1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/ByteStream.h" 17 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 18 #include "llvm/DebugInfo/CodeView/CodeView.h" 19 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h" 20 #include "llvm/DebugInfo/CodeView/Line.h" 21 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 22 #include "llvm/DebugInfo/CodeView/TypeDumper.h" 23 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 24 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 25 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/MC/MCSectionCOFF.h" 29 #include "llvm/MC/MCSymbol.h" 30 #include "llvm/Support/COFF.h" 31 #include "llvm/Support/ScopedPrinter.h" 32 #include "llvm/Target/TargetFrameLowering.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 36 using namespace llvm; 37 using namespace llvm::codeview; 38 39 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 40 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) { 41 // If module doesn't have named metadata anchors or COFF debug section 42 // is not available, skip any debug info related stuff. 43 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 44 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 45 Asm = nullptr; 46 return; 47 } 48 49 // Tell MMI that we have debug info. 50 MMI->setDebugInfoAvailability(true); 51 } 52 53 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 54 std::string &Filepath = FileToFilepathMap[File]; 55 if (!Filepath.empty()) 56 return Filepath; 57 58 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 59 60 // Clang emits directory and relative filename info into the IR, but CodeView 61 // operates on full paths. We could change Clang to emit full paths too, but 62 // that would increase the IR size and probably not needed for other users. 63 // For now, just concatenate and canonicalize the path here. 64 if (Filename.find(':') == 1) 65 Filepath = Filename; 66 else 67 Filepath = (Dir + "\\" + Filename).str(); 68 69 // Canonicalize the path. We have to do it textually because we may no longer 70 // have access the file in the filesystem. 71 // First, replace all slashes with backslashes. 72 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 73 74 // Remove all "\.\" with "\". 75 size_t Cursor = 0; 76 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 77 Filepath.erase(Cursor, 2); 78 79 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 80 // path should be well-formatted, e.g. start with a drive letter, etc. 81 Cursor = 0; 82 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 83 // Something's wrong if the path starts with "\..\", abort. 84 if (Cursor == 0) 85 break; 86 87 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 88 if (PrevSlash == std::string::npos) 89 // Something's wrong, abort. 90 break; 91 92 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 93 // The next ".." might be following the one we've just erased. 94 Cursor = PrevSlash; 95 } 96 97 // Remove all duplicate backslashes. 98 Cursor = 0; 99 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 100 Filepath.erase(Cursor, 1); 101 102 return Filepath; 103 } 104 105 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 106 unsigned NextId = FileIdMap.size() + 1; 107 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 108 if (Insertion.second) { 109 // We have to compute the full filepath and emit a .cv_file directive. 110 StringRef FullPath = getFullFilepath(F); 111 NextId = OS.EmitCVFileDirective(NextId, FullPath); 112 assert(NextId == FileIdMap.size() && ".cv_file directive failed"); 113 } 114 return Insertion.first->second; 115 } 116 117 CodeViewDebug::InlineSite & 118 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 119 const DISubprogram *Inlinee) { 120 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 121 InlineSite *Site = &SiteInsertion.first->second; 122 if (SiteInsertion.second) { 123 Site->SiteFuncId = NextFuncId++; 124 Site->Inlinee = Inlinee; 125 InlinedSubprograms.insert(Inlinee); 126 getFuncIdForSubprogram(Inlinee); 127 } 128 return *Site; 129 } 130 131 static StringRef getPrettyScopeName(const DIScope *Scope) { 132 StringRef ScopeName = Scope->getName(); 133 if (!ScopeName.empty()) 134 return ScopeName; 135 136 switch (Scope->getTag()) { 137 case dwarf::DW_TAG_enumeration_type: 138 case dwarf::DW_TAG_class_type: 139 case dwarf::DW_TAG_structure_type: 140 case dwarf::DW_TAG_union_type: 141 return "<unnamed-tag>"; 142 case dwarf::DW_TAG_namespace: 143 return "`anonymous namespace'"; 144 } 145 146 return StringRef(); 147 } 148 149 static const DISubprogram *getQualifiedNameComponents( 150 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 151 const DISubprogram *ClosestSubprogram = nullptr; 152 while (Scope != nullptr) { 153 if (ClosestSubprogram == nullptr) 154 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 155 StringRef ScopeName = getPrettyScopeName(Scope); 156 if (!ScopeName.empty()) 157 QualifiedNameComponents.push_back(ScopeName); 158 Scope = Scope->getScope().resolve(); 159 } 160 return ClosestSubprogram; 161 } 162 163 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 164 StringRef TypeName) { 165 std::string FullyQualifiedName; 166 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 167 FullyQualifiedName.append(QualifiedNameComponent); 168 FullyQualifiedName.append("::"); 169 } 170 FullyQualifiedName.append(TypeName); 171 return FullyQualifiedName; 172 } 173 174 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 175 SmallVector<StringRef, 5> QualifiedNameComponents; 176 getQualifiedNameComponents(Scope, QualifiedNameComponents); 177 return getQualifiedName(QualifiedNameComponents, Name); 178 } 179 180 struct CodeViewDebug::TypeLoweringScope { 181 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 182 ~TypeLoweringScope() { 183 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 184 // inner TypeLoweringScopes don't attempt to emit deferred types. 185 if (CVD.TypeEmissionLevel == 1) 186 CVD.emitDeferredCompleteTypes(); 187 --CVD.TypeEmissionLevel; 188 } 189 CodeViewDebug &CVD; 190 }; 191 192 static std::string getFullyQualifiedName(const DIScope *Ty) { 193 const DIScope *Scope = Ty->getScope().resolve(); 194 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 195 } 196 197 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 198 // No scope means global scope and that uses the zero index. 199 if (!Scope || isa<DIFile>(Scope)) 200 return TypeIndex(); 201 202 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 203 204 // Check if we've already translated this scope. 205 auto I = TypeIndices.find({Scope, nullptr}); 206 if (I != TypeIndices.end()) 207 return I->second; 208 209 // Build the fully qualified name of the scope. 210 std::string ScopeName = getFullyQualifiedName(Scope); 211 TypeIndex TI = 212 TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName)); 213 return recordTypeIndexForDINode(Scope, TI); 214 } 215 216 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 217 // It's possible to ask for the FuncId of a function which doesn't have a 218 // subprogram: inlining a function with debug info into a function with none. 219 if (!SP) 220 return TypeIndex::None(); 221 222 // Check if we've already translated this subprogram. 223 auto I = TypeIndices.find({SP, nullptr}); 224 if (I != TypeIndices.end()) 225 return I->second; 226 227 // The display name includes function template arguments. Drop them to match 228 // MSVC. 229 StringRef DisplayName = SP->getDisplayName().split('<').first; 230 231 const DIScope *Scope = SP->getScope().resolve(); 232 TypeIndex TI; 233 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 234 // If the scope is a DICompositeType, then this must be a method. Member 235 // function types take some special handling, and require access to the 236 // subprogram. 237 TypeIndex ClassType = getTypeIndex(Class); 238 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 239 DisplayName); 240 TI = TypeTable.writeMemberFuncId(MFuncId); 241 } else { 242 // Otherwise, this must be a free function. 243 TypeIndex ParentScope = getScopeIndex(Scope); 244 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 245 TI = TypeTable.writeFuncId(FuncId); 246 } 247 248 return recordTypeIndexForDINode(SP, TI); 249 } 250 251 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 252 const DICompositeType *Class) { 253 // Always use the method declaration as the key for the function type. The 254 // method declaration contains the this adjustment. 255 if (SP->getDeclaration()) 256 SP = SP->getDeclaration(); 257 assert(!SP->getDeclaration() && "should use declaration as key"); 258 259 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 260 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 261 auto I = TypeIndices.find({SP, Class}); 262 if (I != TypeIndices.end()) 263 return I->second; 264 265 // Make sure complete type info for the class is emitted *after* the member 266 // function type, as the complete class type is likely to reference this 267 // member function type. 268 TypeLoweringScope S(*this); 269 TypeIndex TI = 270 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 271 return recordTypeIndexForDINode(SP, TI, Class); 272 } 273 274 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 275 TypeIndex TI, 276 const DIType *ClassTy) { 277 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 278 (void)InsertResult; 279 assert(InsertResult.second && "DINode was already assigned a type index"); 280 return TI; 281 } 282 283 unsigned CodeViewDebug::getPointerSizeInBytes() { 284 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 285 } 286 287 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 288 const DILocation *InlinedAt) { 289 if (InlinedAt) { 290 // This variable was inlined. Associate it with the InlineSite. 291 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 292 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 293 Site.InlinedLocals.emplace_back(Var); 294 } else { 295 // This variable goes in the main ProcSym. 296 CurFn->Locals.emplace_back(Var); 297 } 298 } 299 300 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 301 const DILocation *Loc) { 302 auto B = Locs.begin(), E = Locs.end(); 303 if (std::find(B, E, Loc) == E) 304 Locs.push_back(Loc); 305 } 306 307 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 308 const MachineFunction *MF) { 309 // Skip this instruction if it has the same location as the previous one. 310 if (DL == CurFn->LastLoc) 311 return; 312 313 const DIScope *Scope = DL.get()->getScope(); 314 if (!Scope) 315 return; 316 317 // Skip this line if it is longer than the maximum we can record. 318 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 319 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 320 LI.isNeverStepInto()) 321 return; 322 323 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 324 if (CI.getStartColumn() != DL.getCol()) 325 return; 326 327 if (!CurFn->HaveLineInfo) 328 CurFn->HaveLineInfo = true; 329 unsigned FileId = 0; 330 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 331 FileId = CurFn->LastFileId; 332 else 333 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 334 CurFn->LastLoc = DL; 335 336 unsigned FuncId = CurFn->FuncId; 337 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 338 const DILocation *Loc = DL.get(); 339 340 // If this location was actually inlined from somewhere else, give it the ID 341 // of the inline call site. 342 FuncId = 343 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 344 345 // Ensure we have links in the tree of inline call sites. 346 bool FirstLoc = true; 347 while ((SiteLoc = Loc->getInlinedAt())) { 348 InlineSite &Site = 349 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 350 if (!FirstLoc) 351 addLocIfNotPresent(Site.ChildSites, Loc); 352 FirstLoc = false; 353 Loc = SiteLoc; 354 } 355 addLocIfNotPresent(CurFn->ChildSites, Loc); 356 } 357 358 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 359 /*PrologueEnd=*/false, 360 /*IsStmt=*/false, DL->getFilename()); 361 } 362 363 void CodeViewDebug::emitCodeViewMagicVersion() { 364 OS.EmitValueToAlignment(4); 365 OS.AddComment("Debug section magic"); 366 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 367 } 368 369 void CodeViewDebug::endModule() { 370 if (!Asm || !MMI->hasDebugInfo()) 371 return; 372 373 assert(Asm != nullptr); 374 375 // The COFF .debug$S section consists of several subsections, each starting 376 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 377 // of the payload followed by the payload itself. The subsections are 4-byte 378 // aligned. 379 380 // Use the generic .debug$S section, and make a subsection for all the inlined 381 // subprograms. 382 switchToDebugSectionForSymbol(nullptr); 383 emitInlineeLinesSubsection(); 384 385 // Emit per-function debug information. 386 for (auto &P : FnDebugInfo) 387 if (!P.first->isDeclarationForLinker()) 388 emitDebugInfoForFunction(P.first, P.second); 389 390 // Emit global variable debug information. 391 setCurrentSubprogram(nullptr); 392 emitDebugInfoForGlobals(); 393 394 // Emit retained types. 395 emitDebugInfoForRetainedTypes(); 396 397 // Switch back to the generic .debug$S section after potentially processing 398 // comdat symbol sections. 399 switchToDebugSectionForSymbol(nullptr); 400 401 // Emit UDT records for any types used by global variables. 402 if (!GlobalUDTs.empty()) { 403 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 404 emitDebugInfoForUDTs(GlobalUDTs); 405 endCVSubsection(SymbolsEnd); 406 } 407 408 // This subsection holds a file index to offset in string table table. 409 OS.AddComment("File index to string table offset subsection"); 410 OS.EmitCVFileChecksumsDirective(); 411 412 // This subsection holds the string table. 413 OS.AddComment("String table"); 414 OS.EmitCVStringTableDirective(); 415 416 // Emit type information last, so that any types we translate while emitting 417 // function info are included. 418 emitTypeInformation(); 419 420 clear(); 421 } 422 423 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 424 // Microsoft's linker seems to have trouble with symbol names longer than 425 // 0xffd8 bytes. 426 S = S.substr(0, 0xffd8); 427 SmallString<32> NullTerminatedString(S); 428 NullTerminatedString.push_back('\0'); 429 OS.EmitBytes(NullTerminatedString); 430 } 431 432 void CodeViewDebug::emitTypeInformation() { 433 // Do nothing if we have no debug info or if no non-trivial types were emitted 434 // to TypeTable during codegen. 435 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 436 if (!CU_Nodes) 437 return; 438 if (TypeTable.empty()) 439 return; 440 441 // Start the .debug$T section with 0x4. 442 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 443 emitCodeViewMagicVersion(); 444 445 SmallString<8> CommentPrefix; 446 if (OS.isVerboseAsm()) { 447 CommentPrefix += '\t'; 448 CommentPrefix += Asm->MAI->getCommentString(); 449 CommentPrefix += ' '; 450 } 451 452 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false); 453 TypeTable.ForEachRecord( 454 [&](TypeIndex Index, StringRef Record) { 455 if (OS.isVerboseAsm()) { 456 // Emit a block comment describing the type record for readability. 457 SmallString<512> CommentBlock; 458 raw_svector_ostream CommentOS(CommentBlock); 459 ScopedPrinter SP(CommentOS); 460 SP.setPrefix(CommentPrefix); 461 CVTD.setPrinter(&SP); 462 Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()}); 463 if (E) { 464 logAllUnhandledErrors(std::move(E), errs(), "error: "); 465 llvm_unreachable("produced malformed type record"); 466 } 467 // emitRawComment will insert its own tab and comment string before 468 // the first line, so strip off our first one. It also prints its own 469 // newline. 470 OS.emitRawComment( 471 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 472 } else { 473 #ifndef NDEBUG 474 // Assert that the type data is valid even if we aren't dumping 475 // comments. The MSVC linker doesn't do much type record validation, 476 // so the first link of an invalid type record can succeed while 477 // subsequent links will fail with LNK1285. 478 ByteStream<> Stream({Record.bytes_begin(), Record.bytes_end()}); 479 CVTypeArray Types; 480 StreamReader Reader(Stream); 481 Error E = Reader.readArray(Types, Reader.getLength()); 482 if (!E) { 483 TypeVisitorCallbacks C; 484 E = CVTypeVisitor(C).visitTypeStream(Types); 485 } 486 if (E) { 487 logAllUnhandledErrors(std::move(E), errs(), "error: "); 488 llvm_unreachable("produced malformed type record"); 489 } 490 #endif 491 } 492 OS.EmitBinaryData(Record); 493 }); 494 } 495 496 void CodeViewDebug::emitInlineeLinesSubsection() { 497 if (InlinedSubprograms.empty()) 498 return; 499 500 OS.AddComment("Inlinee lines subsection"); 501 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 502 503 // We don't provide any extra file info. 504 // FIXME: Find out if debuggers use this info. 505 OS.AddComment("Inlinee lines signature"); 506 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 507 508 for (const DISubprogram *SP : InlinedSubprograms) { 509 assert(TypeIndices.count({SP, nullptr})); 510 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 511 512 OS.AddBlankLine(); 513 unsigned FileId = maybeRecordFile(SP->getFile()); 514 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 515 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 516 OS.AddBlankLine(); 517 // The filechecksum table uses 8 byte entries for now, and file ids start at 518 // 1. 519 unsigned FileOffset = (FileId - 1) * 8; 520 OS.AddComment("Type index of inlined function"); 521 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 522 OS.AddComment("Offset into filechecksum table"); 523 OS.EmitIntValue(FileOffset, 4); 524 OS.AddComment("Starting line number"); 525 OS.EmitIntValue(SP->getLine(), 4); 526 } 527 528 endCVSubsection(InlineEnd); 529 } 530 531 void CodeViewDebug::collectInlineSiteChildren( 532 SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI, 533 const InlineSite &Site) { 534 for (const DILocation *ChildSiteLoc : Site.ChildSites) { 535 auto I = FI.InlineSites.find(ChildSiteLoc); 536 const InlineSite &ChildSite = I->second; 537 Children.push_back(ChildSite.SiteFuncId); 538 collectInlineSiteChildren(Children, FI, ChildSite); 539 } 540 } 541 542 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 543 const DILocation *InlinedAt, 544 const InlineSite &Site) { 545 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 546 *InlineEnd = MMI->getContext().createTempSymbol(); 547 548 assert(TypeIndices.count({Site.Inlinee, nullptr})); 549 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 550 551 // SymbolRecord 552 OS.AddComment("Record length"); 553 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 554 OS.EmitLabel(InlineBegin); 555 OS.AddComment("Record kind: S_INLINESITE"); 556 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 557 558 OS.AddComment("PtrParent"); 559 OS.EmitIntValue(0, 4); 560 OS.AddComment("PtrEnd"); 561 OS.EmitIntValue(0, 4); 562 OS.AddComment("Inlinee type index"); 563 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 564 565 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 566 unsigned StartLineNum = Site.Inlinee->getLine(); 567 SmallVector<unsigned, 3> SecondaryFuncIds; 568 collectInlineSiteChildren(SecondaryFuncIds, FI, Site); 569 570 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 571 FI.Begin, FI.End, SecondaryFuncIds); 572 573 OS.EmitLabel(InlineEnd); 574 575 emitLocalVariableList(Site.InlinedLocals); 576 577 // Recurse on child inlined call sites before closing the scope. 578 for (const DILocation *ChildSite : Site.ChildSites) { 579 auto I = FI.InlineSites.find(ChildSite); 580 assert(I != FI.InlineSites.end() && 581 "child site not in function inline site map"); 582 emitInlinedCallSite(FI, ChildSite, I->second); 583 } 584 585 // Close the scope. 586 OS.AddComment("Record length"); 587 OS.EmitIntValue(2, 2); // RecordLength 588 OS.AddComment("Record kind: S_INLINESITE_END"); 589 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 590 } 591 592 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 593 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 594 // comdat key. A section may be comdat because of -ffunction-sections or 595 // because it is comdat in the IR. 596 MCSectionCOFF *GVSec = 597 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 598 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 599 600 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 601 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 602 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 603 604 OS.SwitchSection(DebugSec); 605 606 // Emit the magic version number if this is the first time we've switched to 607 // this section. 608 if (ComdatDebugSections.insert(DebugSec).second) 609 emitCodeViewMagicVersion(); 610 } 611 612 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 613 FunctionInfo &FI) { 614 // For each function there is a separate subsection 615 // which holds the PC to file:line table. 616 const MCSymbol *Fn = Asm->getSymbol(GV); 617 assert(Fn); 618 619 // Switch to the to a comdat section, if appropriate. 620 switchToDebugSectionForSymbol(Fn); 621 622 std::string FuncName; 623 auto *SP = GV->getSubprogram(); 624 setCurrentSubprogram(SP); 625 626 // If we have a display name, build the fully qualified name by walking the 627 // chain of scopes. 628 if (SP != nullptr && !SP->getDisplayName().empty()) 629 FuncName = 630 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 631 632 // If our DISubprogram name is empty, use the mangled name. 633 if (FuncName.empty()) 634 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 635 636 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 637 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 638 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 639 { 640 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 641 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 642 OS.AddComment("Record length"); 643 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 644 OS.EmitLabel(ProcRecordBegin); 645 646 if (GV->hasLocalLinkage()) { 647 OS.AddComment("Record kind: S_LPROC32_ID"); 648 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 649 } else { 650 OS.AddComment("Record kind: S_GPROC32_ID"); 651 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 652 } 653 654 // These fields are filled in by tools like CVPACK which run after the fact. 655 OS.AddComment("PtrParent"); 656 OS.EmitIntValue(0, 4); 657 OS.AddComment("PtrEnd"); 658 OS.EmitIntValue(0, 4); 659 OS.AddComment("PtrNext"); 660 OS.EmitIntValue(0, 4); 661 // This is the important bit that tells the debugger where the function 662 // code is located and what's its size: 663 OS.AddComment("Code size"); 664 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 665 OS.AddComment("Offset after prologue"); 666 OS.EmitIntValue(0, 4); 667 OS.AddComment("Offset before epilogue"); 668 OS.EmitIntValue(0, 4); 669 OS.AddComment("Function type index"); 670 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 671 OS.AddComment("Function section relative address"); 672 OS.EmitCOFFSecRel32(Fn); 673 OS.AddComment("Function section index"); 674 OS.EmitCOFFSectionIndex(Fn); 675 OS.AddComment("Flags"); 676 OS.EmitIntValue(0, 1); 677 // Emit the function display name as a null-terminated string. 678 OS.AddComment("Function name"); 679 // Truncate the name so we won't overflow the record length field. 680 emitNullTerminatedSymbolName(OS, FuncName); 681 OS.EmitLabel(ProcRecordEnd); 682 683 emitLocalVariableList(FI.Locals); 684 685 // Emit inlined call site information. Only emit functions inlined directly 686 // into the parent function. We'll emit the other sites recursively as part 687 // of their parent inline site. 688 for (const DILocation *InlinedAt : FI.ChildSites) { 689 auto I = FI.InlineSites.find(InlinedAt); 690 assert(I != FI.InlineSites.end() && 691 "child site not in function inline site map"); 692 emitInlinedCallSite(FI, InlinedAt, I->second); 693 } 694 695 if (SP != nullptr) 696 emitDebugInfoForUDTs(LocalUDTs); 697 698 // We're done with this function. 699 OS.AddComment("Record length"); 700 OS.EmitIntValue(0x0002, 2); 701 OS.AddComment("Record kind: S_PROC_ID_END"); 702 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 703 } 704 endCVSubsection(SymbolsEnd); 705 706 // We have an assembler directive that takes care of the whole line table. 707 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 708 } 709 710 CodeViewDebug::LocalVarDefRange 711 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 712 LocalVarDefRange DR; 713 DR.InMemory = -1; 714 DR.DataOffset = Offset; 715 assert(DR.DataOffset == Offset && "truncation"); 716 DR.StructOffset = 0; 717 DR.CVRegister = CVRegister; 718 return DR; 719 } 720 721 CodeViewDebug::LocalVarDefRange 722 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) { 723 LocalVarDefRange DR; 724 DR.InMemory = 0; 725 DR.DataOffset = 0; 726 DR.StructOffset = 0; 727 DR.CVRegister = CVRegister; 728 return DR; 729 } 730 731 void CodeViewDebug::collectVariableInfoFromMMITable( 732 DenseSet<InlinedVariable> &Processed) { 733 const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget(); 734 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 735 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 736 737 for (const MachineModuleInfo::VariableDbgInfo &VI : 738 MMI->getVariableDbgInfo()) { 739 if (!VI.Var) 740 continue; 741 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 742 "Expected inlined-at fields to agree"); 743 744 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 745 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 746 747 // If variable scope is not found then skip this variable. 748 if (!Scope) 749 continue; 750 751 // Get the frame register used and the offset. 752 unsigned FrameReg = 0; 753 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 754 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 755 756 // Calculate the label ranges. 757 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 758 for (const InsnRange &Range : Scope->getRanges()) { 759 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 760 const MCSymbol *End = getLabelAfterInsn(Range.second); 761 End = End ? End : Asm->getFunctionEnd(); 762 DefRange.Ranges.emplace_back(Begin, End); 763 } 764 765 LocalVariable Var; 766 Var.DIVar = VI.Var; 767 Var.DefRanges.emplace_back(std::move(DefRange)); 768 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 769 } 770 } 771 772 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 773 DenseSet<InlinedVariable> Processed; 774 // Grab the variable info that was squirreled away in the MMI side-table. 775 collectVariableInfoFromMMITable(Processed); 776 777 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 778 779 for (const auto &I : DbgValues) { 780 InlinedVariable IV = I.first; 781 if (Processed.count(IV)) 782 continue; 783 const DILocalVariable *DIVar = IV.first; 784 const DILocation *InlinedAt = IV.second; 785 786 // Instruction ranges, specifying where IV is accessible. 787 const auto &Ranges = I.second; 788 789 LexicalScope *Scope = nullptr; 790 if (InlinedAt) 791 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 792 else 793 Scope = LScopes.findLexicalScope(DIVar->getScope()); 794 // If variable scope is not found then skip this variable. 795 if (!Scope) 796 continue; 797 798 LocalVariable Var; 799 Var.DIVar = DIVar; 800 801 // Calculate the definition ranges. 802 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 803 const InsnRange &Range = *I; 804 const MachineInstr *DVInst = Range.first; 805 assert(DVInst->isDebugValue() && "Invalid History entry"); 806 const DIExpression *DIExpr = DVInst->getDebugExpression(); 807 808 // Bail if there is a complex DWARF expression for now. 809 if (DIExpr && DIExpr->getNumElements() > 0) 810 continue; 811 812 // Bail if operand 0 is not a valid register. This means the variable is a 813 // simple constant, or is described by a complex expression. 814 // FIXME: Find a way to represent constant variables, since they are 815 // relatively common. 816 unsigned Reg = 817 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 818 if (Reg == 0) 819 continue; 820 821 // Handle the two cases we can handle: indirect in memory and in register. 822 bool IsIndirect = DVInst->getOperand(1).isImm(); 823 unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg()); 824 { 825 LocalVarDefRange DefRange; 826 if (IsIndirect) { 827 int64_t Offset = DVInst->getOperand(1).getImm(); 828 DefRange = createDefRangeMem(CVReg, Offset); 829 } else { 830 DefRange = createDefRangeReg(CVReg); 831 } 832 if (Var.DefRanges.empty() || 833 Var.DefRanges.back().isDifferentLocation(DefRange)) { 834 Var.DefRanges.emplace_back(std::move(DefRange)); 835 } 836 } 837 838 // Compute the label range. 839 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 840 const MCSymbol *End = getLabelAfterInsn(Range.second); 841 if (!End) { 842 if (std::next(I) != E) 843 End = getLabelBeforeInsn(std::next(I)->first); 844 else 845 End = Asm->getFunctionEnd(); 846 } 847 848 // If the last range end is our begin, just extend the last range. 849 // Otherwise make a new range. 850 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 851 Var.DefRanges.back().Ranges; 852 if (!Ranges.empty() && Ranges.back().second == Begin) 853 Ranges.back().second = End; 854 else 855 Ranges.emplace_back(Begin, End); 856 857 // FIXME: Do more range combining. 858 } 859 860 recordLocalVariable(std::move(Var), InlinedAt); 861 } 862 } 863 864 void CodeViewDebug::beginFunction(const MachineFunction *MF) { 865 assert(!CurFn && "Can't process two functions at once!"); 866 867 if (!Asm || !MMI->hasDebugInfo()) 868 return; 869 870 DebugHandlerBase::beginFunction(MF); 871 872 const Function *GV = MF->getFunction(); 873 assert(FnDebugInfo.count(GV) == false); 874 CurFn = &FnDebugInfo[GV]; 875 CurFn->FuncId = NextFuncId++; 876 CurFn->Begin = Asm->getFunctionBegin(); 877 878 // Find the end of the function prolog. First known non-DBG_VALUE and 879 // non-frame setup location marks the beginning of the function body. 880 // FIXME: is there a simpler a way to do this? Can we just search 881 // for the first instruction of the function, not the last of the prolog? 882 DebugLoc PrologEndLoc; 883 bool EmptyPrologue = true; 884 for (const auto &MBB : *MF) { 885 for (const auto &MI : MBB) { 886 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 887 MI.getDebugLoc()) { 888 PrologEndLoc = MI.getDebugLoc(); 889 break; 890 } else if (!MI.isDebugValue()) { 891 EmptyPrologue = false; 892 } 893 } 894 } 895 896 // Record beginning of function if we have a non-empty prologue. 897 if (PrologEndLoc && !EmptyPrologue) { 898 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 899 maybeRecordLocation(FnStartDL, MF); 900 } 901 } 902 903 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 904 // Don't record empty UDTs. 905 if (Ty->getName().empty()) 906 return; 907 908 SmallVector<StringRef, 5> QualifiedNameComponents; 909 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 910 Ty->getScope().resolve(), QualifiedNameComponents); 911 912 std::string FullyQualifiedName = 913 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 914 915 if (ClosestSubprogram == nullptr) 916 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 917 else if (ClosestSubprogram == CurrentSubprogram) 918 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 919 920 // TODO: What if the ClosestSubprogram is neither null or the current 921 // subprogram? Currently, the UDT just gets dropped on the floor. 922 // 923 // The current behavior is not desirable. To get maximal fidelity, we would 924 // need to perform all type translation before beginning emission of .debug$S 925 // and then make LocalUDTs a member of FunctionInfo 926 } 927 928 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 929 // Generic dispatch for lowering an unknown type. 930 switch (Ty->getTag()) { 931 case dwarf::DW_TAG_array_type: 932 return lowerTypeArray(cast<DICompositeType>(Ty)); 933 case dwarf::DW_TAG_typedef: 934 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 935 case dwarf::DW_TAG_base_type: 936 return lowerTypeBasic(cast<DIBasicType>(Ty)); 937 case dwarf::DW_TAG_pointer_type: 938 case dwarf::DW_TAG_reference_type: 939 case dwarf::DW_TAG_rvalue_reference_type: 940 return lowerTypePointer(cast<DIDerivedType>(Ty)); 941 case dwarf::DW_TAG_ptr_to_member_type: 942 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 943 case dwarf::DW_TAG_const_type: 944 case dwarf::DW_TAG_volatile_type: 945 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 946 case dwarf::DW_TAG_subroutine_type: 947 if (ClassTy) { 948 // The member function type of a member function pointer has no 949 // ThisAdjustment. 950 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 951 /*ThisAdjustment=*/0); 952 } 953 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 954 case dwarf::DW_TAG_enumeration_type: 955 return lowerTypeEnum(cast<DICompositeType>(Ty)); 956 case dwarf::DW_TAG_class_type: 957 case dwarf::DW_TAG_structure_type: 958 return lowerTypeClass(cast<DICompositeType>(Ty)); 959 case dwarf::DW_TAG_union_type: 960 return lowerTypeUnion(cast<DICompositeType>(Ty)); 961 default: 962 // Use the null type index. 963 return TypeIndex(); 964 } 965 } 966 967 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 968 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 969 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 970 StringRef TypeName = Ty->getName(); 971 972 addToUDTs(Ty, UnderlyingTypeIndex); 973 974 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 975 TypeName == "HRESULT") 976 return TypeIndex(SimpleTypeKind::HResult); 977 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 978 TypeName == "wchar_t") 979 return TypeIndex(SimpleTypeKind::WideCharacter); 980 981 return UnderlyingTypeIndex; 982 } 983 984 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 985 DITypeRef ElementTypeRef = Ty->getBaseType(); 986 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 987 // IndexType is size_t, which depends on the bitness of the target. 988 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 989 ? TypeIndex(SimpleTypeKind::UInt64Quad) 990 : TypeIndex(SimpleTypeKind::UInt32Long); 991 992 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 993 994 bool UndefinedSubrange = false; 995 996 // FIXME: 997 // There is a bug in the front-end where an array of a structure, which was 998 // declared as incomplete structure first, ends up not getting a size assigned 999 // to it. (PR28303) 1000 // Example: 1001 // struct A(*p)[3]; 1002 // struct A { int f; } a[3]; 1003 // 1004 // This needs to be fixed in the front-end, but in the meantime we don't want 1005 // to trigger an assertion because of this. 1006 if (Ty->getSizeInBits() == 0) { 1007 UndefinedSubrange = true; 1008 } 1009 1010 // Add subranges to array type. 1011 DINodeArray Elements = Ty->getElements(); 1012 for (int i = Elements.size() - 1; i >= 0; --i) { 1013 const DINode *Element = Elements[i]; 1014 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1015 1016 const DISubrange *Subrange = cast<DISubrange>(Element); 1017 assert(Subrange->getLowerBound() == 0 && 1018 "codeview doesn't support subranges with lower bounds"); 1019 int64_t Count = Subrange->getCount(); 1020 1021 // Variable Length Array (VLA) has Count equal to '-1'. 1022 // Replace with Count '1', assume it is the minimum VLA length. 1023 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1024 if (Count == -1) { 1025 Count = 1; 1026 UndefinedSubrange = true; 1027 } 1028 1029 StringRef Name = (i == 0) ? Ty->getName() : ""; 1030 // Update the element size and element type index for subsequent subranges. 1031 ElementSize *= Count; 1032 ElementTypeIndex = TypeTable.writeArray( 1033 ArrayRecord(ElementTypeIndex, IndexType, ElementSize, Name)); 1034 } 1035 1036 (void)UndefinedSubrange; 1037 assert(UndefinedSubrange || ElementSize == (Ty->getSizeInBits() / 8)); 1038 1039 return ElementTypeIndex; 1040 } 1041 1042 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1043 TypeIndex Index; 1044 dwarf::TypeKind Kind; 1045 uint32_t ByteSize; 1046 1047 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1048 ByteSize = Ty->getSizeInBits() / 8; 1049 1050 SimpleTypeKind STK = SimpleTypeKind::None; 1051 switch (Kind) { 1052 case dwarf::DW_ATE_address: 1053 // FIXME: Translate 1054 break; 1055 case dwarf::DW_ATE_boolean: 1056 switch (ByteSize) { 1057 case 1: STK = SimpleTypeKind::Boolean8; break; 1058 case 2: STK = SimpleTypeKind::Boolean16; break; 1059 case 4: STK = SimpleTypeKind::Boolean32; break; 1060 case 8: STK = SimpleTypeKind::Boolean64; break; 1061 case 16: STK = SimpleTypeKind::Boolean128; break; 1062 } 1063 break; 1064 case dwarf::DW_ATE_complex_float: 1065 switch (ByteSize) { 1066 case 2: STK = SimpleTypeKind::Complex16; break; 1067 case 4: STK = SimpleTypeKind::Complex32; break; 1068 case 8: STK = SimpleTypeKind::Complex64; break; 1069 case 10: STK = SimpleTypeKind::Complex80; break; 1070 case 16: STK = SimpleTypeKind::Complex128; break; 1071 } 1072 break; 1073 case dwarf::DW_ATE_float: 1074 switch (ByteSize) { 1075 case 2: STK = SimpleTypeKind::Float16; break; 1076 case 4: STK = SimpleTypeKind::Float32; break; 1077 case 6: STK = SimpleTypeKind::Float48; break; 1078 case 8: STK = SimpleTypeKind::Float64; break; 1079 case 10: STK = SimpleTypeKind::Float80; break; 1080 case 16: STK = SimpleTypeKind::Float128; break; 1081 } 1082 break; 1083 case dwarf::DW_ATE_signed: 1084 switch (ByteSize) { 1085 case 1: STK = SimpleTypeKind::SByte; break; 1086 case 2: STK = SimpleTypeKind::Int16Short; break; 1087 case 4: STK = SimpleTypeKind::Int32; break; 1088 case 8: STK = SimpleTypeKind::Int64Quad; break; 1089 case 16: STK = SimpleTypeKind::Int128Oct; break; 1090 } 1091 break; 1092 case dwarf::DW_ATE_unsigned: 1093 switch (ByteSize) { 1094 case 1: STK = SimpleTypeKind::Byte; break; 1095 case 2: STK = SimpleTypeKind::UInt16Short; break; 1096 case 4: STK = SimpleTypeKind::UInt32; break; 1097 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1098 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1099 } 1100 break; 1101 case dwarf::DW_ATE_UTF: 1102 switch (ByteSize) { 1103 case 2: STK = SimpleTypeKind::Character16; break; 1104 case 4: STK = SimpleTypeKind::Character32; break; 1105 } 1106 break; 1107 case dwarf::DW_ATE_signed_char: 1108 if (ByteSize == 1) 1109 STK = SimpleTypeKind::SignedCharacter; 1110 break; 1111 case dwarf::DW_ATE_unsigned_char: 1112 if (ByteSize == 1) 1113 STK = SimpleTypeKind::UnsignedCharacter; 1114 break; 1115 default: 1116 break; 1117 } 1118 1119 // Apply some fixups based on the source-level type name. 1120 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1121 STK = SimpleTypeKind::Int32Long; 1122 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1123 STK = SimpleTypeKind::UInt32Long; 1124 if (STK == SimpleTypeKind::UInt16Short && 1125 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1126 STK = SimpleTypeKind::WideCharacter; 1127 if ((STK == SimpleTypeKind::SignedCharacter || 1128 STK == SimpleTypeKind::UnsignedCharacter) && 1129 Ty->getName() == "char") 1130 STK = SimpleTypeKind::NarrowCharacter; 1131 1132 return TypeIndex(STK); 1133 } 1134 1135 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1136 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1137 1138 // While processing the type being pointed to it is possible we already 1139 // created this pointer type. If so, we check here and return the existing 1140 // pointer type. 1141 auto I = TypeIndices.find({Ty, nullptr}); 1142 if (I != TypeIndices.end()) 1143 return I->second; 1144 1145 // Pointers to simple types can use SimpleTypeMode, rather than having a 1146 // dedicated pointer type record. 1147 if (PointeeTI.isSimple() && 1148 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1149 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1150 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1151 ? SimpleTypeMode::NearPointer64 1152 : SimpleTypeMode::NearPointer32; 1153 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1154 } 1155 1156 PointerKind PK = 1157 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1158 PointerMode PM = PointerMode::Pointer; 1159 switch (Ty->getTag()) { 1160 default: llvm_unreachable("not a pointer tag type"); 1161 case dwarf::DW_TAG_pointer_type: 1162 PM = PointerMode::Pointer; 1163 break; 1164 case dwarf::DW_TAG_reference_type: 1165 PM = PointerMode::LValueReference; 1166 break; 1167 case dwarf::DW_TAG_rvalue_reference_type: 1168 PM = PointerMode::RValueReference; 1169 break; 1170 } 1171 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1172 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1173 // do. 1174 PointerOptions PO = PointerOptions::None; 1175 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1176 return TypeTable.writePointer(PR); 1177 } 1178 1179 static PointerToMemberRepresentation 1180 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1181 // SizeInBytes being zero generally implies that the member pointer type was 1182 // incomplete, which can happen if it is part of a function prototype. In this 1183 // case, use the unknown model instead of the general model. 1184 if (IsPMF) { 1185 switch (Flags & DINode::FlagPtrToMemberRep) { 1186 case 0: 1187 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1188 : PointerToMemberRepresentation::GeneralFunction; 1189 case DINode::FlagSingleInheritance: 1190 return PointerToMemberRepresentation::SingleInheritanceFunction; 1191 case DINode::FlagMultipleInheritance: 1192 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1193 case DINode::FlagVirtualInheritance: 1194 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1195 } 1196 } else { 1197 switch (Flags & DINode::FlagPtrToMemberRep) { 1198 case 0: 1199 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1200 : PointerToMemberRepresentation::GeneralData; 1201 case DINode::FlagSingleInheritance: 1202 return PointerToMemberRepresentation::SingleInheritanceData; 1203 case DINode::FlagMultipleInheritance: 1204 return PointerToMemberRepresentation::MultipleInheritanceData; 1205 case DINode::FlagVirtualInheritance: 1206 return PointerToMemberRepresentation::VirtualInheritanceData; 1207 } 1208 } 1209 llvm_unreachable("invalid ptr to member representation"); 1210 } 1211 1212 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1213 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1214 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1215 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1216 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1217 : PointerKind::Near32; 1218 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1219 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1220 : PointerMode::PointerToDataMember; 1221 PointerOptions PO = PointerOptions::None; // FIXME 1222 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1223 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1224 MemberPointerInfo MPI( 1225 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1226 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1227 return TypeTable.writePointer(PR); 1228 } 1229 1230 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1231 /// have a translation, use the NearC convention. 1232 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1233 switch (DwarfCC) { 1234 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1235 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1236 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1237 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1238 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1239 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1240 } 1241 return CallingConvention::NearC; 1242 } 1243 1244 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1245 ModifierOptions Mods = ModifierOptions::None; 1246 bool IsModifier = true; 1247 const DIType *BaseTy = Ty; 1248 while (IsModifier && BaseTy) { 1249 // FIXME: Need to add DWARF tag for __unaligned. 1250 switch (BaseTy->getTag()) { 1251 case dwarf::DW_TAG_const_type: 1252 Mods |= ModifierOptions::Const; 1253 break; 1254 case dwarf::DW_TAG_volatile_type: 1255 Mods |= ModifierOptions::Volatile; 1256 break; 1257 default: 1258 IsModifier = false; 1259 break; 1260 } 1261 if (IsModifier) 1262 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1263 } 1264 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1265 1266 // While processing the type being pointed to, it is possible we already 1267 // created this modifier type. If so, we check here and return the existing 1268 // modifier type. 1269 auto I = TypeIndices.find({Ty, nullptr}); 1270 if (I != TypeIndices.end()) 1271 return I->second; 1272 1273 ModifierRecord MR(ModifiedTI, Mods); 1274 return TypeTable.writeModifier(MR); 1275 } 1276 1277 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1278 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1279 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1280 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1281 1282 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1283 ArrayRef<TypeIndex> ArgTypeIndices = None; 1284 if (!ReturnAndArgTypeIndices.empty()) { 1285 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1286 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1287 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1288 } 1289 1290 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1291 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1292 1293 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1294 1295 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1296 ArgTypeIndices.size(), ArgListIndex); 1297 return TypeTable.writeProcedure(Procedure); 1298 } 1299 1300 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1301 const DIType *ClassTy, 1302 int ThisAdjustment) { 1303 // Lower the containing class type. 1304 TypeIndex ClassType = getTypeIndex(ClassTy); 1305 1306 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1307 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1308 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1309 1310 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1311 ArrayRef<TypeIndex> ArgTypeIndices = None; 1312 if (!ReturnAndArgTypeIndices.empty()) { 1313 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1314 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1315 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1316 } 1317 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1318 if (!ArgTypeIndices.empty()) { 1319 ThisTypeIndex = ArgTypeIndices.front(); 1320 ArgTypeIndices = ArgTypeIndices.drop_front(); 1321 } 1322 1323 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1324 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1325 1326 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1327 1328 // TODO: Need to use the correct values for: 1329 // FunctionOptions 1330 // ThisPointerAdjustment. 1331 TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord( 1332 ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None, 1333 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment)); 1334 1335 return TI; 1336 } 1337 1338 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1339 switch (Flags & DINode::FlagAccessibility) { 1340 case DINode::FlagPrivate: return MemberAccess::Private; 1341 case DINode::FlagPublic: return MemberAccess::Public; 1342 case DINode::FlagProtected: return MemberAccess::Protected; 1343 case 0: 1344 // If there was no explicit access control, provide the default for the tag. 1345 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1346 : MemberAccess::Public; 1347 } 1348 llvm_unreachable("access flags are exclusive"); 1349 } 1350 1351 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1352 if (SP->isArtificial()) 1353 return MethodOptions::CompilerGenerated; 1354 1355 // FIXME: Handle other MethodOptions. 1356 1357 return MethodOptions::None; 1358 } 1359 1360 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1361 bool Introduced) { 1362 switch (SP->getVirtuality()) { 1363 case dwarf::DW_VIRTUALITY_none: 1364 break; 1365 case dwarf::DW_VIRTUALITY_virtual: 1366 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1367 case dwarf::DW_VIRTUALITY_pure_virtual: 1368 return Introduced ? MethodKind::PureIntroducingVirtual 1369 : MethodKind::PureVirtual; 1370 default: 1371 llvm_unreachable("unhandled virtuality case"); 1372 } 1373 1374 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1375 1376 return MethodKind::Vanilla; 1377 } 1378 1379 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1380 switch (Ty->getTag()) { 1381 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1382 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1383 } 1384 llvm_unreachable("unexpected tag"); 1385 } 1386 1387 /// Return ClassOptions that should be present on both the forward declaration 1388 /// and the defintion of a tag type. 1389 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1390 ClassOptions CO = ClassOptions::None; 1391 1392 // MSVC always sets this flag, even for local types. Clang doesn't always 1393 // appear to give every type a linkage name, which may be problematic for us. 1394 // FIXME: Investigate the consequences of not following them here. 1395 if (!Ty->getIdentifier().empty()) 1396 CO |= ClassOptions::HasUniqueName; 1397 1398 // Put the Nested flag on a type if it appears immediately inside a tag type. 1399 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1400 // here. That flag is only set on definitions, and not forward declarations. 1401 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1402 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1403 CO |= ClassOptions::Nested; 1404 1405 // Put the Scoped flag on function-local types. 1406 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1407 Scope = Scope->getScope().resolve()) { 1408 if (isa<DISubprogram>(Scope)) { 1409 CO |= ClassOptions::Scoped; 1410 break; 1411 } 1412 } 1413 1414 return CO; 1415 } 1416 1417 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1418 ClassOptions CO = getCommonClassOptions(Ty); 1419 TypeIndex FTI; 1420 unsigned EnumeratorCount = 0; 1421 1422 if (Ty->isForwardDecl()) { 1423 CO |= ClassOptions::ForwardReference; 1424 } else { 1425 FieldListRecordBuilder Fields; 1426 for (const DINode *Element : Ty->getElements()) { 1427 // We assume that the frontend provides all members in source declaration 1428 // order, which is what MSVC does. 1429 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1430 Fields.writeEnumerator(EnumeratorRecord( 1431 MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()), 1432 Enumerator->getName())); 1433 EnumeratorCount++; 1434 } 1435 } 1436 FTI = TypeTable.writeFieldList(Fields); 1437 } 1438 1439 std::string FullName = getFullyQualifiedName(Ty); 1440 1441 return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName, 1442 Ty->getIdentifier(), 1443 getTypeIndex(Ty->getBaseType()))); 1444 } 1445 1446 //===----------------------------------------------------------------------===// 1447 // ClassInfo 1448 //===----------------------------------------------------------------------===// 1449 1450 struct llvm::ClassInfo { 1451 struct MemberInfo { 1452 const DIDerivedType *MemberTypeNode; 1453 uint64_t BaseOffset; 1454 }; 1455 // [MemberInfo] 1456 typedef std::vector<MemberInfo> MemberList; 1457 1458 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1459 // MethodName -> MethodsList 1460 typedef MapVector<MDString *, MethodsList> MethodsMap; 1461 1462 /// Base classes. 1463 std::vector<const DIDerivedType *> Inheritance; 1464 1465 /// Direct members. 1466 MemberList Members; 1467 // Direct overloaded methods gathered by name. 1468 MethodsMap Methods; 1469 1470 std::vector<const DICompositeType *> NestedClasses; 1471 }; 1472 1473 void CodeViewDebug::clear() { 1474 assert(CurFn == nullptr); 1475 FileIdMap.clear(); 1476 FnDebugInfo.clear(); 1477 FileToFilepathMap.clear(); 1478 LocalUDTs.clear(); 1479 GlobalUDTs.clear(); 1480 TypeIndices.clear(); 1481 CompleteTypeIndices.clear(); 1482 } 1483 1484 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1485 const DIDerivedType *DDTy) { 1486 if (!DDTy->getName().empty()) { 1487 Info.Members.push_back({DDTy, 0}); 1488 return; 1489 } 1490 // An unnamed member must represent a nested struct or union. Add all the 1491 // indirect fields to the current record. 1492 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1493 uint64_t Offset = DDTy->getOffsetInBits(); 1494 const DIType *Ty = DDTy->getBaseType().resolve(); 1495 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1496 ClassInfo NestedInfo = collectClassInfo(DCTy); 1497 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1498 Info.Members.push_back( 1499 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1500 } 1501 1502 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1503 ClassInfo Info; 1504 // Add elements to structure type. 1505 DINodeArray Elements = Ty->getElements(); 1506 for (auto *Element : Elements) { 1507 // We assume that the frontend provides all members in source declaration 1508 // order, which is what MSVC does. 1509 if (!Element) 1510 continue; 1511 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1512 Info.Methods[SP->getRawName()].push_back(SP); 1513 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1514 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1515 collectMemberInfo(Info, DDTy); 1516 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1517 Info.Inheritance.push_back(DDTy); 1518 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1519 // Ignore friend members. It appears that MSVC emitted info about 1520 // friends in the past, but modern versions do not. 1521 } 1522 // FIXME: Get Clang to emit function virtual table here and handle it. 1523 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1524 Info.NestedClasses.push_back(Composite); 1525 } 1526 // Skip other unrecognized kinds of elements. 1527 } 1528 return Info; 1529 } 1530 1531 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1532 // First, construct the forward decl. Don't look into Ty to compute the 1533 // forward decl options, since it might not be available in all TUs. 1534 TypeRecordKind Kind = getRecordKind(Ty); 1535 ClassOptions CO = 1536 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1537 std::string FullName = getFullyQualifiedName(Ty); 1538 TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord( 1539 Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(), 1540 TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier())); 1541 if (!Ty->isForwardDecl()) 1542 DeferredCompleteTypes.push_back(Ty); 1543 return FwdDeclTI; 1544 } 1545 1546 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1547 // Construct the field list and complete type record. 1548 TypeRecordKind Kind = getRecordKind(Ty); 1549 ClassOptions CO = getCommonClassOptions(Ty); 1550 TypeIndex FieldTI; 1551 TypeIndex VShapeTI; 1552 unsigned FieldCount; 1553 bool ContainsNestedClass; 1554 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1555 lowerRecordFieldList(Ty); 1556 1557 if (ContainsNestedClass) 1558 CO |= ClassOptions::ContainsNestedClass; 1559 1560 std::string FullName = getFullyQualifiedName(Ty); 1561 1562 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1563 1564 TypeIndex ClassTI = TypeTable.writeClass(ClassRecord( 1565 Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI, 1566 TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier())); 1567 1568 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1569 ClassTI, TypeTable.writeStringId(StringIdRecord( 1570 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1571 Ty->getLine())); 1572 1573 addToUDTs(Ty, ClassTI); 1574 1575 return ClassTI; 1576 } 1577 1578 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1579 ClassOptions CO = 1580 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1581 std::string FullName = getFullyQualifiedName(Ty); 1582 TypeIndex FwdDeclTI = 1583 TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0, 1584 FullName, Ty->getIdentifier())); 1585 if (!Ty->isForwardDecl()) 1586 DeferredCompleteTypes.push_back(Ty); 1587 return FwdDeclTI; 1588 } 1589 1590 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1591 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1592 TypeIndex FieldTI; 1593 unsigned FieldCount; 1594 bool ContainsNestedClass; 1595 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1596 lowerRecordFieldList(Ty); 1597 1598 if (ContainsNestedClass) 1599 CO |= ClassOptions::ContainsNestedClass; 1600 1601 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1602 std::string FullName = getFullyQualifiedName(Ty); 1603 1604 TypeIndex UnionTI = TypeTable.writeUnion( 1605 UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName, 1606 Ty->getIdentifier())); 1607 1608 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1609 UnionTI, TypeTable.writeStringId(StringIdRecord( 1610 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1611 Ty->getLine())); 1612 1613 addToUDTs(Ty, UnionTI); 1614 1615 return UnionTI; 1616 } 1617 1618 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1619 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1620 // Manually count members. MSVC appears to count everything that generates a 1621 // field list record. Each individual overload in a method overload group 1622 // contributes to this count, even though the overload group is a single field 1623 // list record. 1624 unsigned MemberCount = 0; 1625 ClassInfo Info = collectClassInfo(Ty); 1626 FieldListRecordBuilder Fields; 1627 1628 // Create base classes. 1629 for (const DIDerivedType *I : Info.Inheritance) { 1630 if (I->getFlags() & DINode::FlagVirtual) { 1631 // Virtual base. 1632 // FIXME: Emit VBPtrOffset when the frontend provides it. 1633 unsigned VBPtrOffset = 0; 1634 // FIXME: Despite the accessor name, the offset is really in bytes. 1635 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1636 Fields.writeVirtualBaseClass(VirtualBaseClassRecord( 1637 translateAccessFlags(Ty->getTag(), I->getFlags()), 1638 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1639 VBTableIndex)); 1640 } else { 1641 assert(I->getOffsetInBits() % 8 == 0 && 1642 "bases must be on byte boundaries"); 1643 Fields.writeBaseClass(BaseClassRecord( 1644 translateAccessFlags(Ty->getTag(), I->getFlags()), 1645 getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8)); 1646 } 1647 } 1648 1649 // Create members. 1650 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1651 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1652 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1653 StringRef MemberName = Member->getName(); 1654 MemberAccess Access = 1655 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1656 1657 if (Member->isStaticMember()) { 1658 Fields.writeStaticDataMember( 1659 StaticDataMemberRecord(Access, MemberBaseType, MemberName)); 1660 MemberCount++; 1661 continue; 1662 } 1663 1664 // Data member. 1665 uint64_t MemberOffsetInBits = 1666 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1667 if (Member->isBitField()) { 1668 uint64_t StartBitOffset = MemberOffsetInBits; 1669 if (const auto *CI = 1670 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1671 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1672 } 1673 StartBitOffset -= MemberOffsetInBits; 1674 MemberBaseType = TypeTable.writeBitField(BitFieldRecord( 1675 MemberBaseType, Member->getSizeInBits(), StartBitOffset)); 1676 } 1677 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1678 Fields.writeDataMember(DataMemberRecord(Access, MemberBaseType, 1679 MemberOffsetInBytes, MemberName)); 1680 MemberCount++; 1681 } 1682 1683 // Create methods 1684 for (auto &MethodItr : Info.Methods) { 1685 StringRef Name = MethodItr.first->getString(); 1686 1687 std::vector<OneMethodRecord> Methods; 1688 for (const DISubprogram *SP : MethodItr.second) { 1689 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1690 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1691 1692 unsigned VFTableOffset = -1; 1693 if (Introduced) 1694 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1695 1696 Methods.push_back( 1697 OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced), 1698 translateMethodOptionFlags(SP), 1699 translateAccessFlags(Ty->getTag(), SP->getFlags()), 1700 VFTableOffset, Name)); 1701 MemberCount++; 1702 } 1703 assert(Methods.size() > 0 && "Empty methods map entry"); 1704 if (Methods.size() == 1) 1705 Fields.writeOneMethod(Methods[0]); 1706 else { 1707 TypeIndex MethodList = 1708 TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods)); 1709 Fields.writeOverloadedMethod( 1710 OverloadedMethodRecord(Methods.size(), MethodList, Name)); 1711 } 1712 } 1713 1714 // Create nested classes. 1715 for (const DICompositeType *Nested : Info.NestedClasses) { 1716 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1717 Fields.writeNestedType(R); 1718 MemberCount++; 1719 } 1720 1721 TypeIndex FieldTI = TypeTable.writeFieldList(Fields); 1722 return std::make_tuple(FieldTI, TypeIndex(), MemberCount, 1723 !Info.NestedClasses.empty()); 1724 } 1725 1726 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1727 if (!VBPType.getIndex()) { 1728 // Make a 'const int *' type. 1729 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1730 TypeIndex ModifiedTI = TypeTable.writeModifier(MR); 1731 1732 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1733 : PointerKind::Near32; 1734 PointerMode PM = PointerMode::Pointer; 1735 PointerOptions PO = PointerOptions::None; 1736 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1737 1738 VBPType = TypeTable.writePointer(PR); 1739 } 1740 1741 return VBPType; 1742 } 1743 1744 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1745 const DIType *Ty = TypeRef.resolve(); 1746 const DIType *ClassTy = ClassTyRef.resolve(); 1747 1748 // The null DIType is the void type. Don't try to hash it. 1749 if (!Ty) 1750 return TypeIndex::Void(); 1751 1752 // Check if we've already translated this type. Don't try to do a 1753 // get-or-create style insertion that caches the hash lookup across the 1754 // lowerType call. It will update the TypeIndices map. 1755 auto I = TypeIndices.find({Ty, ClassTy}); 1756 if (I != TypeIndices.end()) 1757 return I->second; 1758 1759 TypeLoweringScope S(*this); 1760 TypeIndex TI = lowerType(Ty, ClassTy); 1761 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1762 } 1763 1764 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1765 const DIType *Ty = TypeRef.resolve(); 1766 1767 // The null DIType is the void type. Don't try to hash it. 1768 if (!Ty) 1769 return TypeIndex::Void(); 1770 1771 // If this is a non-record type, the complete type index is the same as the 1772 // normal type index. Just call getTypeIndex. 1773 switch (Ty->getTag()) { 1774 case dwarf::DW_TAG_class_type: 1775 case dwarf::DW_TAG_structure_type: 1776 case dwarf::DW_TAG_union_type: 1777 break; 1778 default: 1779 return getTypeIndex(Ty); 1780 } 1781 1782 // Check if we've already translated the complete record type. Lowering a 1783 // complete type should never trigger lowering another complete type, so we 1784 // can reuse the hash table lookup result. 1785 const auto *CTy = cast<DICompositeType>(Ty); 1786 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1787 if (!InsertResult.second) 1788 return InsertResult.first->second; 1789 1790 TypeLoweringScope S(*this); 1791 1792 // Make sure the forward declaration is emitted first. It's unclear if this 1793 // is necessary, but MSVC does it, and we should follow suit until we can show 1794 // otherwise. 1795 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1796 1797 // Just use the forward decl if we don't have complete type info. This might 1798 // happen if the frontend is using modules and expects the complete definition 1799 // to be emitted elsewhere. 1800 if (CTy->isForwardDecl()) 1801 return FwdDeclTI; 1802 1803 TypeIndex TI; 1804 switch (CTy->getTag()) { 1805 case dwarf::DW_TAG_class_type: 1806 case dwarf::DW_TAG_structure_type: 1807 TI = lowerCompleteTypeClass(CTy); 1808 break; 1809 case dwarf::DW_TAG_union_type: 1810 TI = lowerCompleteTypeUnion(CTy); 1811 break; 1812 default: 1813 llvm_unreachable("not a record"); 1814 } 1815 1816 InsertResult.first->second = TI; 1817 return TI; 1818 } 1819 1820 /// Emit all the deferred complete record types. Try to do this in FIFO order, 1821 /// and do this until fixpoint, as each complete record type typically 1822 /// references 1823 /// many other record types. 1824 void CodeViewDebug::emitDeferredCompleteTypes() { 1825 SmallVector<const DICompositeType *, 4> TypesToEmit; 1826 while (!DeferredCompleteTypes.empty()) { 1827 std::swap(DeferredCompleteTypes, TypesToEmit); 1828 for (const DICompositeType *RecordTy : TypesToEmit) 1829 getCompleteTypeIndex(RecordTy); 1830 TypesToEmit.clear(); 1831 } 1832 } 1833 1834 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 1835 // Get the sorted list of parameters and emit them first. 1836 SmallVector<const LocalVariable *, 6> Params; 1837 for (const LocalVariable &L : Locals) 1838 if (L.DIVar->isParameter()) 1839 Params.push_back(&L); 1840 std::sort(Params.begin(), Params.end(), 1841 [](const LocalVariable *L, const LocalVariable *R) { 1842 return L->DIVar->getArg() < R->DIVar->getArg(); 1843 }); 1844 for (const LocalVariable *L : Params) 1845 emitLocalVariable(*L); 1846 1847 // Next emit all non-parameters in the order that we found them. 1848 for (const LocalVariable &L : Locals) 1849 if (!L.DIVar->isParameter()) 1850 emitLocalVariable(L); 1851 } 1852 1853 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 1854 // LocalSym record, see SymbolRecord.h for more info. 1855 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 1856 *LocalEnd = MMI->getContext().createTempSymbol(); 1857 OS.AddComment("Record length"); 1858 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 1859 OS.EmitLabel(LocalBegin); 1860 1861 OS.AddComment("Record kind: S_LOCAL"); 1862 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 1863 1864 LocalSymFlags Flags = LocalSymFlags::None; 1865 if (Var.DIVar->isParameter()) 1866 Flags |= LocalSymFlags::IsParameter; 1867 if (Var.DefRanges.empty()) 1868 Flags |= LocalSymFlags::IsOptimizedOut; 1869 1870 OS.AddComment("TypeIndex"); 1871 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 1872 OS.EmitIntValue(TI.getIndex(), 4); 1873 OS.AddComment("Flags"); 1874 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 1875 // Truncate the name so we won't overflow the record length field. 1876 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 1877 OS.EmitLabel(LocalEnd); 1878 1879 // Calculate the on disk prefix of the appropriate def range record. The 1880 // records and on disk formats are described in SymbolRecords.h. BytePrefix 1881 // should be big enough to hold all forms without memory allocation. 1882 SmallString<20> BytePrefix; 1883 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 1884 BytePrefix.clear(); 1885 // FIXME: Handle bitpieces. 1886 if (DefRange.StructOffset != 0) 1887 continue; 1888 1889 if (DefRange.InMemory) { 1890 DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0, 1891 0, 0, ArrayRef<LocalVariableAddrGap>()); 1892 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 1893 BytePrefix += 1894 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1895 BytePrefix += 1896 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1897 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1898 } else { 1899 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 1900 // Unclear what matters here. 1901 DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0, 1902 ArrayRef<LocalVariableAddrGap>()); 1903 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 1904 BytePrefix += 1905 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1906 BytePrefix += 1907 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1908 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1909 } 1910 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 1911 } 1912 } 1913 1914 void CodeViewDebug::endFunction(const MachineFunction *MF) { 1915 if (!Asm || !CurFn) // We haven't created any debug info for this function. 1916 return; 1917 1918 const Function *GV = MF->getFunction(); 1919 assert(FnDebugInfo.count(GV)); 1920 assert(CurFn == &FnDebugInfo[GV]); 1921 1922 collectVariableInfo(GV->getSubprogram()); 1923 1924 DebugHandlerBase::endFunction(MF); 1925 1926 // Don't emit anything if we don't have any line tables. 1927 if (!CurFn->HaveLineInfo) { 1928 FnDebugInfo.erase(GV); 1929 CurFn = nullptr; 1930 return; 1931 } 1932 1933 CurFn->End = Asm->getFunctionEnd(); 1934 1935 CurFn = nullptr; 1936 } 1937 1938 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 1939 DebugHandlerBase::beginInstruction(MI); 1940 1941 // Ignore DBG_VALUE locations and function prologue. 1942 if (!Asm || MI->isDebugValue() || MI->getFlag(MachineInstr::FrameSetup)) 1943 return; 1944 DebugLoc DL = MI->getDebugLoc(); 1945 if (DL == PrevInstLoc || !DL) 1946 return; 1947 maybeRecordLocation(DL, Asm->MF); 1948 } 1949 1950 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 1951 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 1952 *EndLabel = MMI->getContext().createTempSymbol(); 1953 OS.EmitIntValue(unsigned(Kind), 4); 1954 OS.AddComment("Subsection size"); 1955 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 1956 OS.EmitLabel(BeginLabel); 1957 return EndLabel; 1958 } 1959 1960 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 1961 OS.EmitLabel(EndLabel); 1962 // Every subsection must be aligned to a 4-byte boundary. 1963 OS.EmitValueToAlignment(4); 1964 } 1965 1966 void CodeViewDebug::emitDebugInfoForUDTs( 1967 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 1968 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 1969 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 1970 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 1971 OS.AddComment("Record length"); 1972 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 1973 OS.EmitLabel(UDTRecordBegin); 1974 1975 OS.AddComment("Record kind: S_UDT"); 1976 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 1977 1978 OS.AddComment("Type"); 1979 OS.EmitIntValue(UDT.second.getIndex(), 4); 1980 1981 emitNullTerminatedSymbolName(OS, UDT.first); 1982 OS.EmitLabel(UDTRecordEnd); 1983 } 1984 } 1985 1986 void CodeViewDebug::emitDebugInfoForGlobals() { 1987 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1988 for (const MDNode *Node : CUs->operands()) { 1989 const auto *CU = cast<DICompileUnit>(Node); 1990 1991 // First, emit all globals that are not in a comdat in a single symbol 1992 // substream. MSVC doesn't like it if the substream is empty, so only open 1993 // it if we have at least one global to emit. 1994 switchToDebugSectionForSymbol(nullptr); 1995 MCSymbol *EndLabel = nullptr; 1996 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1997 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1998 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 1999 if (!EndLabel) { 2000 OS.AddComment("Symbol subsection for globals"); 2001 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 2002 } 2003 emitDebugInfoForGlobal(G, Asm->getSymbol(GV)); 2004 } 2005 } 2006 } 2007 if (EndLabel) 2008 endCVSubsection(EndLabel); 2009 2010 // Second, emit each global that is in a comdat into its own .debug$S 2011 // section along with its own symbol substream. 2012 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 2013 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 2014 if (GV->hasComdat()) { 2015 MCSymbol *GVSym = Asm->getSymbol(GV); 2016 OS.AddComment("Symbol subsection for " + 2017 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 2018 switchToDebugSectionForSymbol(GVSym); 2019 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 2020 emitDebugInfoForGlobal(G, GVSym); 2021 endCVSubsection(EndLabel); 2022 } 2023 } 2024 } 2025 } 2026 } 2027 2028 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2029 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2030 for (const MDNode *Node : CUs->operands()) { 2031 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2032 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2033 getTypeIndex(RT); 2034 // FIXME: Add to global/local DTU list. 2035 } 2036 } 2037 } 2038 } 2039 2040 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2041 MCSymbol *GVSym) { 2042 // DataSym record, see SymbolRecord.h for more info. 2043 // FIXME: Thread local data, etc 2044 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2045 *DataEnd = MMI->getContext().createTempSymbol(); 2046 OS.AddComment("Record length"); 2047 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2048 OS.EmitLabel(DataBegin); 2049 const auto *GV = cast<GlobalVariable>(DIGV->getVariable()); 2050 if (DIGV->isLocalToUnit()) { 2051 if (GV->isThreadLocal()) { 2052 OS.AddComment("Record kind: S_LTHREAD32"); 2053 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2054 } else { 2055 OS.AddComment("Record kind: S_LDATA32"); 2056 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2057 } 2058 } else { 2059 if (GV->isThreadLocal()) { 2060 OS.AddComment("Record kind: S_GTHREAD32"); 2061 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2062 } else { 2063 OS.AddComment("Record kind: S_GDATA32"); 2064 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2065 } 2066 } 2067 OS.AddComment("Type"); 2068 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2069 OS.AddComment("DataOffset"); 2070 OS.EmitCOFFSecRel32(GVSym); 2071 OS.AddComment("Segment"); 2072 OS.EmitCOFFSectionIndex(GVSym); 2073 OS.AddComment("Name"); 2074 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2075 OS.EmitLabel(DataEnd); 2076 } 2077