visit(unsigned Opcode, const User &I);
    386 
    387   // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
    388   // generate the debug data structures now that we've seen its definition.
    389   void resolveDanglingDebugInfo(const Value *V, SDValue Val);
    390   SDValue getValue(const Value *V);
    391   SDValue getNonRegisterValue(const Value *V);
    392   SDValue getValueImpl(const Value *V);
    393 
    394   void setValue(const Value *V, SDValue NewN) {
    395     SDValue &N = NodeMap[V];
    396     assert(N.getNode() == 0 && "Already set a value for this node!");
    397     N = NewN;
    398   }
    399 
    400   void setUnusedArgValue(const Value *V, SDValue NewN) {
    401     SDValue &N = UnusedArgNodeMap[V];
    402     assert(N.getNode() == 0 && "Already set a value for this node!");
    403     N = NewN;
    404   }
    405 
    406   void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
    407                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
    408                             MachineBasicBlock *SwitchBB, unsigned Opc);
    409   void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
    410                                     MachineBasicBlock *FBB,
    411                                     MachineBasicBlock *CurBB,
    412                                     MachineBasicBlock *SwitchBB);
    413   bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
    414   bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
    415   void CopyToExportRegsIfNeeded(const Value *V);
    416   void ExportFromCurrentBlock(const Value *V);
    417   void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
    418                    MachineBasicBlock *LandingPad = NULL);
    419 
    420   /// UpdateSplitBlock - When an MBB was split during scheduling, update the
    421   /// references that ned to refer to the last resulting block.
    422   void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
    423 
    424 private:
    425   // Terminator instructions.
    426   void visitRet(const ReturnInst &I);
    427   void visitBr(const BranchInst &I);
    428   void visitSwitch(const SwitchInst &I);
    429   void visitIndirectBr(const IndirectBrInst &I);
    430   void visitUnreachable(const UnreachableInst &I) { /* noop */ }
    431 
    432   // Helpers for visitSwitch
    433   bool handleSmallSwitchRange(CaseRec& CR,
    434                               CaseRecVector& WorkList,
    435                               const Value* SV,
    436                               MachineBasicBlock* Default,
    437                               MachineBasicBlock *SwitchBB);
    438   bool handleJTSwitchCase(CaseRec& CR,
    439                           CaseRecVector& WorkList,
    440                           const Value* SV,
    441                           MachineBasicBlock* Default,
    442                           MachineBasicBlock *SwitchBB);
    443   bool handleBTSplitSwitchCase(CaseRec& CR,
    444                                CaseRecVector& WorkList,
    445                                const Value* SV,
    446                                MachineBasicBlock* Default,
    447                                MachineBasicBlock *SwitchBB);
    448   bool handleBitTestsSwitchCase(CaseRec& CR,
    449                                 CaseRecVector& WorkList,
    450                                 const Value* SV,
    451                                 MachineBasicBlock* Default,
    452                                 MachineBasicBlock *SwitchBB);
    453 
    454   uint32_t getEdgeWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst);
    455   void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
    456                               uint32_t Weight = 0);
    457 public:
    458   void visitSwitchCase(CaseBlock &CB,
    459                        MachineBasicBlock *SwitchBB);
    460   void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
    461   void visitBitTestCase(BitTestBlock &BB,
    462                         MachineBasicBlock* NextMBB,
    463                         unsigned Reg,
    464                         BitTestCase &B,
    465                         MachineBasicBlock *SwitchBB);
    466   void visitJumpTable(JumpTable &JT);
    467   void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
    468                             MachineBasicBlock *SwitchBB);
    469 
    470 private:
    471   // These all get lowered before this pass.
    472   void visitInvoke(const InvokeInst &I);
    473   void visitResume(const ResumeInst &I);
    474   void visitUnwind(const UnwindInst &I);
    475 
    476   void visitBinary(const User &I, unsigned OpCode);
    477   void visitShift(const User &I, unsigned Opcode);
    478   void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
    479   void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
    480   void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
    481   void visitFSub(const User &I);
    482   void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
    483   void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
    484   void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
    485   void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
    486   void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
    487   void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
    488   void visitSDiv(const User &I);
    489   void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
    490   void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
    491   void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
    492   void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
    493   void visitShl (const User &I) { visitShift(I, ISD::SHL); }
    494   void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
    495   void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
    496   void visitICmp(const User &I);
    497   void visitFCmp(const User &I);
    498   // Visit the conversion instructions
    499   void visitTrunc(const User &I);
    500   void visitZExt(const User &I);
    501   void visitSExt(const User &I);
    502   void visitFPTrunc(const User &I);
    503   void visitFPExt(const User &I);
    504   void visitFPToUI(const User &I);
    505   void visitFPToSI(const User &I);
    506   void visitUIToFP(const User &I);
    507   void visitSIToFP(const User &I);
    508   void visitPtrToInt(const User &I);
    509   void visitIntToPtr(const User &I);
    510   void visitBitCast(const User &I);
    511 
    512   void visitExtractElement(const User &I);
    513   void visitInsertElement(const User &I);
    514   void visitShuffleVector(const User &I);
    515 
    516   void visitExtractValue(const ExtractValueInst &I);
    517   void visitInsertValue(const InsertValueInst &I);
    518   void visitLandingPad(const LandingPadInst &I);
    519 
    520   void visitGetElementPtr(const User &I);
    521   void visitSelect(const User &I);
    522 
    523   void visitAlloca(const AllocaInst &I);
    524   void visitLoad(const LoadInst &I);
    525   void visitStore(const StoreInst &I);
    526   void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
    527   void visitAtomicRMW(const AtomicRMWInst &I);
    528   void visitFence(const FenceInst &I);
    529   void visitPHI(const PHINode &I);
    530   void visitCall(const CallInst &I);
    531   bool visitMemCmpCall(const CallInst &I);
    532   void visitAtomicLoad(const LoadInst &I);
    533   void visitAtomicStore(const StoreInst &I);
    534 
    535   void visitInlineAsm(ImmutableCallSite CS);
    536   const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
    537   void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
    538 
    539   void visitPow(const CallInst &I);
    540   void visitExp2(const CallInst &I);
    541   void visitExp(const CallInst &I);
    542   void visitLog(const CallInst &I);
    543   void visitLog2(const CallInst &I);
    544   void visitLog10(const CallInst &I);
    545 
    546   void visitVAStart(const CallInst &I);
    547   void visitVAArg(const VAArgInst &I);
    548   void visitVAEnd(const CallInst &I);
    549   void visitVACopy(const CallInst &I);
    550 
    551   void visitUserOp1(const Instruction &I) {
    552     llvm_unreachable("UserOp1 should not exist at instruction selection time!");
    553   }
    554   void visitUserOp2(const Instruction &I) {
    555     llvm_unreachable("UserOp2 should not exist at instruction selection time!");
    556   }
    557 
    558   const char *implVisitAluOverflow(const CallInst &I, ISD::NodeType Op);
    559 
    560   void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
    561 
    562   /// EmitFuncArgumentDbgValue - If V is an function argument then create
    563   /// corresponding DBG_VALUE machine instruction for it now. At the end of
    564   /// instruction selection, they will be inserted to the entry BB.
    565   bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
    566                                 int64_t Offset, const SDValue &N);
    567 };
    568 
    569 } // end namespace llvm
    570 
    571 #endif
    572