Home | History | Annotate | Download | only in CodeGen
      1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
     11 // of MachineInstrs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     16 #include "llvm/ADT/IntEqClasses.h"
     17 #include "llvm/ADT/SmallPtrSet.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/Analysis/ValueTracking.h"
     21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     22 #include "llvm/CodeGen/MachineFunctionPass.h"
     23 #include "llvm/CodeGen/MachineFrameInfo.h"
     24 #include "llvm/CodeGen/MachineInstrBuilder.h"
     25 #include "llvm/CodeGen/MachineMemOperand.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/PseudoSourceValue.h"
     28 #include "llvm/CodeGen/RegisterPressure.h"
     29 #include "llvm/CodeGen/ScheduleDFS.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/IR/Type.h"
     32 #include "llvm/IR/Operator.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/Format.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include "llvm/Target/TargetInstrInfo.h"
     38 #include "llvm/Target/TargetMachine.h"
     39 #include "llvm/Target/TargetRegisterInfo.h"
     40 #include "llvm/Target/TargetSubtargetInfo.h"
     41 
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "misched"
     45 
     46 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
     47     cl::ZeroOrMore, cl::init(false),
     48     cl::desc("Enable use of AA during MI DAG construction"));
     49 
     50 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
     51     cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
     52 
     53 // Note: the two options below might be used in tuning compile time vs
     54 // output quality. Setting HugeRegion so large that it will never be
     55 // reached means best-effort, but may be slow.
     56 
     57 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
     58 // together hold this many SUs, a reduction of maps will be done.
     59 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
     60     cl::init(1000), cl::desc("The limit to use while constructing the DAG "
     61                              "prior to scheduling, at which point a trade-off "
     62                              "is made to avoid excessive compile time."));
     63 
     64 static cl::opt<unsigned> ReductionSize(
     65     "dag-maps-reduction-size", cl::Hidden,
     66     cl::desc("A huge scheduling region will have maps reduced by this many "
     67              "nodes at a time. Defaults to HugeRegion / 2."));
     68 
     69 static unsigned getReductionSize() {
     70   // Always reduce a huge region with half of the elements, except
     71   // when user sets this number explicitly.
     72   if (ReductionSize.getNumOccurrences() == 0)
     73     return HugeRegion / 2;
     74   return ReductionSize;
     75 }
     76 
     77 static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
     78 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
     79   dbgs() << "{ ";
     80   for (auto *su : L) {
     81     dbgs() << "SU(" << su->NodeNum << ")";
     82     if (su != L.back())
     83       dbgs() << ", ";
     84   }
     85   dbgs() << "}\n";
     86 #endif
     87 }
     88 
     89 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
     90                                      const MachineLoopInfo *mli,
     91                                      bool RemoveKillFlags)
     92     : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
     93       RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false),
     94       TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr),
     95       UnknownValue(UndefValue::get(
     96                      Type::getVoidTy(mf.getFunction()->getContext()))),
     97       FirstDbgValue(nullptr) {
     98   DbgValues.clear();
     99 
    100   const TargetSubtargetInfo &ST = mf.getSubtarget();
    101   SchedModel.init(ST.getSchedModel(), &ST, TII);
    102 }
    103 
    104 /// getUnderlyingObjectFromInt - This is the function that does the work of
    105 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
    106 static const Value *getUnderlyingObjectFromInt(const Value *V) {
    107   do {
    108     if (const Operator *U = dyn_cast<Operator>(V)) {
    109       // If we find a ptrtoint, we can transfer control back to the
    110       // regular getUnderlyingObjectFromInt.
    111       if (U->getOpcode() == Instruction::PtrToInt)
    112         return U->getOperand(0);
    113       // If we find an add of a constant, a multiplied value, or a phi, it's
    114       // likely that the other operand will lead us to the base
    115       // object. We don't have to worry about the case where the
    116       // object address is somehow being computed by the multiply,
    117       // because our callers only care when the result is an
    118       // identifiable object.
    119       if (U->getOpcode() != Instruction::Add ||
    120           (!isa<ConstantInt>(U->getOperand(1)) &&
    121            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
    122            !isa<PHINode>(U->getOperand(1))))
    123         return V;
    124       V = U->getOperand(0);
    125     } else {
    126       return V;
    127     }
    128     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
    129   } while (1);
    130 }
    131 
    132 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
    133 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
    134 static void getUnderlyingObjects(const Value *V,
    135                                  SmallVectorImpl<Value *> &Objects,
    136                                  const DataLayout &DL) {
    137   SmallPtrSet<const Value *, 16> Visited;
    138   SmallVector<const Value *, 4> Working(1, V);
    139   do {
    140     V = Working.pop_back_val();
    141 
    142     SmallVector<Value *, 4> Objs;
    143     GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
    144 
    145     for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
    146          I != IE; ++I) {
    147       V = *I;
    148       if (!Visited.insert(V).second)
    149         continue;
    150       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
    151         const Value *O =
    152           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
    153         if (O->getType()->isPointerTy()) {
    154           Working.push_back(O);
    155           continue;
    156         }
    157       }
    158       Objects.push_back(const_cast<Value *>(V));
    159     }
    160   } while (!Working.empty());
    161 }
    162 
    163 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
    164 /// information and it can be tracked to a normal reference to a known
    165 /// object, return the Value for that object.
    166 static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
    167                                          const MachineFrameInfo *MFI,
    168                                          UnderlyingObjectsVector &Objects,
    169                                          const DataLayout &DL) {
    170   auto allMMOsOkay = [&]() {
    171     for (const MachineMemOperand *MMO : MI->memoperands()) {
    172       if (MMO->isVolatile())
    173         return false;
    174 
    175       if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
    176         // Function that contain tail calls don't have unique PseudoSourceValue
    177         // objects. Two PseudoSourceValues might refer to the same or
    178         // overlapping locations. The client code calling this function assumes
    179         // this is not the case. So return a conservative answer of no known
    180         // object.
    181         if (MFI->hasTailCall())
    182           return false;
    183 
    184         // For now, ignore PseudoSourceValues which may alias LLVM IR values
    185         // because the code that uses this function has no way to cope with
    186         // such aliases.
    187         if (PSV->isAliased(MFI))
    188           return false;
    189 
    190         bool MayAlias = PSV->mayAlias(MFI);
    191         Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
    192       } else if (const Value *V = MMO->getValue()) {
    193         SmallVector<Value *, 4> Objs;
    194         getUnderlyingObjects(V, Objs, DL);
    195 
    196         for (Value *V : Objs) {
    197           if (!isIdentifiedObject(V))
    198             return false;
    199 
    200           Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
    201         }
    202       } else
    203         return false;
    204     }
    205     return true;
    206   };
    207 
    208   if (!allMMOsOkay())
    209     Objects.clear();
    210 }
    211 
    212 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
    213   BB = bb;
    214 }
    215 
    216 void ScheduleDAGInstrs::finishBlock() {
    217   // Subclasses should no longer refer to the old block.
    218   BB = nullptr;
    219 }
    220 
    221 /// Initialize the DAG and common scheduler state for the current scheduling
    222 /// region. This does not actually create the DAG, only clears it. The
    223 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
    224 /// region.
    225 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
    226                                     MachineBasicBlock::iterator begin,
    227                                     MachineBasicBlock::iterator end,
    228                                     unsigned regioninstrs) {
    229   assert(bb == BB && "startBlock should set BB");
    230   RegionBegin = begin;
    231   RegionEnd = end;
    232   NumRegionInstrs = regioninstrs;
    233 }
    234 
    235 /// Close the current scheduling region. Don't clear any state in case the
    236 /// driver wants to refer to the previous scheduling region.
    237 void ScheduleDAGInstrs::exitRegion() {
    238   // Nothing to do.
    239 }
    240 
    241 /// addSchedBarrierDeps - Add dependencies from instructions in the current
    242 /// list of instructions being scheduled to scheduling barrier by adding
    243 /// the exit SU to the register defs and use list. This is because we want to
    244 /// make sure instructions which define registers that are either used by
    245 /// the terminator or are live-out are properly scheduled. This is
    246 /// especially important when the definition latency of the return value(s)
    247 /// are too high to be hidden by the branch or when the liveout registers
    248 /// used by instructions in the fallthrough block.
    249 void ScheduleDAGInstrs::addSchedBarrierDeps() {
    250   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
    251   ExitSU.setInstr(ExitMI);
    252   bool AllDepKnown = ExitMI &&
    253     (ExitMI->isCall() || ExitMI->isBarrier());
    254   if (ExitMI && AllDepKnown) {
    255     // If it's a call or a barrier, add dependencies on the defs and uses of
    256     // instruction.
    257     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
    258       const MachineOperand &MO = ExitMI->getOperand(i);
    259       if (!MO.isReg() || MO.isDef()) continue;
    260       unsigned Reg = MO.getReg();
    261       if (Reg == 0) continue;
    262 
    263       if (TRI->isPhysicalRegister(Reg))
    264         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
    265       else if (MO.readsReg()) // ignore undef operands
    266         addVRegUseDeps(&ExitSU, i);
    267     }
    268   } else {
    269     // For others, e.g. fallthrough, conditional branch, assume the exit
    270     // uses all the registers that are livein to the successor blocks.
    271     assert(Uses.empty() && "Uses in set before adding deps?");
    272     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    273            SE = BB->succ_end(); SI != SE; ++SI)
    274       for (const auto &LI : (*SI)->liveins()) {
    275         if (!Uses.contains(LI.PhysReg))
    276           Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
    277       }
    278   }
    279 }
    280 
    281 /// MO is an operand of SU's instruction that defines a physical register. Add
    282 /// data dependencies from SU to any uses of the physical register.
    283 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
    284   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
    285   assert(MO.isDef() && "expect physreg def");
    286 
    287   // Ask the target if address-backscheduling is desirable, and if so how much.
    288   const TargetSubtargetInfo &ST = MF.getSubtarget();
    289 
    290   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
    291        Alias.isValid(); ++Alias) {
    292     if (!Uses.contains(*Alias))
    293       continue;
    294     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
    295       SUnit *UseSU = I->SU;
    296       if (UseSU == SU)
    297         continue;
    298 
    299       // Adjust the dependence latency using operand def/use information,
    300       // then allow the target to perform its own adjustments.
    301       int UseOp = I->OpIdx;
    302       MachineInstr *RegUse = nullptr;
    303       SDep Dep;
    304       if (UseOp < 0)
    305         Dep = SDep(SU, SDep::Artificial);
    306       else {
    307         // Set the hasPhysRegDefs only for physreg defs that have a use within
    308         // the scheduling region.
    309         SU->hasPhysRegDefs = true;
    310         Dep = SDep(SU, SDep::Data, *Alias);
    311         RegUse = UseSU->getInstr();
    312       }
    313       Dep.setLatency(
    314         SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
    315                                          UseOp));
    316 
    317       ST.adjustSchedDependency(SU, UseSU, Dep);
    318       UseSU->addPred(Dep);
    319     }
    320   }
    321 }
    322 
    323 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
    324 /// this SUnit to following instructions in the same scheduling region that
    325 /// depend the physical register referenced at OperIdx.
    326 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
    327   MachineInstr *MI = SU->getInstr();
    328   MachineOperand &MO = MI->getOperand(OperIdx);
    329 
    330   // Optionally add output and anti dependencies. For anti
    331   // dependencies we use a latency of 0 because for a multi-issue
    332   // target we want to allow the defining instruction to issue
    333   // in the same cycle as the using instruction.
    334   // TODO: Using a latency of 1 here for output dependencies assumes
    335   //       there's no cost for reusing registers.
    336   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
    337   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
    338        Alias.isValid(); ++Alias) {
    339     if (!Defs.contains(*Alias))
    340       continue;
    341     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
    342       SUnit *DefSU = I->SU;
    343       if (DefSU == &ExitSU)
    344         continue;
    345       if (DefSU != SU &&
    346           (Kind != SDep::Output || !MO.isDead() ||
    347            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
    348         if (Kind == SDep::Anti)
    349           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
    350         else {
    351           SDep Dep(SU, Kind, /*Reg=*/*Alias);
    352           Dep.setLatency(
    353             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
    354           DefSU->addPred(Dep);
    355         }
    356       }
    357     }
    358   }
    359 
    360   if (!MO.isDef()) {
    361     SU->hasPhysRegUses = true;
    362     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
    363     // retrieve the existing SUnits list for this register's uses.
    364     // Push this SUnit on the use list.
    365     Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
    366     if (RemoveKillFlags)
    367       MO.setIsKill(false);
    368   }
    369   else {
    370     addPhysRegDataDeps(SU, OperIdx);
    371     unsigned Reg = MO.getReg();
    372 
    373     // clear this register's use list
    374     if (Uses.contains(Reg))
    375       Uses.eraseAll(Reg);
    376 
    377     if (!MO.isDead()) {
    378       Defs.eraseAll(Reg);
    379     } else if (SU->isCall) {
    380       // Calls will not be reordered because of chain dependencies (see
    381       // below). Since call operands are dead, calls may continue to be added
    382       // to the DefList making dependence checking quadratic in the size of
    383       // the block. Instead, we leave only one call at the back of the
    384       // DefList.
    385       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
    386       Reg2SUnitsMap::iterator B = P.first;
    387       Reg2SUnitsMap::iterator I = P.second;
    388       for (bool isBegin = I == B; !isBegin; /* empty */) {
    389         isBegin = (--I) == B;
    390         if (!I->SU->isCall)
    391           break;
    392         I = Defs.erase(I);
    393       }
    394     }
    395 
    396     // Defs are pushed in the order they are visited and never reordered.
    397     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
    398   }
    399 }
    400 
    401 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
    402 {
    403   unsigned Reg = MO.getReg();
    404   // No point in tracking lanemasks if we don't have interesting subregisters.
    405   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
    406   if (!RC.HasDisjunctSubRegs)
    407     return ~0u;
    408 
    409   unsigned SubReg = MO.getSubReg();
    410   if (SubReg == 0)
    411     return RC.getLaneMask();
    412   return TRI->getSubRegIndexLaneMask(SubReg);
    413 }
    414 
    415 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
    416 /// to instructions that occur later in the same scheduling region if they read
    417 /// from or write to the virtual register defined at OperIdx.
    418 ///
    419 /// TODO: Hoist loop induction variable increments. This has to be
    420 /// reevaluated. Generally, IV scheduling should be done before coalescing.
    421 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
    422   MachineInstr *MI = SU->getInstr();
    423   MachineOperand &MO = MI->getOperand(OperIdx);
    424   unsigned Reg = MO.getReg();
    425 
    426   LaneBitmask DefLaneMask;
    427   LaneBitmask KillLaneMask;
    428   if (TrackLaneMasks) {
    429     bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
    430     DefLaneMask = getLaneMaskForMO(MO);
    431     // If we have a <read-undef> flag, none of the lane values comes from an
    432     // earlier instruction.
    433     KillLaneMask = IsKill ? ~0u : DefLaneMask;
    434 
    435     // Clear undef flag, we'll re-add it later once we know which subregister
    436     // Def is first.
    437     MO.setIsUndef(false);
    438   } else {
    439     DefLaneMask = ~0u;
    440     KillLaneMask = ~0u;
    441   }
    442 
    443   if (MO.isDead()) {
    444     assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
    445            "Dead defs should have no uses");
    446   } else {
    447     // Add data dependence to all uses we found so far.
    448     const TargetSubtargetInfo &ST = MF.getSubtarget();
    449     for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
    450          E = CurrentVRegUses.end(); I != E; /*empty*/) {
    451       LaneBitmask LaneMask = I->LaneMask;
    452       // Ignore uses of other lanes.
    453       if ((LaneMask & KillLaneMask) == 0) {
    454         ++I;
    455         continue;
    456       }
    457 
    458       if ((LaneMask & DefLaneMask) != 0) {
    459         SUnit *UseSU = I->SU;
    460         MachineInstr *Use = UseSU->getInstr();
    461         SDep Dep(SU, SDep::Data, Reg);
    462         Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
    463                                                         I->OperandIndex));
    464         ST.adjustSchedDependency(SU, UseSU, Dep);
    465         UseSU->addPred(Dep);
    466       }
    467 
    468       LaneMask &= ~KillLaneMask;
    469       // If we found a Def for all lanes of this use, remove it from the list.
    470       if (LaneMask != 0) {
    471         I->LaneMask = LaneMask;
    472         ++I;
    473       } else
    474         I = CurrentVRegUses.erase(I);
    475     }
    476   }
    477 
    478   // Shortcut: Singly defined vregs do not have output/anti dependencies.
    479   if (MRI.hasOneDef(Reg))
    480     return;
    481 
    482   // Add output dependence to the next nearest defs of this vreg.
    483   //
    484   // Unless this definition is dead, the output dependence should be
    485   // transitively redundant with antidependencies from this definition's
    486   // uses. We're conservative for now until we have a way to guarantee the uses
    487   // are not eliminated sometime during scheduling. The output dependence edge
    488   // is also useful if output latency exceeds def-use latency.
    489   LaneBitmask LaneMask = DefLaneMask;
    490   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
    491                                      CurrentVRegDefs.end())) {
    492     // Ignore defs for other lanes.
    493     if ((V2SU.LaneMask & LaneMask) == 0)
    494       continue;
    495     // Add an output dependence.
    496     SUnit *DefSU = V2SU.SU;
    497     // Ignore additional defs of the same lanes in one instruction. This can
    498     // happen because lanemasks are shared for targets with too many
    499     // subregisters. We also use some representration tricks/hacks where we
    500     // add super-register defs/uses, to imply that although we only access parts
    501     // of the reg we care about the full one.
    502     if (DefSU == SU)
    503       continue;
    504     SDep Dep(SU, SDep::Output, Reg);
    505     Dep.setLatency(
    506       SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
    507     DefSU->addPred(Dep);
    508 
    509     // Update current definition. This can get tricky if the def was about a
    510     // bigger lanemask before. We then have to shrink it and create a new
    511     // VReg2SUnit for the non-overlapping part.
    512     LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
    513     LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
    514     V2SU.SU = SU;
    515     V2SU.LaneMask = OverlapMask;
    516     if (NonOverlapMask != 0)
    517       CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
    518   }
    519   // If there was no CurrentVRegDefs entry for some lanes yet, create one.
    520   if (LaneMask != 0)
    521     CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
    522 }
    523 
    524 /// addVRegUseDeps - Add a register data dependency if the instruction that
    525 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
    526 /// register antidependency from this SUnit to instructions that occur later in
    527 /// the same scheduling region if they write the virtual register.
    528 ///
    529 /// TODO: Handle ExitSU "uses" properly.
    530 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
    531   const MachineInstr *MI = SU->getInstr();
    532   const MachineOperand &MO = MI->getOperand(OperIdx);
    533   unsigned Reg = MO.getReg();
    534 
    535   // Remember the use. Data dependencies will be added when we find the def.
    536   LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u;
    537   CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
    538 
    539   // Add antidependences to the following defs of the vreg.
    540   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
    541                                      CurrentVRegDefs.end())) {
    542     // Ignore defs for unrelated lanes.
    543     LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
    544     if ((PrevDefLaneMask & LaneMask) == 0)
    545       continue;
    546     if (V2SU.SU == SU)
    547       continue;
    548 
    549     V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
    550   }
    551 }
    552 
    553 /// Return true if MI is an instruction we are unable to reason about
    554 /// (like a call or something with unmodeled side effects).
    555 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
    556   return MI->isCall() || MI->hasUnmodeledSideEffects() ||
    557          (MI->hasOrderedMemoryRef() && !MI->isInvariantLoad(AA));
    558 }
    559 
    560 /// This returns true if the two MIs need a chain edge between them.
    561 /// This is called on normal stores and loads.
    562 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
    563                              const DataLayout &DL, MachineInstr *MIa,
    564                              MachineInstr *MIb) {
    565   const MachineFunction *MF = MIa->getParent()->getParent();
    566   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
    567 
    568   assert ((MIa->mayStore() || MIb->mayStore()) &&
    569           "Dependency checked between two loads");
    570 
    571   // Let the target decide if memory accesses cannot possibly overlap.
    572   if (TII->areMemAccessesTriviallyDisjoint(*MIa, *MIb, AA))
    573     return false;
    574 
    575   // To this point analysis is generic. From here on we do need AA.
    576   if (!AA)
    577     return true;
    578 
    579   // FIXME: Need to handle multiple memory operands to support all targets.
    580   if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
    581     return true;
    582 
    583   MachineMemOperand *MMOa = *MIa->memoperands_begin();
    584   MachineMemOperand *MMOb = *MIb->memoperands_begin();
    585 
    586   if (!MMOa->getValue() || !MMOb->getValue())
    587     return true;
    588 
    589   // The following interface to AA is fashioned after DAGCombiner::isAlias
    590   // and operates with MachineMemOperand offset with some important
    591   // assumptions:
    592   //   - LLVM fundamentally assumes flat address spaces.
    593   //   - MachineOperand offset can *only* result from legalization and
    594   //     cannot affect queries other than the trivial case of overlap
    595   //     checking.
    596   //   - These offsets never wrap and never step outside
    597   //     of allocated objects.
    598   //   - There should never be any negative offsets here.
    599   //
    600   // FIXME: Modify API to hide this math from "user"
    601   // FIXME: Even before we go to AA we can reason locally about some
    602   // memory objects. It can save compile time, and possibly catch some
    603   // corner cases not currently covered.
    604 
    605   assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
    606   assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
    607 
    608   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
    609   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
    610   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
    611 
    612   AliasResult AAResult =
    613       AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
    614                                UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
    615                 MemoryLocation(MMOb->getValue(), Overlapb,
    616                                UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
    617 
    618   return (AAResult != NoAlias);
    619 }
    620 
    621 /// Check whether two objects need a chain edge and add it if needed.
    622 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
    623                                             unsigned Latency) {
    624   if (MIsNeedChainEdge(AAForDep, MFI, MF.getDataLayout(), SUa->getInstr(),
    625 		       SUb->getInstr())) {
    626     SDep Dep(SUa, SDep::MayAliasMem);
    627     Dep.setLatency(Latency);
    628     SUb->addPred(Dep);
    629   }
    630 }
    631 
    632 /// Create an SUnit for each real instruction, numbered in top-down topological
    633 /// order. The instruction order A < B, implies that no edge exists from B to A.
    634 ///
    635 /// Map each real instruction to its SUnit.
    636 ///
    637 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
    638 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
    639 /// instead of pointers.
    640 ///
    641 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
    642 /// the original instruction list.
    643 void ScheduleDAGInstrs::initSUnits() {
    644   // We'll be allocating one SUnit for each real instruction in the region,
    645   // which is contained within a basic block.
    646   SUnits.reserve(NumRegionInstrs);
    647 
    648   for (MachineInstr &MI : llvm::make_range(RegionBegin, RegionEnd)) {
    649     if (MI.isDebugValue())
    650       continue;
    651 
    652     SUnit *SU = newSUnit(&MI);
    653     MISUnitMap[&MI] = SU;
    654 
    655     SU->isCall = MI.isCall();
    656     SU->isCommutable = MI.isCommutable();
    657 
    658     // Assign the Latency field of SU using target-provided information.
    659     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
    660 
    661     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
    662     //
    663     // Reserved resources block an instruction from issuing and stall the
    664     // entire pipeline. These are identified by BufferSize=0.
    665     //
    666     // Unbuffered resources prevent execution of subsequent instructions that
    667     // require the same resources. This is used for in-order execution pipelines
    668     // within an out-of-order core. These are identified by BufferSize=1.
    669     if (SchedModel.hasInstrSchedModel()) {
    670       const MCSchedClassDesc *SC = getSchedClass(SU);
    671       for (TargetSchedModel::ProcResIter
    672              PI = SchedModel.getWriteProcResBegin(SC),
    673              PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
    674         switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
    675         case 0:
    676           SU->hasReservedResource = true;
    677           break;
    678         case 1:
    679           SU->isUnbuffered = true;
    680           break;
    681         default:
    682           break;
    683         }
    684       }
    685     }
    686   }
    687 }
    688 
    689 void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) {
    690   const MachineInstr *MI = SU->getInstr();
    691   for (const MachineOperand &MO : MI->operands()) {
    692     if (!MO.isReg())
    693       continue;
    694     if (!MO.readsReg())
    695       continue;
    696     if (TrackLaneMasks && !MO.isUse())
    697       continue;
    698 
    699     unsigned Reg = MO.getReg();
    700     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    701       continue;
    702 
    703     // Ignore re-defs.
    704     if (TrackLaneMasks) {
    705       bool FoundDef = false;
    706       for (const MachineOperand &MO2 : MI->operands()) {
    707         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
    708           FoundDef = true;
    709           break;
    710         }
    711       }
    712       if (FoundDef)
    713         continue;
    714     }
    715 
    716     // Record this local VReg use.
    717     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
    718     for (; UI != VRegUses.end(); ++UI) {
    719       if (UI->SU == SU)
    720         break;
    721     }
    722     if (UI == VRegUses.end())
    723       VRegUses.insert(VReg2SUnit(Reg, 0, SU));
    724   }
    725 }
    726 
    727 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
    728 
    729   /// Current total number of SUs in map.
    730   unsigned NumNodes;
    731 
    732   /// 1 for loads, 0 for stores. (see comment in SUList)
    733   unsigned TrueMemOrderLatency;
    734 public:
    735 
    736   Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {}
    737 
    738   /// To keep NumNodes up to date, insert() is used instead of
    739   /// this operator w/ push_back().
    740   ValueType &operator[](const SUList &Key) {
    741     llvm_unreachable("Don't use. Use insert() instead."); };
    742 
    743   /// Add SU to the SUList of V. If Map grows huge, reduce its size
    744   /// by calling reduce().
    745   void inline insert(SUnit *SU, ValueType V) {
    746     MapVector::operator[](V).push_back(SU);
    747     NumNodes++;
    748   }
    749 
    750   /// Clears the list of SUs mapped to V.
    751   void inline clearList(ValueType V) {
    752     iterator Itr = find(V);
    753     if (Itr != end()) {
    754       assert (NumNodes >= Itr->second.size());
    755       NumNodes -= Itr->second.size();
    756 
    757       Itr->second.clear();
    758     }
    759   }
    760 
    761   /// Clears map from all contents.
    762   void clear() {
    763     MapVector<ValueType, SUList>::clear();
    764     NumNodes = 0;
    765   }
    766 
    767   unsigned inline size() const { return NumNodes; }
    768 
    769   /// Count the number of SUs in this map after a reduction.
    770   void reComputeSize(void) {
    771     NumNodes = 0;
    772     for (auto &I : *this)
    773       NumNodes += I.second.size();
    774   }
    775 
    776   unsigned inline getTrueMemOrderLatency() const {
    777     return TrueMemOrderLatency;
    778   }
    779 
    780   void dump();
    781 };
    782 
    783 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
    784                                              Value2SUsMap &Val2SUsMap) {
    785   for (auto &I : Val2SUsMap)
    786     addChainDependencies(SU, I.second,
    787                          Val2SUsMap.getTrueMemOrderLatency());
    788 }
    789 
    790 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
    791                                              Value2SUsMap &Val2SUsMap,
    792                                              ValueType V) {
    793   Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
    794   if (Itr != Val2SUsMap.end())
    795     addChainDependencies(SU, Itr->second,
    796                          Val2SUsMap.getTrueMemOrderLatency());
    797 }
    798 
    799 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
    800   assert (BarrierChain != nullptr);
    801 
    802   for (auto &I : map) {
    803     SUList &sus = I.second;
    804     for (auto *SU : sus)
    805       SU->addPredBarrier(BarrierChain);
    806   }
    807   map.clear();
    808 }
    809 
    810 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
    811   assert (BarrierChain != nullptr);
    812 
    813   // Go through all lists of SUs.
    814   for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
    815     Value2SUsMap::iterator CurrItr = I++;
    816     SUList &sus = CurrItr->second;
    817     SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
    818     for (; SUItr != SUEE; ++SUItr) {
    819       // Stop on BarrierChain or any instruction above it.
    820       if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
    821         break;
    822 
    823       (*SUItr)->addPredBarrier(BarrierChain);
    824     }
    825 
    826     // Remove also the BarrierChain from list if present.
    827     if (SUItr != SUEE && *SUItr == BarrierChain)
    828       SUItr++;
    829 
    830     // Remove all SUs that are now successors of BarrierChain.
    831     if (SUItr != sus.begin())
    832       sus.erase(sus.begin(), SUItr);
    833   }
    834 
    835   // Remove all entries with empty su lists.
    836   map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
    837       return (mapEntry.second.empty()); });
    838 
    839   // Recompute the size of the map (NumNodes).
    840   map.reComputeSize();
    841 }
    842 
    843 /// If RegPressure is non-null, compute register pressure as a side effect. The
    844 /// DAG builder is an efficient place to do it because it already visits
    845 /// operands.
    846 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
    847                                         RegPressureTracker *RPTracker,
    848                                         PressureDiffs *PDiffs,
    849                                         LiveIntervals *LIS,
    850                                         bool TrackLaneMasks) {
    851   const TargetSubtargetInfo &ST = MF.getSubtarget();
    852   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
    853                                                        : ST.useAA();
    854   AAForDep = UseAA ? AA : nullptr;
    855 
    856   BarrierChain = nullptr;
    857 
    858   this->TrackLaneMasks = TrackLaneMasks;
    859   MISUnitMap.clear();
    860   ScheduleDAG::clearDAG();
    861 
    862   // Create an SUnit for each real instruction.
    863   initSUnits();
    864 
    865   if (PDiffs)
    866     PDiffs->init(SUnits.size());
    867 
    868   // We build scheduling units by walking a block's instruction list
    869   // from bottom to top.
    870 
    871   // Each MIs' memory operand(s) is analyzed to a list of underlying
    872   // objects. The SU is then inserted in the SUList(s) mapped from the
    873   // Value(s). Each Value thus gets mapped to lists of SUs depending
    874   // on it, stores and loads kept separately. Two SUs are trivially
    875   // non-aliasing if they both depend on only identified Values and do
    876   // not share any common Value.
    877   Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
    878 
    879   // Certain memory accesses are known to not alias any SU in Stores
    880   // or Loads, and have therefore their own 'NonAlias'
    881   // domain. E.g. spill / reload instructions never alias LLVM I/R
    882   // Values. It would be nice to assume that this type of memory
    883   // accesses always have a proper memory operand modelling, and are
    884   // therefore never unanalyzable, but this is conservatively not
    885   // done.
    886   Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
    887 
    888   // Remove any stale debug info; sometimes BuildSchedGraph is called again
    889   // without emitting the info from the previous call.
    890   DbgValues.clear();
    891   FirstDbgValue = nullptr;
    892 
    893   assert(Defs.empty() && Uses.empty() &&
    894          "Only BuildGraph should update Defs/Uses");
    895   Defs.setUniverse(TRI->getNumRegs());
    896   Uses.setUniverse(TRI->getNumRegs());
    897 
    898   assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
    899   assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
    900   unsigned NumVirtRegs = MRI.getNumVirtRegs();
    901   CurrentVRegDefs.setUniverse(NumVirtRegs);
    902   CurrentVRegUses.setUniverse(NumVirtRegs);
    903 
    904   VRegUses.clear();
    905   VRegUses.setUniverse(NumVirtRegs);
    906 
    907   // Model data dependencies between instructions being scheduled and the
    908   // ExitSU.
    909   addSchedBarrierDeps();
    910 
    911   // Walk the list of instructions, from bottom moving up.
    912   MachineInstr *DbgMI = nullptr;
    913   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
    914        MII != MIE; --MII) {
    915     MachineInstr &MI = *std::prev(MII);
    916     if (DbgMI) {
    917       DbgValues.push_back(std::make_pair(DbgMI, &MI));
    918       DbgMI = nullptr;
    919     }
    920 
    921     if (MI.isDebugValue()) {
    922       DbgMI = &MI;
    923       continue;
    924     }
    925     SUnit *SU = MISUnitMap[&MI];
    926     assert(SU && "No SUnit mapped to this MI");
    927 
    928     if (RPTracker) {
    929       collectVRegUses(SU);
    930 
    931       RegisterOperands RegOpers;
    932       RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
    933       if (TrackLaneMasks) {
    934         SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
    935         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
    936       }
    937       if (PDiffs != nullptr)
    938         PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
    939 
    940       RPTracker->recedeSkipDebugValues();
    941       assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
    942       RPTracker->recede(RegOpers);
    943     }
    944 
    945     assert(
    946         (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
    947         "Cannot schedule terminators or labels!");
    948 
    949     // Add register-based dependencies (data, anti, and output).
    950     // For some instructions (calls, returns, inline-asm, etc.) there can
    951     // be explicit uses and implicit defs, in which case the use will appear
    952     // on the operand list before the def. Do two passes over the operand
    953     // list to make sure that defs are processed before any uses.
    954     bool HasVRegDef = false;
    955     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
    956       const MachineOperand &MO = MI.getOperand(j);
    957       if (!MO.isReg() || !MO.isDef())
    958         continue;
    959       unsigned Reg = MO.getReg();
    960       if (Reg == 0)
    961         continue;
    962 
    963       if (TRI->isPhysicalRegister(Reg))
    964         addPhysRegDeps(SU, j);
    965       else {
    966         HasVRegDef = true;
    967         addVRegDefDeps(SU, j);
    968       }
    969     }
    970     // Now process all uses.
    971     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
    972       const MachineOperand &MO = MI.getOperand(j);
    973       // Only look at use operands.
    974       // We do not need to check for MO.readsReg() here because subsequent
    975       // subregister defs will get output dependence edges and need no
    976       // additional use dependencies.
    977       if (!MO.isReg() || !MO.isUse())
    978         continue;
    979       unsigned Reg = MO.getReg();
    980       if (Reg == 0)
    981         continue;
    982 
    983       if (TRI->isPhysicalRegister(Reg))
    984         addPhysRegDeps(SU, j);
    985       else if (MO.readsReg()) // ignore undef operands
    986         addVRegUseDeps(SU, j);
    987     }
    988 
    989     // If we haven't seen any uses in this scheduling region, create a
    990     // dependence edge to ExitSU to model the live-out latency. This is required
    991     // for vreg defs with no in-region use, and prefetches with no vreg def.
    992     //
    993     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
    994     // check currently relies on being called before adding chain deps.
    995     if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
    996       SDep Dep(SU, SDep::Artificial);
    997       Dep.setLatency(SU->Latency - 1);
    998       ExitSU.addPred(Dep);
    999     }
   1000 
   1001     // Add memory dependencies (Note: isStoreToStackSlot and
   1002     // isLoadFromStackSLot are not usable after stack slots are lowered to
   1003     // actual addresses).
   1004 
   1005     // This is a barrier event that acts as a pivotal node in the DAG.
   1006     if (isGlobalMemoryObject(AA, &MI)) {
   1007 
   1008       // Become the barrier chain.
   1009       if (BarrierChain)
   1010         BarrierChain->addPredBarrier(SU);
   1011       BarrierChain = SU;
   1012 
   1013       DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
   1014             << BarrierChain->NodeNum << ").\n";);
   1015 
   1016       // Add dependencies against everything below it and clear maps.
   1017       addBarrierChain(Stores);
   1018       addBarrierChain(Loads);
   1019       addBarrierChain(NonAliasStores);
   1020       addBarrierChain(NonAliasLoads);
   1021 
   1022       continue;
   1023     }
   1024 
   1025     // If it's not a store or a variant load, we're done.
   1026     if (!MI.mayStore() && !(MI.mayLoad() && !MI.isInvariantLoad(AA)))
   1027       continue;
   1028 
   1029     // Always add dependecy edge to BarrierChain if present.
   1030     if (BarrierChain)
   1031       BarrierChain->addPredBarrier(SU);
   1032 
   1033     // Find the underlying objects for MI. The Objs vector is either
   1034     // empty, or filled with the Values of memory locations which this
   1035     // SU depends on. An empty vector means the memory location is
   1036     // unknown, and may alias anything.
   1037     UnderlyingObjectsVector Objs;
   1038     getUnderlyingObjectsForInstr(&MI, MFI, Objs, MF.getDataLayout());
   1039 
   1040     if (MI.mayStore()) {
   1041       if (Objs.empty()) {
   1042         // An unknown store depends on all stores and loads.
   1043         addChainDependencies(SU, Stores);
   1044         addChainDependencies(SU, NonAliasStores);
   1045         addChainDependencies(SU, Loads);
   1046         addChainDependencies(SU, NonAliasLoads);
   1047 
   1048         // Map this store to 'UnknownValue'.
   1049         Stores.insert(SU, UnknownValue);
   1050       } else {
   1051         // Add precise dependencies against all previously seen memory
   1052         // accesses mapped to the same Value(s).
   1053         for (const UnderlyingObject &UnderlObj : Objs) {
   1054           ValueType V = UnderlObj.getValue();
   1055           bool ThisMayAlias = UnderlObj.mayAlias();
   1056 
   1057           // Add dependencies to previous stores and loads mapped to V.
   1058           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
   1059           addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
   1060         }
   1061         // Update the store map after all chains have been added to avoid adding
   1062         // self-loop edge if multiple underlying objects are present.
   1063         for (const UnderlyingObject &UnderlObj : Objs) {
   1064           ValueType V = UnderlObj.getValue();
   1065           bool ThisMayAlias = UnderlObj.mayAlias();
   1066 
   1067           // Map this store to V.
   1068           (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
   1069         }
   1070         // The store may have dependencies to unanalyzable loads and
   1071         // stores.
   1072         addChainDependencies(SU, Loads, UnknownValue);
   1073         addChainDependencies(SU, Stores, UnknownValue);
   1074       }
   1075     } else { // SU is a load.
   1076       if (Objs.empty()) {
   1077         // An unknown load depends on all stores.
   1078         addChainDependencies(SU, Stores);
   1079         addChainDependencies(SU, NonAliasStores);
   1080 
   1081         Loads.insert(SU, UnknownValue);
   1082       } else {
   1083         for (const UnderlyingObject &UnderlObj : Objs) {
   1084           ValueType V = UnderlObj.getValue();
   1085           bool ThisMayAlias = UnderlObj.mayAlias();
   1086 
   1087           // Add precise dependencies against all previously seen stores
   1088           // mapping to the same Value(s).
   1089           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
   1090 
   1091           // Map this load to V.
   1092           (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
   1093         }
   1094         // The load may have dependencies to unanalyzable stores.
   1095         addChainDependencies(SU, Stores, UnknownValue);
   1096       }
   1097     }
   1098 
   1099     // Reduce maps if they grow huge.
   1100     if (Stores.size() + Loads.size() >= HugeRegion) {
   1101       DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
   1102       reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
   1103     }
   1104     if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
   1105       DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
   1106       reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
   1107     }
   1108   }
   1109 
   1110   if (DbgMI)
   1111     FirstDbgValue = DbgMI;
   1112 
   1113   Defs.clear();
   1114   Uses.clear();
   1115   CurrentVRegDefs.clear();
   1116   CurrentVRegUses.clear();
   1117 }
   1118 
   1119 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
   1120   PSV->printCustom(OS);
   1121   return OS;
   1122 }
   1123 
   1124 void ScheduleDAGInstrs::Value2SUsMap::dump() {
   1125   for (auto &Itr : *this) {
   1126     if (Itr.first.is<const Value*>()) {
   1127       const Value *V = Itr.first.get<const Value*>();
   1128       if (isa<UndefValue>(V))
   1129         dbgs() << "Unknown";
   1130       else
   1131         V->printAsOperand(dbgs());
   1132     }
   1133     else if (Itr.first.is<const PseudoSourceValue*>())
   1134       dbgs() <<  Itr.first.get<const PseudoSourceValue*>();
   1135     else
   1136       llvm_unreachable("Unknown Value type.");
   1137 
   1138     dbgs() << " : ";
   1139     dumpSUList(Itr.second);
   1140   }
   1141 }
   1142 
   1143 /// Reduce maps in FIFO order, by N SUs. This is better than turning
   1144 /// every Nth memory SU into BarrierChain in buildSchedGraph(), since
   1145 /// it avoids unnecessary edges between seen SUs above the new
   1146 /// BarrierChain, and those below it.
   1147 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
   1148                                               Value2SUsMap &loads, unsigned N) {
   1149   DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n";
   1150         stores.dump();
   1151         dbgs() << "Loading SUnits:\n";
   1152         loads.dump());
   1153 
   1154   // Insert all SU's NodeNums into a vector and sort it.
   1155   std::vector<unsigned> NodeNums;
   1156   NodeNums.reserve(stores.size() + loads.size());
   1157   for (auto &I : stores)
   1158     for (auto *SU : I.second)
   1159       NodeNums.push_back(SU->NodeNum);
   1160   for (auto &I : loads)
   1161     for (auto *SU : I.second)
   1162       NodeNums.push_back(SU->NodeNum);
   1163   std::sort(NodeNums.begin(), NodeNums.end());
   1164 
   1165   // The N last elements in NodeNums will be removed, and the SU with
   1166   // the lowest NodeNum of them will become the new BarrierChain to
   1167   // let the not yet seen SUs have a dependency to the removed SUs.
   1168   assert (N <= NodeNums.size());
   1169   SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
   1170   if (BarrierChain) {
   1171     // The aliasing and non-aliasing maps reduce independently of each
   1172     // other, but share a common BarrierChain. Check if the
   1173     // newBarrierChain is above the former one. If it is not, it may
   1174     // introduce a loop to use newBarrierChain, so keep the old one.
   1175     if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
   1176       BarrierChain->addPredBarrier(newBarrierChain);
   1177       BarrierChain = newBarrierChain;
   1178       DEBUG(dbgs() << "Inserting new barrier chain: SU("
   1179             << BarrierChain->NodeNum << ").\n";);
   1180     }
   1181     else
   1182       DEBUG(dbgs() << "Keeping old barrier chain: SU("
   1183             << BarrierChain->NodeNum << ").\n";);
   1184   }
   1185   else
   1186     BarrierChain = newBarrierChain;
   1187 
   1188   insertBarrierChain(stores);
   1189   insertBarrierChain(loads);
   1190 
   1191   DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n";
   1192         stores.dump();
   1193         dbgs() << "Loading SUnits:\n";
   1194         loads.dump());
   1195 }
   1196 
   1197 /// \brief Initialize register live-range state for updating kills.
   1198 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
   1199   // Start with no live registers.
   1200   LiveRegs.reset();
   1201 
   1202   // Examine the live-in regs of all successors.
   1203   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
   1204        SE = BB->succ_end(); SI != SE; ++SI) {
   1205     for (const auto &LI : (*SI)->liveins()) {
   1206       // Repeat, for reg and all subregs.
   1207       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
   1208            SubRegs.isValid(); ++SubRegs)
   1209         LiveRegs.set(*SubRegs);
   1210     }
   1211   }
   1212 }
   1213 
   1214 /// \brief If we change a kill flag on the bundle instruction implicit register
   1215 /// operands, then we also need to propagate that to any instructions inside
   1216 /// the bundle which had the same kill state.
   1217 static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
   1218                                  bool NewKillState,
   1219                                  const TargetRegisterInfo *TRI) {
   1220   if (MI->getOpcode() != TargetOpcode::BUNDLE)
   1221     return;
   1222 
   1223   // Walk backwards from the last instruction in the bundle to the first.
   1224   // Once we set a kill flag on an instruction, we bail out, as otherwise we
   1225   // might set it on too many operands.  We will clear as many flags as we
   1226   // can though.
   1227   MachineBasicBlock::instr_iterator Begin = MI->getIterator();
   1228   MachineBasicBlock::instr_iterator End = getBundleEnd(*MI);
   1229   while (Begin != End) {
   1230     if (NewKillState) {
   1231       if ((--End)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
   1232          return;
   1233     } else
   1234         (--End)->clearRegisterKills(Reg, TRI);
   1235   }
   1236 }
   1237 
   1238 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
   1239   // Setting kill flag...
   1240   if (!MO.isKill()) {
   1241     MO.setIsKill(true);
   1242     toggleBundleKillFlag(MI, MO.getReg(), true, TRI);
   1243     return false;
   1244   }
   1245 
   1246   // If MO itself is live, clear the kill flag...
   1247   if (LiveRegs.test(MO.getReg())) {
   1248     MO.setIsKill(false);
   1249     toggleBundleKillFlag(MI, MO.getReg(), false, TRI);
   1250     return false;
   1251   }
   1252 
   1253   // If any subreg of MO is live, then create an imp-def for that
   1254   // subreg and keep MO marked as killed.
   1255   MO.setIsKill(false);
   1256   toggleBundleKillFlag(MI, MO.getReg(), false, TRI);
   1257   bool AllDead = true;
   1258   const unsigned SuperReg = MO.getReg();
   1259   MachineInstrBuilder MIB(MF, MI);
   1260   for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
   1261     if (LiveRegs.test(*SubRegs)) {
   1262       MIB.addReg(*SubRegs, RegState::ImplicitDefine);
   1263       AllDead = false;
   1264     }
   1265   }
   1266 
   1267   if(AllDead) {
   1268     MO.setIsKill(true);
   1269     toggleBundleKillFlag(MI, MO.getReg(), true, TRI);
   1270   }
   1271   return false;
   1272 }
   1273 
   1274 // FIXME: Reuse the LivePhysRegs utility for this.
   1275 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
   1276   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
   1277 
   1278   LiveRegs.resize(TRI->getNumRegs());
   1279   BitVector killedRegs(TRI->getNumRegs());
   1280 
   1281   startBlockForKills(MBB);
   1282 
   1283   // Examine block from end to start...
   1284   unsigned Count = MBB->size();
   1285   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
   1286        I != E; --Count) {
   1287     MachineInstr &MI = *--I;
   1288     if (MI.isDebugValue())
   1289       continue;
   1290 
   1291     // Update liveness.  Registers that are defed but not used in this
   1292     // instruction are now dead. Mark register and all subregs as they
   1293     // are completely defined.
   1294     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   1295       MachineOperand &MO = MI.getOperand(i);
   1296       if (MO.isRegMask())
   1297         LiveRegs.clearBitsNotInMask(MO.getRegMask());
   1298       if (!MO.isReg()) continue;
   1299       unsigned Reg = MO.getReg();
   1300       if (Reg == 0) continue;
   1301       if (!MO.isDef()) continue;
   1302       // Ignore two-addr defs.
   1303       if (MI.isRegTiedToUseOperand(i)) continue;
   1304 
   1305       // Repeat for reg and all subregs.
   1306       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
   1307            SubRegs.isValid(); ++SubRegs)
   1308         LiveRegs.reset(*SubRegs);
   1309     }
   1310 
   1311     // Examine all used registers and set/clear kill flag. When a
   1312     // register is used multiple times we only set the kill flag on
   1313     // the first use. Don't set kill flags on undef operands.
   1314     killedRegs.reset();
   1315     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   1316       MachineOperand &MO = MI.getOperand(i);
   1317       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
   1318       unsigned Reg = MO.getReg();
   1319       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
   1320 
   1321       bool kill = false;
   1322       if (!killedRegs.test(Reg)) {
   1323         kill = true;
   1324         // A register is not killed if any subregs are live...
   1325         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
   1326           if (LiveRegs.test(*SubRegs)) {
   1327             kill = false;
   1328             break;
   1329           }
   1330         }
   1331 
   1332         // If subreg is not live, then register is killed if it became
   1333         // live in this instruction
   1334         if (kill)
   1335           kill = !LiveRegs.test(Reg);
   1336       }
   1337 
   1338       if (MO.isKill() != kill) {
   1339         DEBUG(dbgs() << "Fixing " << MO << " in ");
   1340         // Warning: toggleKillFlag may invalidate MO.
   1341         toggleKillFlag(&MI, MO);
   1342         DEBUG(MI.dump());
   1343         DEBUG({
   1344           if (MI.getOpcode() == TargetOpcode::BUNDLE) {
   1345             MachineBasicBlock::instr_iterator Begin = MI.getIterator();
   1346             MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
   1347             while (++Begin != End)
   1348               DEBUG(Begin->dump());
   1349           }
   1350         });
   1351       }
   1352 
   1353       killedRegs.set(Reg);
   1354     }
   1355 
   1356     // Mark any used register (that is not using undef) and subregs as
   1357     // now live...
   1358     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   1359       MachineOperand &MO = MI.getOperand(i);
   1360       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
   1361       unsigned Reg = MO.getReg();
   1362       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
   1363 
   1364       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
   1365            SubRegs.isValid(); ++SubRegs)
   1366         LiveRegs.set(*SubRegs);
   1367     }
   1368   }
   1369 }
   1370 
   1371 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
   1372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1373   SU->getInstr()->dump();
   1374 #endif
   1375 }
   1376 
   1377 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
   1378   std::string s;
   1379   raw_string_ostream oss(s);
   1380   if (SU == &EntrySU)
   1381     oss << "<entry>";
   1382   else if (SU == &ExitSU)
   1383     oss << "<exit>";
   1384   else
   1385     SU->getInstr()->print(oss, /*SkipOpers=*/true);
   1386   return oss.str();
   1387 }
   1388 
   1389 /// Return the basic block label. It is not necessarilly unique because a block
   1390 /// contains multiple scheduling regions. But it is fine for visualization.
   1391 std::string ScheduleDAGInstrs::getDAGName() const {
   1392   return "dag." + BB->getFullName();
   1393 }
   1394 
   1395 //===----------------------------------------------------------------------===//
   1396 // SchedDFSResult Implementation
   1397 //===----------------------------------------------------------------------===//
   1398 
   1399 namespace llvm {
   1400 /// \brief Internal state used to compute SchedDFSResult.
   1401 class SchedDFSImpl {
   1402   SchedDFSResult &R;
   1403 
   1404   /// Join DAG nodes into equivalence classes by their subtree.
   1405   IntEqClasses SubtreeClasses;
   1406   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
   1407   std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
   1408 
   1409   struct RootData {
   1410     unsigned NodeID;
   1411     unsigned ParentNodeID;  // Parent node (member of the parent subtree).
   1412     unsigned SubInstrCount; // Instr count in this tree only, not children.
   1413 
   1414     RootData(unsigned id): NodeID(id),
   1415                            ParentNodeID(SchedDFSResult::InvalidSubtreeID),
   1416                            SubInstrCount(0) {}
   1417 
   1418     unsigned getSparseSetIndex() const { return NodeID; }
   1419   };
   1420 
   1421   SparseSet<RootData> RootSet;
   1422 
   1423 public:
   1424   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
   1425     RootSet.setUniverse(R.DFSNodeData.size());
   1426   }
   1427 
   1428   /// Return true if this node been visited by the DFS traversal.
   1429   ///
   1430   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
   1431   /// ID. Later, SubtreeID is updated but remains valid.
   1432   bool isVisited(const SUnit *SU) const {
   1433     return R.DFSNodeData[SU->NodeNum].SubtreeID
   1434       != SchedDFSResult::InvalidSubtreeID;
   1435   }
   1436 
   1437   /// Initialize this node's instruction count. We don't need to flag the node
   1438   /// visited until visitPostorder because the DAG cannot have cycles.
   1439   void visitPreorder(const SUnit *SU) {
   1440     R.DFSNodeData[SU->NodeNum].InstrCount =
   1441       SU->getInstr()->isTransient() ? 0 : 1;
   1442   }
   1443 
   1444   /// Called once for each node after all predecessors are visited. Revisit this
   1445   /// node's predecessors and potentially join them now that we know the ILP of
   1446   /// the other predecessors.
   1447   void visitPostorderNode(const SUnit *SU) {
   1448     // Mark this node as the root of a subtree. It may be joined with its
   1449     // successors later.
   1450     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
   1451     RootData RData(SU->NodeNum);
   1452     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
   1453 
   1454     // If any predecessors are still in their own subtree, they either cannot be
   1455     // joined or are large enough to remain separate. If this parent node's
   1456     // total instruction count is not greater than a child subtree by at least
   1457     // the subtree limit, then try to join it now since splitting subtrees is
   1458     // only useful if multiple high-pressure paths are possible.
   1459     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
   1460     for (SUnit::const_pred_iterator
   1461            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
   1462       if (PI->getKind() != SDep::Data)
   1463         continue;
   1464       unsigned PredNum = PI->getSUnit()->NodeNum;
   1465       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
   1466         joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
   1467 
   1468       // Either link or merge the TreeData entry from the child to the parent.
   1469       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
   1470         // If the predecessor's parent is invalid, this is a tree edge and the
   1471         // current node is the parent.
   1472         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
   1473           RootSet[PredNum].ParentNodeID = SU->NodeNum;
   1474       }
   1475       else if (RootSet.count(PredNum)) {
   1476         // The predecessor is not a root, but is still in the root set. This
   1477         // must be the new parent that it was just joined to. Note that
   1478         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
   1479         // set to the original parent.
   1480         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
   1481         RootSet.erase(PredNum);
   1482       }
   1483     }
   1484     RootSet[SU->NodeNum] = RData;
   1485   }
   1486 
   1487   /// Called once for each tree edge after calling visitPostOrderNode on the
   1488   /// predecessor. Increment the parent node's instruction count and
   1489   /// preemptively join this subtree to its parent's if it is small enough.
   1490   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
   1491     R.DFSNodeData[Succ->NodeNum].InstrCount
   1492       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
   1493     joinPredSubtree(PredDep, Succ);
   1494   }
   1495 
   1496   /// Add a connection for cross edges.
   1497   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
   1498     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
   1499   }
   1500 
   1501   /// Set each node's subtree ID to the representative ID and record connections
   1502   /// between trees.
   1503   void finalize() {
   1504     SubtreeClasses.compress();
   1505     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
   1506     assert(SubtreeClasses.getNumClasses() == RootSet.size()
   1507            && "number of roots should match trees");
   1508     for (SparseSet<RootData>::const_iterator
   1509            RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
   1510       unsigned TreeID = SubtreeClasses[RI->NodeID];
   1511       if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
   1512         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
   1513       R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
   1514       // Note that SubInstrCount may be greater than InstrCount if we joined
   1515       // subtrees across a cross edge. InstrCount will be attributed to the
   1516       // original parent, while SubInstrCount will be attributed to the joined
   1517       // parent.
   1518     }
   1519     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
   1520     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
   1521     DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
   1522     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
   1523       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
   1524       DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
   1525             << R.DFSNodeData[Idx].SubtreeID << '\n');
   1526     }
   1527     for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
   1528            I = ConnectionPairs.begin(), E = ConnectionPairs.end();
   1529          I != E; ++I) {
   1530       unsigned PredTree = SubtreeClasses[I->first->NodeNum];
   1531       unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
   1532       if (PredTree == SuccTree)
   1533         continue;
   1534       unsigned Depth = I->first->getDepth();
   1535       addConnection(PredTree, SuccTree, Depth);
   1536       addConnection(SuccTree, PredTree, Depth);
   1537     }
   1538   }
   1539 
   1540 protected:
   1541   /// Join the predecessor subtree with the successor that is its DFS
   1542   /// parent. Apply some heuristics before joining.
   1543   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
   1544                        bool CheckLimit = true) {
   1545     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
   1546 
   1547     // Check if the predecessor is already joined.
   1548     const SUnit *PredSU = PredDep.getSUnit();
   1549     unsigned PredNum = PredSU->NodeNum;
   1550     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
   1551       return false;
   1552 
   1553     // Four is the magic number of successors before a node is considered a
   1554     // pinch point.
   1555     unsigned NumDataSucs = 0;
   1556     for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
   1557            SE = PredSU->Succs.end(); SI != SE; ++SI) {
   1558       if (SI->getKind() == SDep::Data) {
   1559         if (++NumDataSucs >= 4)
   1560           return false;
   1561       }
   1562     }
   1563     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
   1564       return false;
   1565     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
   1566     SubtreeClasses.join(Succ->NodeNum, PredNum);
   1567     return true;
   1568   }
   1569 
   1570   /// Called by finalize() to record a connection between trees.
   1571   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
   1572     if (!Depth)
   1573       return;
   1574 
   1575     do {
   1576       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
   1577         R.SubtreeConnections[FromTree];
   1578       for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
   1579              I = Connections.begin(), E = Connections.end(); I != E; ++I) {
   1580         if (I->TreeID == ToTree) {
   1581           I->Level = std::max(I->Level, Depth);
   1582           return;
   1583         }
   1584       }
   1585       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
   1586       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
   1587     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
   1588   }
   1589 };
   1590 } // namespace llvm
   1591 
   1592 namespace {
   1593 /// \brief Manage the stack used by a reverse depth-first search over the DAG.
   1594 class SchedDAGReverseDFS {
   1595   std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
   1596 public:
   1597   bool isComplete() const { return DFSStack.empty(); }
   1598 
   1599   void follow(const SUnit *SU) {
   1600     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
   1601   }
   1602   void advance() { ++DFSStack.back().second; }
   1603 
   1604   const SDep *backtrack() {
   1605     DFSStack.pop_back();
   1606     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
   1607   }
   1608 
   1609   const SUnit *getCurr() const { return DFSStack.back().first; }
   1610 
   1611   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
   1612 
   1613   SUnit::const_pred_iterator getPredEnd() const {
   1614     return getCurr()->Preds.end();
   1615   }
   1616 };
   1617 } // anonymous
   1618 
   1619 static bool hasDataSucc(const SUnit *SU) {
   1620   for (SUnit::const_succ_iterator
   1621          SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
   1622     if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
   1623       return true;
   1624   }
   1625   return false;
   1626 }
   1627 
   1628 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
   1629 /// search from this root.
   1630 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
   1631   if (!IsBottomUp)
   1632     llvm_unreachable("Top-down ILP metric is unimplemnted");
   1633 
   1634   SchedDFSImpl Impl(*this);
   1635   for (ArrayRef<SUnit>::const_iterator
   1636          SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
   1637     const SUnit *SU = &*SI;
   1638     if (Impl.isVisited(SU) || hasDataSucc(SU))
   1639       continue;
   1640 
   1641     SchedDAGReverseDFS DFS;
   1642     Impl.visitPreorder(SU);
   1643     DFS.follow(SU);
   1644     for (;;) {
   1645       // Traverse the leftmost path as far as possible.
   1646       while (DFS.getPred() != DFS.getPredEnd()) {
   1647         const SDep &PredDep = *DFS.getPred();
   1648         DFS.advance();
   1649         // Ignore non-data edges.
   1650         if (PredDep.getKind() != SDep::Data
   1651             || PredDep.getSUnit()->isBoundaryNode()) {
   1652           continue;
   1653         }
   1654         // An already visited edge is a cross edge, assuming an acyclic DAG.
   1655         if (Impl.isVisited(PredDep.getSUnit())) {
   1656           Impl.visitCrossEdge(PredDep, DFS.getCurr());
   1657           continue;
   1658         }
   1659         Impl.visitPreorder(PredDep.getSUnit());
   1660         DFS.follow(PredDep.getSUnit());
   1661       }
   1662       // Visit the top of the stack in postorder and backtrack.
   1663       const SUnit *Child = DFS.getCurr();
   1664       const SDep *PredDep = DFS.backtrack();
   1665       Impl.visitPostorderNode(Child);
   1666       if (PredDep)
   1667         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
   1668       if (DFS.isComplete())
   1669         break;
   1670     }
   1671   }
   1672   Impl.finalize();
   1673 }
   1674 
   1675 /// The root of the given SubtreeID was just scheduled. For all subtrees
   1676 /// connected to this tree, record the depth of the connection so that the
   1677 /// nearest connected subtrees can be prioritized.
   1678 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
   1679   for (SmallVectorImpl<Connection>::const_iterator
   1680          I = SubtreeConnections[SubtreeID].begin(),
   1681          E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
   1682     SubtreeConnectLevels[I->TreeID] =
   1683       std::max(SubtreeConnectLevels[I->TreeID], I->Level);
   1684     DEBUG(dbgs() << "  Tree: " << I->TreeID
   1685           << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
   1686   }
   1687 }
   1688 
   1689 LLVM_DUMP_METHOD
   1690 void ILPValue::print(raw_ostream &OS) const {
   1691   OS << InstrCount << " / " << Length << " = ";
   1692   if (!Length)
   1693     OS << "BADILP";
   1694   else
   1695     OS << format("%g", ((double)InstrCount / Length));
   1696 }
   1697 
   1698 LLVM_DUMP_METHOD
   1699 void ILPValue::dump() const {
   1700   dbgs() << *this << '\n';
   1701 }
   1702 
   1703 namespace llvm {
   1704 
   1705 LLVM_DUMP_METHOD
   1706 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
   1707   Val.print(OS);
   1708   return OS;
   1709 }
   1710 
   1711 } // namespace llvm
   1712