1 /* Copyright (c) 2014, Google Inc. 2 * 3 * Permission to use, copy, modify, and/or distribute this software for any 4 * purpose with or without fee is hereby granted, provided that the above 5 * copyright notice and this permission notice appear in all copies. 6 * 7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION 12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ 14 15 #include <assert.h> 16 #include <limits.h> 17 #include <string.h> 18 19 #include <openssl/aead.h> 20 #include <openssl/cipher.h> 21 #include <openssl/err.h> 22 #include <openssl/hmac.h> 23 #include <openssl/md5.h> 24 #include <openssl/mem.h> 25 #include <openssl/sha.h> 26 #include <openssl/type_check.h> 27 28 #include "../fipsmodule/cipher/internal.h" 29 #include "../internal.h" 30 #include "internal.h" 31 32 33 typedef struct { 34 EVP_CIPHER_CTX cipher_ctx; 35 HMAC_CTX hmac_ctx; 36 /* mac_key is the portion of the key used for the MAC. It is retained 37 * separately for the constant-time CBC code. */ 38 uint8_t mac_key[EVP_MAX_MD_SIZE]; 39 uint8_t mac_key_len; 40 /* implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit 41 * IV. */ 42 char implicit_iv; 43 } AEAD_TLS_CTX; 44 45 OPENSSL_COMPILE_ASSERT(EVP_MAX_MD_SIZE < 256, mac_key_len_fits_in_uint8_t); 46 47 static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) { 48 AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state; 49 EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx); 50 HMAC_CTX_cleanup(&tls_ctx->hmac_ctx); 51 OPENSSL_cleanse(&tls_ctx->mac_key, sizeof(tls_ctx->mac_key)); 52 OPENSSL_free(tls_ctx); 53 ctx->aead_state = NULL; 54 } 55 56 static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, 57 size_t tag_len, enum evp_aead_direction_t dir, 58 const EVP_CIPHER *cipher, const EVP_MD *md, 59 char implicit_iv) { 60 if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH && 61 tag_len != EVP_MD_size(md)) { 62 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE); 63 return 0; 64 } 65 66 if (key_len != EVP_AEAD_key_length(ctx->aead)) { 67 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); 68 return 0; 69 } 70 71 size_t mac_key_len = EVP_MD_size(md); 72 size_t enc_key_len = EVP_CIPHER_key_length(cipher); 73 assert(mac_key_len + enc_key_len + 74 (implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0) == key_len); 75 76 AEAD_TLS_CTX *tls_ctx = OPENSSL_malloc(sizeof(AEAD_TLS_CTX)); 77 if (tls_ctx == NULL) { 78 OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE); 79 return 0; 80 } 81 EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx); 82 HMAC_CTX_init(&tls_ctx->hmac_ctx); 83 assert(mac_key_len <= EVP_MAX_MD_SIZE); 84 OPENSSL_memcpy(tls_ctx->mac_key, key, mac_key_len); 85 tls_ctx->mac_key_len = (uint8_t)mac_key_len; 86 tls_ctx->implicit_iv = implicit_iv; 87 88 ctx->aead_state = tls_ctx; 89 if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, cipher, NULL, &key[mac_key_len], 90 implicit_iv ? &key[mac_key_len + enc_key_len] : NULL, 91 dir == evp_aead_seal) || 92 !HMAC_Init_ex(&tls_ctx->hmac_ctx, key, mac_key_len, md, NULL)) { 93 aead_tls_cleanup(ctx); 94 ctx->aead_state = NULL; 95 return 0; 96 } 97 EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0); 98 99 return 1; 100 } 101 102 static int aead_tls_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out, 103 uint8_t *out_tag, size_t *out_tag_len, 104 size_t max_out_tag_len, const uint8_t *nonce, 105 size_t nonce_len, const uint8_t *in, 106 size_t in_len, const uint8_t *extra_in, 107 size_t extra_in_len, const uint8_t *ad, 108 size_t ad_len) { 109 AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state; 110 111 if (!tls_ctx->cipher_ctx.encrypt) { 112 /* Unlike a normal AEAD, a TLS AEAD may only be used in one direction. */ 113 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION); 114 return 0; 115 } 116 117 if (in_len > INT_MAX) { 118 /* EVP_CIPHER takes int as input. */ 119 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); 120 return 0; 121 } 122 123 const size_t max_overhead = EVP_AEAD_max_overhead(ctx->aead); 124 if (max_out_tag_len < max_overhead) { 125 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); 126 return 0; 127 } 128 129 if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { 130 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); 131 return 0; 132 } 133 134 if (ad_len != 13 - 2 /* length bytes */) { 135 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE); 136 return 0; 137 } 138 139 /* To allow for CBC mode which changes cipher length, |ad| doesn't include the 140 * length for legacy ciphers. */ 141 uint8_t ad_extra[2]; 142 ad_extra[0] = (uint8_t)(in_len >> 8); 143 ad_extra[1] = (uint8_t)(in_len & 0xff); 144 145 /* Compute the MAC. This must be first in case the operation is being done 146 * in-place. */ 147 uint8_t mac[EVP_MAX_MD_SIZE]; 148 unsigned mac_len; 149 if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) || 150 !HMAC_Update(&tls_ctx->hmac_ctx, ad, ad_len) || 151 !HMAC_Update(&tls_ctx->hmac_ctx, ad_extra, sizeof(ad_extra)) || 152 !HMAC_Update(&tls_ctx->hmac_ctx, in, in_len) || 153 !HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len)) { 154 return 0; 155 } 156 157 /* Configure the explicit IV. */ 158 if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && 159 !tls_ctx->implicit_iv && 160 !EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { 161 return 0; 162 } 163 164 /* Encrypt the input. */ 165 int len; 166 if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { 167 return 0; 168 } 169 170 unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); 171 172 /* Feed the MAC into the cipher in two steps. First complete the final partial 173 * block from encrypting the input and split the result between |out| and 174 * |out_tag|. Then feed the rest. */ 175 176 size_t early_mac_len = (block_size - (in_len % block_size)) % block_size; 177 if (early_mac_len != 0) { 178 assert(len + block_size - early_mac_len == in_len); 179 uint8_t buf[EVP_MAX_BLOCK_LENGTH]; 180 int buf_len; 181 if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, buf, &buf_len, mac, 182 (int)early_mac_len)) { 183 return 0; 184 } 185 assert(buf_len == (int)block_size); 186 OPENSSL_memcpy(out + len, buf, block_size - early_mac_len); 187 OPENSSL_memcpy(out_tag, buf + block_size - early_mac_len, early_mac_len); 188 } 189 size_t tag_len = early_mac_len; 190 191 if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len, 192 mac + tag_len, mac_len - tag_len)) { 193 return 0; 194 } 195 tag_len += len; 196 197 if (block_size > 1) { 198 assert(block_size <= 256); 199 assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE); 200 201 /* Compute padding and feed that into the cipher. */ 202 uint8_t padding[256]; 203 unsigned padding_len = block_size - ((in_len + mac_len) % block_size); 204 OPENSSL_memset(padding, padding_len - 1, padding_len); 205 if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out_tag + tag_len, &len, 206 padding, (int)padding_len)) { 207 return 0; 208 } 209 tag_len += len; 210 } 211 212 if (!EVP_EncryptFinal_ex(&tls_ctx->cipher_ctx, out_tag + tag_len, &len)) { 213 return 0; 214 } 215 tag_len += len; 216 assert(tag_len <= max_overhead); 217 218 *out_tag_len = tag_len; 219 return 1; 220 } 221 222 static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, 223 size_t max_out_len, const uint8_t *nonce, 224 size_t nonce_len, const uint8_t *in, size_t in_len, 225 const uint8_t *ad, size_t ad_len) { 226 AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state; 227 228 if (tls_ctx->cipher_ctx.encrypt) { 229 /* Unlike a normal AEAD, a TLS AEAD may only be used in one direction. */ 230 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION); 231 return 0; 232 } 233 234 if (in_len < HMAC_size(&tls_ctx->hmac_ctx)) { 235 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); 236 return 0; 237 } 238 239 if (max_out_len < in_len) { 240 /* This requires that the caller provide space for the MAC, even though it 241 * will always be removed on return. */ 242 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); 243 return 0; 244 } 245 246 if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { 247 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); 248 return 0; 249 } 250 251 if (ad_len != 13 - 2 /* length bytes */) { 252 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE); 253 return 0; 254 } 255 256 if (in_len > INT_MAX) { 257 /* EVP_CIPHER takes int as input. */ 258 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); 259 return 0; 260 } 261 262 /* Configure the explicit IV. */ 263 if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && 264 !tls_ctx->implicit_iv && 265 !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { 266 return 0; 267 } 268 269 /* Decrypt to get the plaintext + MAC + padding. */ 270 size_t total = 0; 271 int len; 272 if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { 273 return 0; 274 } 275 total += len; 276 if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) { 277 return 0; 278 } 279 total += len; 280 assert(total == in_len); 281 282 /* Remove CBC padding. Code from here on is timing-sensitive with respect to 283 * |padding_ok| and |data_plus_mac_len| for CBC ciphers. */ 284 size_t data_plus_mac_len; 285 crypto_word_t padding_ok; 286 if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) { 287 if (!EVP_tls_cbc_remove_padding( 288 &padding_ok, &data_plus_mac_len, out, total, 289 EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx), 290 HMAC_size(&tls_ctx->hmac_ctx))) { 291 /* Publicly invalid. This can be rejected in non-constant time. */ 292 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); 293 return 0; 294 } 295 } else { 296 padding_ok = CONSTTIME_TRUE_W; 297 data_plus_mac_len = total; 298 /* |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has 299 * already been checked against the MAC size at the top of the function. */ 300 assert(data_plus_mac_len >= HMAC_size(&tls_ctx->hmac_ctx)); 301 } 302 size_t data_len = data_plus_mac_len - HMAC_size(&tls_ctx->hmac_ctx); 303 304 /* At this point, if the padding is valid, the first |data_plus_mac_len| bytes 305 * after |out| are the plaintext and MAC. Otherwise, |data_plus_mac_len| is 306 * still large enough to extract a MAC, but it will be irrelevant. */ 307 308 /* To allow for CBC mode which changes cipher length, |ad| doesn't include the 309 * length for legacy ciphers. */ 310 uint8_t ad_fixed[13]; 311 OPENSSL_memcpy(ad_fixed, ad, 11); 312 ad_fixed[11] = (uint8_t)(data_len >> 8); 313 ad_fixed[12] = (uint8_t)(data_len & 0xff); 314 ad_len += 2; 315 316 /* Compute the MAC and extract the one in the record. */ 317 uint8_t mac[EVP_MAX_MD_SIZE]; 318 size_t mac_len; 319 uint8_t record_mac_tmp[EVP_MAX_MD_SIZE]; 320 uint8_t *record_mac; 321 if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && 322 EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx.md)) { 323 if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx.md, mac, &mac_len, 324 ad_fixed, out, data_plus_mac_len, total, 325 tls_ctx->mac_key, tls_ctx->mac_key_len)) { 326 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); 327 return 0; 328 } 329 assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); 330 331 record_mac = record_mac_tmp; 332 EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total); 333 } else { 334 /* We should support the constant-time path for all CBC-mode ciphers 335 * implemented. */ 336 assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE); 337 338 unsigned mac_len_u; 339 if (!HMAC_Init_ex(&tls_ctx->hmac_ctx, NULL, 0, NULL, NULL) || 340 !HMAC_Update(&tls_ctx->hmac_ctx, ad_fixed, ad_len) || 341 !HMAC_Update(&tls_ctx->hmac_ctx, out, data_len) || 342 !HMAC_Final(&tls_ctx->hmac_ctx, mac, &mac_len_u)) { 343 return 0; 344 } 345 mac_len = mac_len_u; 346 347 assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); 348 record_mac = &out[data_len]; 349 } 350 351 /* Perform the MAC check and the padding check in constant-time. It should be 352 * safe to simply perform the padding check first, but it would not be under a 353 * different choice of MAC location on padding failure. See 354 * EVP_tls_cbc_remove_padding. */ 355 crypto_word_t good = 356 constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), 0); 357 good &= padding_ok; 358 if (!good) { 359 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); 360 return 0; 361 } 362 363 /* End of timing-sensitive code. */ 364 365 *out_len = data_len; 366 return 1; 367 } 368 369 static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, 370 size_t key_len, size_t tag_len, 371 enum evp_aead_direction_t dir) { 372 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), 373 EVP_sha1(), 0); 374 } 375 376 static int aead_aes_128_cbc_sha1_tls_implicit_iv_init( 377 EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, 378 enum evp_aead_direction_t dir) { 379 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), 380 EVP_sha1(), 1); 381 } 382 383 static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx, 384 const uint8_t *key, size_t key_len, 385 size_t tag_len, 386 enum evp_aead_direction_t dir) { 387 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), 388 EVP_sha256(), 0); 389 } 390 391 static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, 392 size_t key_len, size_t tag_len, 393 enum evp_aead_direction_t dir) { 394 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), 395 EVP_sha1(), 0); 396 } 397 398 static int aead_aes_256_cbc_sha1_tls_implicit_iv_init( 399 EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, 400 enum evp_aead_direction_t dir) { 401 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), 402 EVP_sha1(), 1); 403 } 404 405 static int aead_aes_256_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx, 406 const uint8_t *key, size_t key_len, 407 size_t tag_len, 408 enum evp_aead_direction_t dir) { 409 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), 410 EVP_sha256(), 0); 411 } 412 413 static int aead_aes_256_cbc_sha384_tls_init(EVP_AEAD_CTX *ctx, 414 const uint8_t *key, size_t key_len, 415 size_t tag_len, 416 enum evp_aead_direction_t dir) { 417 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), 418 EVP_sha384(), 0); 419 } 420 421 static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, 422 const uint8_t *key, size_t key_len, 423 size_t tag_len, 424 enum evp_aead_direction_t dir) { 425 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), 426 EVP_sha1(), 0); 427 } 428 429 static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init( 430 EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, 431 enum evp_aead_direction_t dir) { 432 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), 433 EVP_sha1(), 1); 434 } 435 436 static int aead_tls_get_iv(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv, 437 size_t *out_iv_len) { 438 const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX*) ctx->aead_state; 439 const size_t iv_len = EVP_CIPHER_CTX_iv_length(&tls_ctx->cipher_ctx); 440 if (iv_len <= 1) { 441 return 0; 442 } 443 444 *out_iv = tls_ctx->cipher_ctx.iv; 445 *out_iv_len = iv_len; 446 return 1; 447 } 448 449 static int aead_null_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, 450 size_t key_len, size_t tag_len, 451 enum evp_aead_direction_t dir) { 452 return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_enc_null(), 453 EVP_sha1(), 1 /* implicit iv */); 454 } 455 456 static const EVP_AEAD aead_aes_128_cbc_sha1_tls = { 457 SHA_DIGEST_LENGTH + 16, /* key len (SHA1 + AES128) */ 458 16, /* nonce len (IV) */ 459 16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ 460 SHA_DIGEST_LENGTH, /* max tag length */ 461 0, /* seal_scatter_supports_extra_in */ 462 463 NULL, /* init */ 464 aead_aes_128_cbc_sha1_tls_init, 465 aead_tls_cleanup, 466 aead_tls_open, 467 aead_tls_seal_scatter, 468 NULL, /* open_gather */ 469 NULL, /* get_iv */ 470 }; 471 472 static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = { 473 SHA_DIGEST_LENGTH + 16 + 16, /* key len (SHA1 + AES128 + IV) */ 474 0, /* nonce len */ 475 16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ 476 SHA_DIGEST_LENGTH, /* max tag length */ 477 0, /* seal_scatter_supports_extra_in */ 478 479 NULL, /* init */ 480 aead_aes_128_cbc_sha1_tls_implicit_iv_init, 481 aead_tls_cleanup, 482 aead_tls_open, 483 aead_tls_seal_scatter, 484 NULL, /* open_gather */ 485 aead_tls_get_iv, /* get_iv */ 486 }; 487 488 static const EVP_AEAD aead_aes_128_cbc_sha256_tls = { 489 SHA256_DIGEST_LENGTH + 16, /* key len (SHA256 + AES128) */ 490 16, /* nonce len (IV) */ 491 16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */ 492 SHA256_DIGEST_LENGTH, /* max tag length */ 493 0, /* seal_scatter_supports_extra_in */ 494 495 NULL, /* init */ 496 aead_aes_128_cbc_sha256_tls_init, 497 aead_tls_cleanup, 498 aead_tls_open, 499 aead_tls_seal_scatter, 500 NULL, /* open_gather */ 501 NULL, /* get_iv */ 502 }; 503 504 static const EVP_AEAD aead_aes_256_cbc_sha1_tls = { 505 SHA_DIGEST_LENGTH + 32, /* key len (SHA1 + AES256) */ 506 16, /* nonce len (IV) */ 507 16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ 508 SHA_DIGEST_LENGTH, /* max tag length */ 509 0, /* seal_scatter_supports_extra_in */ 510 511 NULL, /* init */ 512 aead_aes_256_cbc_sha1_tls_init, 513 aead_tls_cleanup, 514 aead_tls_open, 515 aead_tls_seal_scatter, 516 NULL, /* open_gather */ 517 NULL, /* get_iv */ 518 }; 519 520 static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = { 521 SHA_DIGEST_LENGTH + 32 + 16, /* key len (SHA1 + AES256 + IV) */ 522 0, /* nonce len */ 523 16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ 524 SHA_DIGEST_LENGTH, /* max tag length */ 525 0, /* seal_scatter_supports_extra_in */ 526 527 NULL, /* init */ 528 aead_aes_256_cbc_sha1_tls_implicit_iv_init, 529 aead_tls_cleanup, 530 aead_tls_open, 531 aead_tls_seal_scatter, 532 NULL, /* open_gather */ 533 aead_tls_get_iv, /* get_iv */ 534 }; 535 536 static const EVP_AEAD aead_aes_256_cbc_sha256_tls = { 537 SHA256_DIGEST_LENGTH + 32, /* key len (SHA256 + AES256) */ 538 16, /* nonce len (IV) */ 539 16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */ 540 SHA256_DIGEST_LENGTH, /* max tag length */ 541 0, /* seal_scatter_supports_extra_in */ 542 543 NULL, /* init */ 544 aead_aes_256_cbc_sha256_tls_init, 545 aead_tls_cleanup, 546 aead_tls_open, 547 aead_tls_seal_scatter, 548 NULL, /* open_gather */ 549 NULL, /* get_iv */ 550 }; 551 552 static const EVP_AEAD aead_aes_256_cbc_sha384_tls = { 553 SHA384_DIGEST_LENGTH + 32, /* key len (SHA384 + AES256) */ 554 16, /* nonce len (IV) */ 555 16 + SHA384_DIGEST_LENGTH, /* overhead (padding + SHA384) */ 556 SHA384_DIGEST_LENGTH, /* max tag length */ 557 0, /* seal_scatter_supports_extra_in */ 558 559 NULL, /* init */ 560 aead_aes_256_cbc_sha384_tls_init, 561 aead_tls_cleanup, 562 aead_tls_open, 563 aead_tls_seal_scatter, 564 NULL, /* open_gather */ 565 NULL, /* get_iv */ 566 }; 567 568 static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = { 569 SHA_DIGEST_LENGTH + 24, /* key len (SHA1 + 3DES) */ 570 8, /* nonce len (IV) */ 571 8 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ 572 SHA_DIGEST_LENGTH, /* max tag length */ 573 0, /* seal_scatter_supports_extra_in */ 574 575 NULL, /* init */ 576 aead_des_ede3_cbc_sha1_tls_init, 577 aead_tls_cleanup, 578 aead_tls_open, 579 aead_tls_seal_scatter, 580 NULL, /* open_gather */ 581 NULL, /* get_iv */ 582 }; 583 584 static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = { 585 SHA_DIGEST_LENGTH + 24 + 8, /* key len (SHA1 + 3DES + IV) */ 586 0, /* nonce len */ 587 8 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ 588 SHA_DIGEST_LENGTH, /* max tag length */ 589 0, /* seal_scatter_supports_extra_in */ 590 591 NULL, /* init */ 592 aead_des_ede3_cbc_sha1_tls_implicit_iv_init, 593 aead_tls_cleanup, 594 aead_tls_open, 595 aead_tls_seal_scatter, 596 NULL, /* open_gather */ 597 aead_tls_get_iv, /* get_iv */ 598 }; 599 600 static const EVP_AEAD aead_null_sha1_tls = { 601 SHA_DIGEST_LENGTH, /* key len */ 602 0, /* nonce len */ 603 SHA_DIGEST_LENGTH, /* overhead (SHA1) */ 604 SHA_DIGEST_LENGTH, /* max tag length */ 605 0, /* seal_scatter_supports_extra_in */ 606 607 NULL, /* init */ 608 aead_null_sha1_tls_init, 609 aead_tls_cleanup, 610 aead_tls_open, 611 aead_tls_seal_scatter, 612 NULL, /* open_gather */ 613 NULL, /* get_iv */ 614 }; 615 616 const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) { 617 return &aead_aes_128_cbc_sha1_tls; 618 } 619 620 const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) { 621 return &aead_aes_128_cbc_sha1_tls_implicit_iv; 622 } 623 624 const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) { 625 return &aead_aes_128_cbc_sha256_tls; 626 } 627 628 const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) { 629 return &aead_aes_256_cbc_sha1_tls; 630 } 631 632 const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) { 633 return &aead_aes_256_cbc_sha1_tls_implicit_iv; 634 } 635 636 const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void) { 637 return &aead_aes_256_cbc_sha256_tls; 638 } 639 640 const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void) { 641 return &aead_aes_256_cbc_sha384_tls; 642 } 643 644 const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) { 645 return &aead_des_ede3_cbc_sha1_tls; 646 } 647 648 const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) { 649 return &aead_des_ede3_cbc_sha1_tls_implicit_iv; 650 } 651 652 const EVP_AEAD *EVP_aead_null_sha1_tls(void) { return &aead_null_sha1_tls; } 653