Home | History | Annotate | Download | only in Scalar
      1 //===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements dead code elimination and basic block merging, along
     11 // with a collection of other peephole control flow optimizations.  For example:
     12 //
     13 //   * Removes basic blocks with no predecessors.
     14 //   * Merges a basic block into its predecessor if there is only one and the
     15 //     predecessor only has one successor.
     16 //   * Eliminates PHI nodes for basic blocks with a single predecessor.
     17 //   * Eliminates a basic block that only contains an unconditional branch.
     18 //   * Changes invoke instructions to nounwind functions to be calls.
     19 //   * Change things like "if (x) if (y)" into "if (x&y)".
     20 //   * etc..
     21 //
     22 //===----------------------------------------------------------------------===//
     23 
     24 #define DEBUG_TYPE "simplifycfg"
     25 #include "llvm/Transforms/Scalar.h"
     26 #include "llvm/Transforms/Utils/Local.h"
     27 #include "llvm/Constants.h"
     28 #include "llvm/Instructions.h"
     29 #include "llvm/IntrinsicInst.h"
     30 #include "llvm/Module.h"
     31 #include "llvm/Attributes.h"
     32 #include "llvm/Support/CFG.h"
     33 #include "llvm/Pass.h"
     34 #include "llvm/Target/TargetData.h"
     35 #include "llvm/ADT/SmallVector.h"
     36 #include "llvm/ADT/SmallPtrSet.h"
     37 #include "llvm/ADT/Statistic.h"
     38 using namespace llvm;
     39 
     40 STATISTIC(NumSimpl, "Number of blocks simplified");
     41 
     42 namespace {
     43   struct CFGSimplifyPass : public FunctionPass {
     44     static char ID; // Pass identification, replacement for typeid
     45     CFGSimplifyPass() : FunctionPass(ID) {
     46       initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
     47     }
     48 
     49     virtual bool runOnFunction(Function &F);
     50   };
     51 }
     52 
     53 char CFGSimplifyPass::ID = 0;
     54 INITIALIZE_PASS(CFGSimplifyPass, "simplifycfg",
     55                 "Simplify the CFG", false, false)
     56 
     57 // Public interface to the CFGSimplification pass
     58 FunctionPass *llvm::createCFGSimplificationPass() {
     59   return new CFGSimplifyPass();
     60 }
     61 
     62 /// ChangeToUnreachable - Insert an unreachable instruction before the specified
     63 /// instruction, making it and the rest of the code in the block dead.
     64 static void ChangeToUnreachable(Instruction *I, bool UseLLVMTrap) {
     65   BasicBlock *BB = I->getParent();
     66   // Loop over all of the successors, removing BB's entry from any PHI
     67   // nodes.
     68   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
     69     (*SI)->removePredecessor(BB);
     70 
     71   // Insert a call to llvm.trap right before this.  This turns the undefined
     72   // behavior into a hard fail instead of falling through into random code.
     73   if (UseLLVMTrap) {
     74     Function *TrapFn =
     75       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
     76     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
     77     CallTrap->setDebugLoc(I->getDebugLoc());
     78   }
     79   new UnreachableInst(I->getContext(), I);
     80 
     81   // All instructions after this are dead.
     82   BasicBlock::iterator BBI = I, BBE = BB->end();
     83   while (BBI != BBE) {
     84     if (!BBI->use_empty())
     85       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
     86     BB->getInstList().erase(BBI++);
     87   }
     88 }
     89 
     90 /// ChangeToCall - Convert the specified invoke into a normal call.
     91 static void ChangeToCall(InvokeInst *II) {
     92   BasicBlock *BB = II->getParent();
     93   SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
     94   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
     95   NewCall->takeName(II);
     96   NewCall->setCallingConv(II->getCallingConv());
     97   NewCall->setAttributes(II->getAttributes());
     98   NewCall->setDebugLoc(II->getDebugLoc());
     99   II->replaceAllUsesWith(NewCall);
    100 
    101   // Follow the call by a branch to the normal destination.
    102   BranchInst::Create(II->getNormalDest(), II);
    103 
    104   // Update PHI nodes in the unwind destination
    105   II->getUnwindDest()->removePredecessor(BB);
    106   BB->getInstList().erase(II);
    107 }
    108 
    109 static bool MarkAliveBlocks(BasicBlock *BB,
    110                             SmallPtrSet<BasicBlock*, 128> &Reachable) {
    111 
    112   SmallVector<BasicBlock*, 128> Worklist;
    113   Worklist.push_back(BB);
    114   bool Changed = false;
    115   do {
    116     BB = Worklist.pop_back_val();
    117 
    118     if (!Reachable.insert(BB))
    119       continue;
    120 
    121     // Do a quick scan of the basic block, turning any obviously unreachable
    122     // instructions into LLVM unreachable insts.  The instruction combining pass
    123     // canonicalizes unreachable insts into stores to null or undef.
    124     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
    125       if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
    126         if (CI->doesNotReturn()) {
    127           // If we found a call to a no-return function, insert an unreachable
    128           // instruction after it.  Make sure there isn't *already* one there
    129           // though.
    130           ++BBI;
    131           if (!isa<UnreachableInst>(BBI)) {
    132             // Don't insert a call to llvm.trap right before the unreachable.
    133             ChangeToUnreachable(BBI, false);
    134             Changed = true;
    135           }
    136           break;
    137         }
    138       }
    139 
    140       // Store to undef and store to null are undefined and used to signal that
    141       // they should be changed to unreachable by passes that can't modify the
    142       // CFG.
    143       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
    144         // Don't touch volatile stores.
    145         if (SI->isVolatile()) continue;
    146 
    147         Value *Ptr = SI->getOperand(1);
    148 
    149         if (isa<UndefValue>(Ptr) ||
    150             (isa<ConstantPointerNull>(Ptr) &&
    151              SI->getPointerAddressSpace() == 0)) {
    152           ChangeToUnreachable(SI, true);
    153           Changed = true;
    154           break;
    155         }
    156       }
    157     }
    158 
    159     // Turn invokes that call 'nounwind' functions into ordinary calls.
    160     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
    161       if (II->doesNotThrow()) {
    162         ChangeToCall(II);
    163         Changed = true;
    164       }
    165 
    166     Changed |= ConstantFoldTerminator(BB, true);
    167     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
    168       Worklist.push_back(*SI);
    169   } while (!Worklist.empty());
    170   return Changed;
    171 }
    172 
    173 /// RemoveUnreachableBlocksFromFn - Remove blocks that are not reachable, even
    174 /// if they are in a dead cycle.  Return true if a change was made, false
    175 /// otherwise.
    176 static bool RemoveUnreachableBlocksFromFn(Function &F) {
    177   SmallPtrSet<BasicBlock*, 128> Reachable;
    178   bool Changed = MarkAliveBlocks(F.begin(), Reachable);
    179 
    180   // If there are unreachable blocks in the CFG...
    181   if (Reachable.size() == F.size())
    182     return Changed;
    183 
    184   assert(Reachable.size() < F.size());
    185   NumSimpl += F.size()-Reachable.size();
    186 
    187   // Loop over all of the basic blocks that are not reachable, dropping all of
    188   // their internal references...
    189   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
    190     if (Reachable.count(BB))
    191       continue;
    192 
    193     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
    194       if (Reachable.count(*SI))
    195         (*SI)->removePredecessor(BB);
    196     BB->dropAllReferences();
    197   }
    198 
    199   for (Function::iterator I = ++F.begin(); I != F.end();)
    200     if (!Reachable.count(I))
    201       I = F.getBasicBlockList().erase(I);
    202     else
    203       ++I;
    204 
    205   return true;
    206 }
    207 
    208 /// MergeEmptyReturnBlocks - If we have more than one empty (other than phi
    209 /// node) return blocks, merge them together to promote recursive block merging.
    210 static bool MergeEmptyReturnBlocks(Function &F) {
    211   bool Changed = false;
    212 
    213   BasicBlock *RetBlock = 0;
    214 
    215   // Scan all the blocks in the function, looking for empty return blocks.
    216   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
    217     BasicBlock &BB = *BBI++;
    218 
    219     // Only look at return blocks.
    220     ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
    221     if (Ret == 0) continue;
    222 
    223     // Only look at the block if it is empty or the only other thing in it is a
    224     // single PHI node that is the operand to the return.
    225     if (Ret != &BB.front()) {
    226       // Check for something else in the block.
    227       BasicBlock::iterator I = Ret;
    228       --I;
    229       // Skip over debug info.
    230       while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
    231         --I;
    232       if (!isa<DbgInfoIntrinsic>(I) &&
    233           (!isa<PHINode>(I) || I != BB.begin() ||
    234            Ret->getNumOperands() == 0 ||
    235            Ret->getOperand(0) != I))
    236         continue;
    237     }
    238 
    239     // If this is the first returning block, remember it and keep going.
    240     if (RetBlock == 0) {
    241       RetBlock = &BB;
    242       continue;
    243     }
    244 
    245     // Otherwise, we found a duplicate return block.  Merge the two.
    246     Changed = true;
    247 
    248     // Case when there is no input to the return or when the returned values
    249     // agree is trivial.  Note that they can't agree if there are phis in the
    250     // blocks.
    251     if (Ret->getNumOperands() == 0 ||
    252         Ret->getOperand(0) ==
    253           cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
    254       BB.replaceAllUsesWith(RetBlock);
    255       BB.eraseFromParent();
    256       continue;
    257     }
    258 
    259     // If the canonical return block has no PHI node, create one now.
    260     PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
    261     if (RetBlockPHI == 0) {
    262       Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
    263       pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock);
    264       RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(),
    265                                     std::distance(PB, PE), "merge",
    266                                     &RetBlock->front());
    267 
    268       for (pred_iterator PI = PB; PI != PE; ++PI)
    269         RetBlockPHI->addIncoming(InVal, *PI);
    270       RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
    271     }
    272 
    273     // Turn BB into a block that just unconditionally branches to the return
    274     // block.  This handles the case when the two return blocks have a common
    275     // predecessor but that return different things.
    276     RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
    277     BB.getTerminator()->eraseFromParent();
    278     BranchInst::Create(RetBlock, &BB);
    279   }
    280 
    281   return Changed;
    282 }
    283 
    284 /// IterativeSimplifyCFG - Call SimplifyCFG on all the blocks in the function,
    285 /// iterating until no more changes are made.
    286 static bool IterativeSimplifyCFG(Function &F, const TargetData *TD) {
    287   bool Changed = false;
    288   bool LocalChange = true;
    289   while (LocalChange) {
    290     LocalChange = false;
    291 
    292     // Loop over all of the basic blocks and remove them if they are unneeded...
    293     //
    294     for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
    295       if (SimplifyCFG(BBIt++, TD)) {
    296         LocalChange = true;
    297         ++NumSimpl;
    298       }
    299     }
    300     Changed |= LocalChange;
    301   }
    302   return Changed;
    303 }
    304 
    305 // It is possible that we may require multiple passes over the code to fully
    306 // simplify the CFG.
    307 //
    308 bool CFGSimplifyPass::runOnFunction(Function &F) {
    309   const TargetData *TD = getAnalysisIfAvailable<TargetData>();
    310   bool EverChanged = RemoveUnreachableBlocksFromFn(F);
    311   EverChanged |= MergeEmptyReturnBlocks(F);
    312   EverChanged |= IterativeSimplifyCFG(F, TD);
    313 
    314   // If neither pass changed anything, we're done.
    315   if (!EverChanged) return false;
    316 
    317   // IterativeSimplifyCFG can (rarely) make some loops dead.  If this happens,
    318   // RemoveUnreachableBlocksFromFn is needed to nuke them, which means we should
    319   // iterate between the two optimizations.  We structure the code like this to
    320   // avoid reruning IterativeSimplifyCFG if the second pass of
    321   // RemoveUnreachableBlocksFromFn doesn't do anything.
    322   if (!RemoveUnreachableBlocksFromFn(F))
    323     return true;
    324 
    325   do {
    326     EverChanged = IterativeSimplifyCFG(F, TD);
    327     EverChanged |= RemoveUnreachableBlocksFromFn(F);
    328   } while (EverChanged);
    329 
    330   return true;
    331 }
    332