1 //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the abstract lowering for the Swift calling convention. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/CodeGen/SwiftCallingConv.h" 15 #include "clang/Basic/TargetInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 19 using namespace clang; 20 using namespace CodeGen; 21 using namespace swiftcall; 22 23 static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) { 24 return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo()); 25 } 26 27 static bool isPowerOf2(unsigned n) { 28 return n == (n & -n); 29 } 30 31 /// Given two types with the same size, try to find a common type. 32 static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) { 33 assert(first != second); 34 35 // Allow pointers to merge with integers, but prefer the integer type. 36 if (first->isIntegerTy()) { 37 if (second->isPointerTy()) return first; 38 } else if (first->isPointerTy()) { 39 if (second->isIntegerTy()) return second; 40 if (second->isPointerTy()) return first; 41 42 // Allow two vectors to be merged (given that they have the same size). 43 // This assumes that we never have two different vector register sets. 44 } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) { 45 if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) { 46 if (auto commonTy = getCommonType(firstVecTy->getElementType(), 47 secondVecTy->getElementType())) { 48 return (commonTy == firstVecTy->getElementType() ? first : second); 49 } 50 } 51 } 52 53 return nullptr; 54 } 55 56 static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) { 57 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type)); 58 } 59 60 void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) { 61 // Deal with various aggregate types as special cases: 62 63 // Record types. 64 if (auto recType = type->getAs<RecordType>()) { 65 addTypedData(recType->getDecl(), begin); 66 67 // Array types. 68 } else if (type->isArrayType()) { 69 // Incomplete array types (flexible array members?) don't provide 70 // data to lay out, and the other cases shouldn't be possible. 71 auto arrayType = CGM.getContext().getAsConstantArrayType(type); 72 if (!arrayType) return; 73 74 QualType eltType = arrayType->getElementType(); 75 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); 76 for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) { 77 addTypedData(eltType, begin + i * eltSize); 78 } 79 80 // Complex types. 81 } else if (auto complexType = type->getAs<ComplexType>()) { 82 auto eltType = complexType->getElementType(); 83 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); 84 auto eltLLVMType = CGM.getTypes().ConvertType(eltType); 85 addTypedData(eltLLVMType, begin, begin + eltSize); 86 addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize); 87 88 // Member pointer types. 89 } else if (type->getAs<MemberPointerType>()) { 90 // Just add it all as opaque. 91 addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type)); 92 93 // Everything else is scalar and should not convert as an LLVM aggregate. 94 } else { 95 // We intentionally convert as !ForMem because we want to preserve 96 // that a type was an i1. 97 auto llvmType = CGM.getTypes().ConvertType(type); 98 addTypedData(llvmType, begin); 99 } 100 } 101 102 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) { 103 addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record)); 104 } 105 106 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin, 107 const ASTRecordLayout &layout) { 108 // Unions are a special case. 109 if (record->isUnion()) { 110 for (auto field : record->fields()) { 111 if (field->isBitField()) { 112 addBitFieldData(field, begin, 0); 113 } else { 114 addTypedData(field->getType(), begin); 115 } 116 } 117 return; 118 } 119 120 // Note that correctness does not rely on us adding things in 121 // their actual order of layout; it's just somewhat more efficient 122 // for the builder. 123 124 // With that in mind, add "early" C++ data. 125 auto cxxRecord = dyn_cast<CXXRecordDecl>(record); 126 if (cxxRecord) { 127 // - a v-table pointer, if the class adds its own 128 if (layout.hasOwnVFPtr()) { 129 addTypedData(CGM.Int8PtrTy, begin); 130 } 131 132 // - non-virtual bases 133 for (auto &baseSpecifier : cxxRecord->bases()) { 134 if (baseSpecifier.isVirtual()) continue; 135 136 auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl(); 137 addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord)); 138 } 139 140 // - a vbptr if the class adds its own 141 if (layout.hasOwnVBPtr()) { 142 addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset()); 143 } 144 } 145 146 // Add fields. 147 for (auto field : record->fields()) { 148 auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex()); 149 if (field->isBitField()) { 150 addBitFieldData(field, begin, fieldOffsetInBits); 151 } else { 152 addTypedData(field->getType(), 153 begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits)); 154 } 155 } 156 157 // Add "late" C++ data: 158 if (cxxRecord) { 159 // - virtual bases 160 for (auto &vbaseSpecifier : cxxRecord->vbases()) { 161 auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl(); 162 addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord)); 163 } 164 } 165 } 166 167 void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield, 168 CharUnits recordBegin, 169 uint64_t bitfieldBitBegin) { 170 assert(bitfield->isBitField()); 171 auto &ctx = CGM.getContext(); 172 auto width = bitfield->getBitWidthValue(ctx); 173 174 // We can ignore zero-width bit-fields. 175 if (width == 0) return; 176 177 // toCharUnitsFromBits rounds down. 178 CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin); 179 180 // Find the offset of the last byte that is partially occupied by the 181 // bit-field; since we otherwise expect exclusive ends, the end is the 182 // next byte. 183 uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1; 184 CharUnits bitfieldByteEnd = 185 ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One(); 186 addOpaqueData(recordBegin + bitfieldByteBegin, 187 recordBegin + bitfieldByteEnd); 188 } 189 190 void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) { 191 assert(type && "didn't provide type for typed data"); 192 addTypedData(type, begin, begin + getTypeStoreSize(CGM, type)); 193 } 194 195 void SwiftAggLowering::addTypedData(llvm::Type *type, 196 CharUnits begin, CharUnits end) { 197 assert(type && "didn't provide type for typed data"); 198 assert(getTypeStoreSize(CGM, type) == end - begin); 199 200 // Legalize vector types. 201 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { 202 SmallVector<llvm::Type*, 4> componentTys; 203 legalizeVectorType(CGM, end - begin, vecTy, componentTys); 204 assert(componentTys.size() >= 1); 205 206 // Walk the initial components. 207 for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) { 208 llvm::Type *componentTy = componentTys[i]; 209 auto componentSize = getTypeStoreSize(CGM, componentTy); 210 assert(componentSize < end - begin); 211 addLegalTypedData(componentTy, begin, begin + componentSize); 212 begin += componentSize; 213 } 214 215 return addLegalTypedData(componentTys.back(), begin, end); 216 } 217 218 // Legalize integer types. 219 if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 220 if (!isLegalIntegerType(CGM, intTy)) 221 return addOpaqueData(begin, end); 222 } 223 224 // All other types should be legal. 225 return addLegalTypedData(type, begin, end); 226 } 227 228 void SwiftAggLowering::addLegalTypedData(llvm::Type *type, 229 CharUnits begin, CharUnits end) { 230 // Require the type to be naturally aligned. 231 if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) { 232 233 // Try splitting vector types. 234 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { 235 auto split = splitLegalVectorType(CGM, end - begin, vecTy); 236 auto eltTy = split.first; 237 auto numElts = split.second; 238 239 auto eltSize = (end - begin) / numElts; 240 assert(eltSize == getTypeStoreSize(CGM, eltTy)); 241 for (size_t i = 0, e = numElts; i != e; ++i) { 242 addLegalTypedData(eltTy, begin, begin + eltSize); 243 begin += eltSize; 244 } 245 assert(begin == end); 246 return; 247 } 248 249 return addOpaqueData(begin, end); 250 } 251 252 addEntry(type, begin, end); 253 } 254 255 void SwiftAggLowering::addEntry(llvm::Type *type, 256 CharUnits begin, CharUnits end) { 257 assert((!type || 258 (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) && 259 "cannot add aggregate-typed data"); 260 assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type))); 261 262 // Fast path: we can just add entries to the end. 263 if (Entries.empty() || Entries.back().End <= begin) { 264 Entries.push_back({begin, end, type}); 265 return; 266 } 267 268 // Find the first existing entry that ends after the start of the new data. 269 // TODO: do a binary search if Entries is big enough for it to matter. 270 size_t index = Entries.size() - 1; 271 while (index != 0) { 272 if (Entries[index - 1].End <= begin) break; 273 --index; 274 } 275 276 // The entry ends after the start of the new data. 277 // If the entry starts after the end of the new data, there's no conflict. 278 if (Entries[index].Begin >= end) { 279 // This insertion is potentially O(n), but the way we generally build 280 // these layouts makes that unlikely to matter: we'd need a union of 281 // several very large types. 282 Entries.insert(Entries.begin() + index, {begin, end, type}); 283 return; 284 } 285 286 // Otherwise, the ranges overlap. The new range might also overlap 287 // with later ranges. 288 restartAfterSplit: 289 290 // Simplest case: an exact overlap. 291 if (Entries[index].Begin == begin && Entries[index].End == end) { 292 // If the types match exactly, great. 293 if (Entries[index].Type == type) return; 294 295 // If either type is opaque, make the entry opaque and return. 296 if (Entries[index].Type == nullptr) { 297 return; 298 } else if (type == nullptr) { 299 Entries[index].Type = nullptr; 300 return; 301 } 302 303 // If they disagree in an ABI-agnostic way, just resolve the conflict 304 // arbitrarily. 305 if (auto entryType = getCommonType(Entries[index].Type, type)) { 306 Entries[index].Type = entryType; 307 return; 308 } 309 310 // Otherwise, make the entry opaque. 311 Entries[index].Type = nullptr; 312 return; 313 } 314 315 // Okay, we have an overlapping conflict of some sort. 316 317 // If we have a vector type, split it. 318 if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) { 319 auto eltTy = vecTy->getElementType(); 320 CharUnits eltSize = (end - begin) / vecTy->getNumElements(); 321 assert(eltSize == getTypeStoreSize(CGM, eltTy)); 322 for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) { 323 addEntry(eltTy, begin, begin + eltSize); 324 begin += eltSize; 325 } 326 assert(begin == end); 327 return; 328 } 329 330 // If the entry is a vector type, split it and try again. 331 if (Entries[index].Type && Entries[index].Type->isVectorTy()) { 332 splitVectorEntry(index); 333 goto restartAfterSplit; 334 } 335 336 // Okay, we have no choice but to make the existing entry opaque. 337 338 Entries[index].Type = nullptr; 339 340 // Stretch the start of the entry to the beginning of the range. 341 if (begin < Entries[index].Begin) { 342 Entries[index].Begin = begin; 343 assert(index == 0 || begin >= Entries[index - 1].End); 344 } 345 346 // Stretch the end of the entry to the end of the range; but if we run 347 // into the start of the next entry, just leave the range there and repeat. 348 while (end > Entries[index].End) { 349 assert(Entries[index].Type == nullptr); 350 351 // If the range doesn't overlap the next entry, we're done. 352 if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) { 353 Entries[index].End = end; 354 break; 355 } 356 357 // Otherwise, stretch to the start of the next entry. 358 Entries[index].End = Entries[index + 1].Begin; 359 360 // Continue with the next entry. 361 index++; 362 363 // This entry needs to be made opaque if it is not already. 364 if (Entries[index].Type == nullptr) 365 continue; 366 367 // Split vector entries unless we completely subsume them. 368 if (Entries[index].Type->isVectorTy() && 369 end < Entries[index].End) { 370 splitVectorEntry(index); 371 } 372 373 // Make the entry opaque. 374 Entries[index].Type = nullptr; 375 } 376 } 377 378 /// Replace the entry of vector type at offset 'index' with a sequence 379 /// of its component vectors. 380 void SwiftAggLowering::splitVectorEntry(unsigned index) { 381 auto vecTy = cast<llvm::VectorType>(Entries[index].Type); 382 auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy); 383 384 auto eltTy = split.first; 385 CharUnits eltSize = getTypeStoreSize(CGM, eltTy); 386 auto numElts = split.second; 387 Entries.insert(&Entries[index + 1], numElts - 1, StorageEntry()); 388 389 CharUnits begin = Entries[index].Begin; 390 for (unsigned i = 0; i != numElts; ++i) { 391 Entries[index].Type = eltTy; 392 Entries[index].Begin = begin; 393 Entries[index].End = begin + eltSize; 394 begin += eltSize; 395 } 396 } 397 398 /// Given a power-of-two unit size, return the offset of the aligned unit 399 /// of that size which contains the given offset. 400 /// 401 /// In other words, round down to the nearest multiple of the unit size. 402 static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) { 403 assert(isPowerOf2(unitSize.getQuantity())); 404 auto unitMask = ~(unitSize.getQuantity() - 1); 405 return CharUnits::fromQuantity(offset.getQuantity() & unitMask); 406 } 407 408 static bool areBytesInSameUnit(CharUnits first, CharUnits second, 409 CharUnits chunkSize) { 410 return getOffsetAtStartOfUnit(first, chunkSize) 411 == getOffsetAtStartOfUnit(second, chunkSize); 412 } 413 414 void SwiftAggLowering::finish() { 415 if (Entries.empty()) { 416 Finished = true; 417 return; 418 } 419 420 // We logically split the layout down into a series of chunks of this size, 421 // which is generally the size of a pointer. 422 const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM); 423 424 // First pass: if two entries share a chunk, make them both opaque 425 // and stretch one to meet the next. 426 bool hasOpaqueEntries = (Entries[0].Type == nullptr); 427 for (size_t i = 1, e = Entries.size(); i != e; ++i) { 428 if (areBytesInSameUnit(Entries[i - 1].End - CharUnits::One(), 429 Entries[i].Begin, chunkSize)) { 430 Entries[i - 1].Type = nullptr; 431 Entries[i].Type = nullptr; 432 Entries[i - 1].End = Entries[i].Begin; 433 hasOpaqueEntries = true; 434 435 } else if (Entries[i].Type == nullptr) { 436 hasOpaqueEntries = true; 437 } 438 } 439 440 // The rest of the algorithm leaves non-opaque entries alone, so if we 441 // have no opaque entries, we're done. 442 if (!hasOpaqueEntries) { 443 Finished = true; 444 return; 445 } 446 447 // Okay, move the entries to a temporary and rebuild Entries. 448 auto orig = std::move(Entries); 449 assert(Entries.empty()); 450 451 for (size_t i = 0, e = orig.size(); i != e; ++i) { 452 // Just copy over non-opaque entries. 453 if (orig[i].Type != nullptr) { 454 Entries.push_back(orig[i]); 455 continue; 456 } 457 458 // Scan forward to determine the full extent of the next opaque range. 459 // We know from the first pass that only contiguous ranges will overlap 460 // the same aligned chunk. 461 auto begin = orig[i].Begin; 462 auto end = orig[i].End; 463 while (i + 1 != e && 464 orig[i + 1].Type == nullptr && 465 end == orig[i + 1].Begin) { 466 end = orig[i + 1].End; 467 i++; 468 } 469 470 // Add an entry per intersected chunk. 471 do { 472 // Find the smallest aligned storage unit in the maximal aligned 473 // storage unit containing 'begin' that contains all the bytes in 474 // the intersection between the range and this chunk. 475 CharUnits localBegin = begin; 476 CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize); 477 CharUnits chunkEnd = chunkBegin + chunkSize; 478 CharUnits localEnd = std::min(end, chunkEnd); 479 480 // Just do a simple loop over ever-increasing unit sizes. 481 CharUnits unitSize = CharUnits::One(); 482 CharUnits unitBegin, unitEnd; 483 for (; ; unitSize *= 2) { 484 assert(unitSize <= chunkSize); 485 unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize); 486 unitEnd = unitBegin + unitSize; 487 if (unitEnd >= localEnd) break; 488 } 489 490 // Add an entry for this unit. 491 auto entryTy = 492 llvm::IntegerType::get(CGM.getLLVMContext(), 493 CGM.getContext().toBits(unitSize)); 494 Entries.push_back({unitBegin, unitEnd, entryTy}); 495 496 // The next chunk starts where this chunk left off. 497 begin = localEnd; 498 } while (begin != end); 499 } 500 501 // Okay, finally finished. 502 Finished = true; 503 } 504 505 void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const { 506 assert(Finished && "haven't yet finished lowering"); 507 508 for (auto &entry : Entries) { 509 callback(entry.Begin, entry.Type); 510 } 511 } 512 513 std::pair<llvm::StructType*, llvm::Type*> 514 SwiftAggLowering::getCoerceAndExpandTypes() const { 515 assert(Finished && "haven't yet finished lowering"); 516 517 auto &ctx = CGM.getLLVMContext(); 518 519 if (Entries.empty()) { 520 auto type = llvm::StructType::get(ctx); 521 return { type, type }; 522 } 523 524 SmallVector<llvm::Type*, 8> elts; 525 CharUnits lastEnd = CharUnits::Zero(); 526 bool hasPadding = false; 527 bool packed = false; 528 for (auto &entry : Entries) { 529 if (entry.Begin != lastEnd) { 530 auto paddingSize = entry.Begin - lastEnd; 531 assert(!paddingSize.isNegative()); 532 533 auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx), 534 paddingSize.getQuantity()); 535 elts.push_back(padding); 536 hasPadding = true; 537 } 538 539 if (!packed && !entry.Begin.isMultipleOf( 540 CharUnits::fromQuantity( 541 CGM.getDataLayout().getABITypeAlignment(entry.Type)))) 542 packed = true; 543 544 elts.push_back(entry.Type); 545 lastEnd = entry.End; 546 } 547 548 // We don't need to adjust 'packed' to deal with possible tail padding 549 // because we never do that kind of access through the coercion type. 550 auto coercionType = llvm::StructType::get(ctx, elts, packed); 551 552 llvm::Type *unpaddedType = coercionType; 553 if (hasPadding) { 554 elts.clear(); 555 for (auto &entry : Entries) { 556 elts.push_back(entry.Type); 557 } 558 if (elts.size() == 1) { 559 unpaddedType = elts[0]; 560 } else { 561 unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false); 562 } 563 } else if (Entries.size() == 1) { 564 unpaddedType = Entries[0].Type; 565 } 566 567 return { coercionType, unpaddedType }; 568 } 569 570 bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const { 571 assert(Finished && "haven't yet finished lowering"); 572 573 // Empty types don't need to be passed indirectly. 574 if (Entries.empty()) return false; 575 576 CharUnits totalSize = Entries.back().End; 577 578 // Avoid copying the array of types when there's just a single element. 579 if (Entries.size() == 1) { 580 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(totalSize, 581 Entries.back().Type, 582 asReturnValue); 583 } 584 585 SmallVector<llvm::Type*, 8> componentTys; 586 componentTys.reserve(Entries.size()); 587 for (auto &entry : Entries) { 588 componentTys.push_back(entry.Type); 589 } 590 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(totalSize, 591 componentTys, 592 asReturnValue); 593 } 594 595 CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) { 596 // Currently always the size of an ordinary pointer. 597 return CGM.getContext().toCharUnitsFromBits( 598 CGM.getContext().getTargetInfo().getPointerWidth(0)); 599 } 600 601 CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) { 602 // For Swift's purposes, this is always just the store size of the type 603 // rounded up to a power of 2. 604 auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity(); 605 if (!isPowerOf2(size)) { 606 size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1); 607 } 608 assert(size >= CGM.getDataLayout().getABITypeAlignment(type)); 609 return CharUnits::fromQuantity(size); 610 } 611 612 bool swiftcall::isLegalIntegerType(CodeGenModule &CGM, 613 llvm::IntegerType *intTy) { 614 auto size = intTy->getBitWidth(); 615 switch (size) { 616 case 1: 617 case 8: 618 case 16: 619 case 32: 620 case 64: 621 // Just assume that the above are always legal. 622 return true; 623 624 case 128: 625 return CGM.getContext().getTargetInfo().hasInt128Type(); 626 627 default: 628 return false; 629 } 630 } 631 632 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, 633 llvm::VectorType *vectorTy) { 634 return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(), 635 vectorTy->getNumElements()); 636 } 637 638 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, 639 llvm::Type *eltTy, unsigned numElts) { 640 assert(numElts > 1 && "illegal vector length"); 641 return getSwiftABIInfo(CGM) 642 .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts); 643 } 644 645 std::pair<llvm::Type*, unsigned> 646 swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, 647 llvm::VectorType *vectorTy) { 648 auto numElts = vectorTy->getNumElements(); 649 auto eltTy = vectorTy->getElementType(); 650 651 // Try to split the vector type in half. 652 if (numElts >= 4 && isPowerOf2(numElts)) { 653 if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2)) 654 return {llvm::VectorType::get(eltTy, numElts / 2), 2}; 655 } 656 657 return {eltTy, numElts}; 658 } 659 660 void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize, 661 llvm::VectorType *origVectorTy, 662 llvm::SmallVectorImpl<llvm::Type*> &components) { 663 // If it's already a legal vector type, use it. 664 if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) { 665 components.push_back(origVectorTy); 666 return; 667 } 668 669 // Try to split the vector into legal subvectors. 670 auto numElts = origVectorTy->getNumElements(); 671 auto eltTy = origVectorTy->getElementType(); 672 assert(numElts != 1); 673 674 // The largest size that we're still considering making subvectors of. 675 // Always a power of 2. 676 unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined); 677 unsigned candidateNumElts = 1U << logCandidateNumElts; 678 assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts); 679 680 // Minor optimization: don't check the legality of this exact size twice. 681 if (candidateNumElts == numElts) { 682 logCandidateNumElts--; 683 candidateNumElts >>= 1; 684 } 685 686 CharUnits eltSize = (origVectorSize / numElts); 687 CharUnits candidateSize = eltSize * candidateNumElts; 688 689 // The sensibility of this algorithm relies on the fact that we never 690 // have a legal non-power-of-2 vector size without having the power of 2 691 // also be legal. 692 while (logCandidateNumElts > 0) { 693 assert(candidateNumElts == 1U << logCandidateNumElts); 694 assert(candidateNumElts <= numElts); 695 assert(candidateSize == eltSize * candidateNumElts); 696 697 // Skip illegal vector sizes. 698 if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) { 699 logCandidateNumElts--; 700 candidateNumElts /= 2; 701 candidateSize /= 2; 702 continue; 703 } 704 705 // Add the right number of vectors of this size. 706 auto numVecs = numElts >> logCandidateNumElts; 707 components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts)); 708 numElts -= (numVecs << logCandidateNumElts); 709 710 if (numElts == 0) return; 711 712 // It's possible that the number of elements remaining will be legal. 713 // This can happen with e.g. <7 x float> when <3 x float> is legal. 714 // This only needs to be separately checked if it's not a power of 2. 715 if (numElts > 2 && !isPowerOf2(numElts) && 716 isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) { 717 components.push_back(llvm::VectorType::get(eltTy, numElts)); 718 return; 719 } 720 721 // Bring vecSize down to something no larger than numElts. 722 do { 723 logCandidateNumElts--; 724 candidateNumElts /= 2; 725 candidateSize /= 2; 726 } while (candidateNumElts > numElts); 727 } 728 729 // Otherwise, just append a bunch of individual elements. 730 components.append(numElts, eltTy); 731 } 732 733 bool swiftcall::shouldPassCXXRecordIndirectly(CodeGenModule &CGM, 734 const CXXRecordDecl *record) { 735 // Following a recommendation from Richard Smith, pass a C++ type 736 // indirectly only if the destructor is non-trivial or *all* of the 737 // copy/move constructors are deleted or non-trivial. 738 739 if (record->hasNonTrivialDestructor()) 740 return true; 741 742 // It would be nice if this were summarized on the CXXRecordDecl. 743 for (auto ctor : record->ctors()) { 744 if (ctor->isCopyOrMoveConstructor() && !ctor->isDeleted() && 745 ctor->isTrivial()) { 746 return false; 747 } 748 } 749 750 return true; 751 } 752 753 static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering, 754 bool forReturn, 755 CharUnits alignmentForIndirect) { 756 if (lowering.empty()) { 757 return ABIArgInfo::getIgnore(); 758 } else if (lowering.shouldPassIndirectly(forReturn)) { 759 return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false); 760 } else { 761 auto types = lowering.getCoerceAndExpandTypes(); 762 return ABIArgInfo::getCoerceAndExpand(types.first, types.second); 763 } 764 } 765 766 static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type, 767 bool forReturn) { 768 if (auto recordType = dyn_cast<RecordType>(type)) { 769 auto record = recordType->getDecl(); 770 auto &layout = CGM.getContext().getASTRecordLayout(record); 771 772 if (auto cxxRecord = dyn_cast<CXXRecordDecl>(record)) { 773 if (shouldPassCXXRecordIndirectly(CGM, cxxRecord)) 774 return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false); 775 } 776 777 SwiftAggLowering lowering(CGM); 778 lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout); 779 lowering.finish(); 780 781 return classifyExpandedType(lowering, forReturn, layout.getAlignment()); 782 } 783 784 // Just assume that all of our target ABIs can support returning at least 785 // two integer or floating-point values. 786 if (isa<ComplexType>(type)) { 787 return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand()); 788 } 789 790 // Vector types may need to be legalized. 791 if (isa<VectorType>(type)) { 792 SwiftAggLowering lowering(CGM); 793 lowering.addTypedData(type, CharUnits::Zero()); 794 lowering.finish(); 795 796 CharUnits alignment = CGM.getContext().getTypeAlignInChars(type); 797 return classifyExpandedType(lowering, forReturn, alignment); 798 } 799 800 // Member pointer types need to be expanded, but it's a simple form of 801 // expansion that 'Direct' can handle. Note that CanBeFlattened should be 802 // true for this to work. 803 804 // 'void' needs to be ignored. 805 if (type->isVoidType()) { 806 return ABIArgInfo::getIgnore(); 807 } 808 809 // Everything else can be passed directly. 810 return ABIArgInfo::getDirect(); 811 } 812 813 ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) { 814 return classifyType(CGM, type, /*forReturn*/ true); 815 } 816 817 ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM, 818 CanQualType type) { 819 return classifyType(CGM, type, /*forReturn*/ false); 820 } 821 822 void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 823 auto &retInfo = FI.getReturnInfo(); 824 retInfo = classifyReturnType(CGM, FI.getReturnType()); 825 826 for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) { 827 auto &argInfo = FI.arg_begin()[i]; 828 argInfo.info = classifyArgumentType(CGM, argInfo.type); 829 } 830 } 831