Home | History | Annotate | Download | only in openssh
      1 /* $OpenBSD: ge25519.c,v 1.3 2013/12/09 11:03:45 markus Exp $ */
      2 
      3 /*
      4  * Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange,
      5  * Peter Schwabe, Bo-Yin Yang.
      6  * Copied from supercop-20130419/crypto_sign/ed25519/ref/ge25519.c
      7  */
      8 
      9 #include "includes.h"
     10 
     11 #include "fe25519.h"
     12 #include "sc25519.h"
     13 #include "ge25519.h"
     14 
     15 /*
     16  * Arithmetic on the twisted Edwards curve -x^2 + y^2 = 1 + dx^2y^2
     17  * with d = -(121665/121666) = 37095705934669439343138083508754565189542113879843219016388785533085940283555
     18  * Base point: (15112221349535400772501151409588531511454012693041857206046113283949847762202,46316835694926478169428394003475163141307993866256225615783033603165251855960);
     19  */
     20 
     21 /* d */
     22 static const fe25519 ge25519_ecd = {{0xA3, 0x78, 0x59, 0x13, 0xCA, 0x4D, 0xEB, 0x75, 0xAB, 0xD8, 0x41, 0x41, 0x4D, 0x0A, 0x70, 0x00,
     23                       0x98, 0xE8, 0x79, 0x77, 0x79, 0x40, 0xC7, 0x8C, 0x73, 0xFE, 0x6F, 0x2B, 0xEE, 0x6C, 0x03, 0x52}};
     24 /* 2*d */
     25 static const fe25519 ge25519_ec2d = {{0x59, 0xF1, 0xB2, 0x26, 0x94, 0x9B, 0xD6, 0xEB, 0x56, 0xB1, 0x83, 0x82, 0x9A, 0x14, 0xE0, 0x00,
     26                        0x30, 0xD1, 0xF3, 0xEE, 0xF2, 0x80, 0x8E, 0x19, 0xE7, 0xFC, 0xDF, 0x56, 0xDC, 0xD9, 0x06, 0x24}};
     27 /* sqrt(-1) */
     28 static const fe25519 ge25519_sqrtm1 = {{0xB0, 0xA0, 0x0E, 0x4A, 0x27, 0x1B, 0xEE, 0xC4, 0x78, 0xE4, 0x2F, 0xAD, 0x06, 0x18, 0x43, 0x2F,
     29                          0xA7, 0xD7, 0xFB, 0x3D, 0x99, 0x00, 0x4D, 0x2B, 0x0B, 0xDF, 0xC1, 0x4F, 0x80, 0x24, 0x83, 0x2B}};
     30 
     31 #define ge25519_p3 ge25519
     32 
     33 typedef struct
     34 {
     35   fe25519 x;
     36   fe25519 z;
     37   fe25519 y;
     38   fe25519 t;
     39 } ge25519_p1p1;
     40 
     41 typedef struct
     42 {
     43   fe25519 x;
     44   fe25519 y;
     45   fe25519 z;
     46 } ge25519_p2;
     47 
     48 typedef struct
     49 {
     50   fe25519 x;
     51   fe25519 y;
     52 } ge25519_aff;
     53 
     54 
     55 /* Packed coordinates of the base point */
     56 const ge25519 ge25519_base = {{{0x1A, 0xD5, 0x25, 0x8F, 0x60, 0x2D, 0x56, 0xC9, 0xB2, 0xA7, 0x25, 0x95, 0x60, 0xC7, 0x2C, 0x69,
     57                                 0x5C, 0xDC, 0xD6, 0xFD, 0x31, 0xE2, 0xA4, 0xC0, 0xFE, 0x53, 0x6E, 0xCD, 0xD3, 0x36, 0x69, 0x21}},
     58                               {{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
     59                                 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}},
     60                               {{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
     61                                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
     62                               {{0xA3, 0xDD, 0xB7, 0xA5, 0xB3, 0x8A, 0xDE, 0x6D, 0xF5, 0x52, 0x51, 0x77, 0x80, 0x9F, 0xF0, 0x20,
     63                                 0x7D, 0xE3, 0xAB, 0x64, 0x8E, 0x4E, 0xEA, 0x66, 0x65, 0x76, 0x8B, 0xD7, 0x0F, 0x5F, 0x87, 0x67}}};
     64 
     65 /* Multiples of the base point in affine representation */
     66 static const ge25519_aff ge25519_base_multiples_affine[425] = {
     67 #include "ge25519_base.data"
     68 };
     69 
     70 static void p1p1_to_p2(ge25519_p2 *r, const ge25519_p1p1 *p)
     71 {
     72   fe25519_mul(&r->x, &p->x, &p->t);
     73   fe25519_mul(&r->y, &p->y, &p->z);
     74   fe25519_mul(&r->z, &p->z, &p->t);
     75 }
     76 
     77 static void p1p1_to_p3(ge25519_p3 *r, const ge25519_p1p1 *p)
     78 {
     79   p1p1_to_p2((ge25519_p2 *)r, p);
     80   fe25519_mul(&r->t, &p->x, &p->y);
     81 }
     82 
     83 static void ge25519_mixadd2(ge25519_p3 *r, const ge25519_aff *q)
     84 {
     85   fe25519 a,b,t1,t2,c,d,e,f,g,h,qt;
     86   fe25519_mul(&qt, &q->x, &q->y);
     87   fe25519_sub(&a, &r->y, &r->x); /* A = (Y1-X1)*(Y2-X2) */
     88   fe25519_add(&b, &r->y, &r->x); /* B = (Y1+X1)*(Y2+X2) */
     89   fe25519_sub(&t1, &q->y, &q->x);
     90   fe25519_add(&t2, &q->y, &q->x);
     91   fe25519_mul(&a, &a, &t1);
     92   fe25519_mul(&b, &b, &t2);
     93   fe25519_sub(&e, &b, &a); /* E = B-A */
     94   fe25519_add(&h, &b, &a); /* H = B+A */
     95   fe25519_mul(&c, &r->t, &qt); /* C = T1*k*T2 */
     96   fe25519_mul(&c, &c, &ge25519_ec2d);
     97   fe25519_add(&d, &r->z, &r->z); /* D = Z1*2 */
     98   fe25519_sub(&f, &d, &c); /* F = D-C */
     99   fe25519_add(&g, &d, &c); /* G = D+C */
    100   fe25519_mul(&r->x, &e, &f);
    101   fe25519_mul(&r->y, &h, &g);
    102   fe25519_mul(&r->z, &g, &f);
    103   fe25519_mul(&r->t, &e, &h);
    104 }
    105 
    106 static void add_p1p1(ge25519_p1p1 *r, const ge25519_p3 *p, const ge25519_p3 *q)
    107 {
    108   fe25519 a, b, c, d, t;
    109 
    110   fe25519_sub(&a, &p->y, &p->x); /* A = (Y1-X1)*(Y2-X2) */
    111   fe25519_sub(&t, &q->y, &q->x);
    112   fe25519_mul(&a, &a, &t);
    113   fe25519_add(&b, &p->x, &p->y); /* B = (Y1+X1)*(Y2+X2) */
    114   fe25519_add(&t, &q->x, &q->y);
    115   fe25519_mul(&b, &b, &t);
    116   fe25519_mul(&c, &p->t, &q->t); /* C = T1*k*T2 */
    117   fe25519_mul(&c, &c, &ge25519_ec2d);
    118   fe25519_mul(&d, &p->z, &q->z); /* D = Z1*2*Z2 */
    119   fe25519_add(&d, &d, &d);
    120   fe25519_sub(&r->x, &b, &a); /* E = B-A */
    121   fe25519_sub(&r->t, &d, &c); /* F = D-C */
    122   fe25519_add(&r->z, &d, &c); /* G = D+C */
    123   fe25519_add(&r->y, &b, &a); /* H = B+A */
    124 }
    125 
    126 /* See http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#doubling-dbl-2008-hwcd */
    127 static void dbl_p1p1(ge25519_p1p1 *r, const ge25519_p2 *p)
    128 {
    129   fe25519 a,b,c,d;
    130   fe25519_square(&a, &p->x);
    131   fe25519_square(&b, &p->y);
    132   fe25519_square(&c, &p->z);
    133   fe25519_add(&c, &c, &c);
    134   fe25519_neg(&d, &a);
    135 
    136   fe25519_add(&r->x, &p->x, &p->y);
    137   fe25519_square(&r->x, &r->x);
    138   fe25519_sub(&r->x, &r->x, &a);
    139   fe25519_sub(&r->x, &r->x, &b);
    140   fe25519_add(&r->z, &d, &b);
    141   fe25519_sub(&r->t, &r->z, &c);
    142   fe25519_sub(&r->y, &d, &b);
    143 }
    144 
    145 /* Constant-time version of: if(b) r = p */
    146 static void cmov_aff(ge25519_aff *r, const ge25519_aff *p, unsigned char b)
    147 {
    148   fe25519_cmov(&r->x, &p->x, b);
    149   fe25519_cmov(&r->y, &p->y, b);
    150 }
    151 
    152 static unsigned char equal(signed char b,signed char c)
    153 {
    154   unsigned char ub = b;
    155   unsigned char uc = c;
    156   unsigned char x = ub ^ uc; /* 0: yes; 1..255: no */
    157   crypto_uint32 y = x; /* 0: yes; 1..255: no */
    158   y -= 1; /* 4294967295: yes; 0..254: no */
    159   y >>= 31; /* 1: yes; 0: no */
    160   return y;
    161 }
    162 
    163 static unsigned char negative(signed char b)
    164 {
    165   unsigned long long x = b; /* 18446744073709551361..18446744073709551615: yes; 0..255: no */
    166   x >>= 63; /* 1: yes; 0: no */
    167   return x;
    168 }
    169 
    170 static void choose_t(ge25519_aff *t, unsigned long long pos, signed char b)
    171 {
    172   /* constant time */
    173   fe25519 v;
    174   *t = ge25519_base_multiples_affine[5*pos+0];
    175   cmov_aff(t, &ge25519_base_multiples_affine[5*pos+1],equal(b,1) | equal(b,-1));
    176   cmov_aff(t, &ge25519_base_multiples_affine[5*pos+2],equal(b,2) | equal(b,-2));
    177   cmov_aff(t, &ge25519_base_multiples_affine[5*pos+3],equal(b,3) | equal(b,-3));
    178   cmov_aff(t, &ge25519_base_multiples_affine[5*pos+4],equal(b,-4));
    179   fe25519_neg(&v, &t->x);
    180   fe25519_cmov(&t->x, &v, negative(b));
    181 }
    182 
    183 static void setneutral(ge25519 *r)
    184 {
    185   fe25519_setzero(&r->x);
    186   fe25519_setone(&r->y);
    187   fe25519_setone(&r->z);
    188   fe25519_setzero(&r->t);
    189 }
    190 
    191 /* ********************************************************************
    192  *                    EXPORTED FUNCTIONS
    193  ******************************************************************** */
    194 
    195 /* return 0 on success, -1 otherwise */
    196 int ge25519_unpackneg_vartime(ge25519_p3 *r, const unsigned char p[32])
    197 {
    198   unsigned char par;
    199   fe25519 t, chk, num, den, den2, den4, den6;
    200   fe25519_setone(&r->z);
    201   par = p[31] >> 7;
    202   fe25519_unpack(&r->y, p);
    203   fe25519_square(&num, &r->y); /* x = y^2 */
    204   fe25519_mul(&den, &num, &ge25519_ecd); /* den = dy^2 */
    205   fe25519_sub(&num, &num, &r->z); /* x = y^2-1 */
    206   fe25519_add(&den, &r->z, &den); /* den = dy^2+1 */
    207 
    208   /* Computation of sqrt(num/den) */
    209   /* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */
    210   fe25519_square(&den2, &den);
    211   fe25519_square(&den4, &den2);
    212   fe25519_mul(&den6, &den4, &den2);
    213   fe25519_mul(&t, &den6, &num);
    214   fe25519_mul(&t, &t, &den);
    215 
    216   fe25519_pow2523(&t, &t);
    217   /* 2. computation of r->x = t * num * den^3 */
    218   fe25519_mul(&t, &t, &num);
    219   fe25519_mul(&t, &t, &den);
    220   fe25519_mul(&t, &t, &den);
    221   fe25519_mul(&r->x, &t, &den);
    222 
    223   /* 3. Check whether sqrt computation gave correct result, multiply by sqrt(-1) if not: */
    224   fe25519_square(&chk, &r->x);
    225   fe25519_mul(&chk, &chk, &den);
    226   if (!fe25519_iseq_vartime(&chk, &num))
    227     fe25519_mul(&r->x, &r->x, &ge25519_sqrtm1);
    228 
    229   /* 4. Now we have one of the two square roots, except if input was not a square */
    230   fe25519_square(&chk, &r->x);
    231   fe25519_mul(&chk, &chk, &den);
    232   if (!fe25519_iseq_vartime(&chk, &num))
    233     return -1;
    234 
    235   /* 5. Choose the desired square root according to parity: */
    236   if(fe25519_getparity(&r->x) != (1-par))
    237     fe25519_neg(&r->x, &r->x);
    238 
    239   fe25519_mul(&r->t, &r->x, &r->y);
    240   return 0;
    241 }
    242 
    243 void ge25519_pack(unsigned char r[32], const ge25519_p3 *p)
    244 {
    245   fe25519 tx, ty, zi;
    246   fe25519_invert(&zi, &p->z);
    247   fe25519_mul(&tx, &p->x, &zi);
    248   fe25519_mul(&ty, &p->y, &zi);
    249   fe25519_pack(r, &ty);
    250   r[31] ^= fe25519_getparity(&tx) << 7;
    251 }
    252 
    253 int ge25519_isneutral_vartime(const ge25519_p3 *p)
    254 {
    255   int ret = 1;
    256   if(!fe25519_iszero(&p->x)) ret = 0;
    257   if(!fe25519_iseq_vartime(&p->y, &p->z)) ret = 0;
    258   return ret;
    259 }
    260 
    261 /* computes [s1]p1 + [s2]p2 */
    262 void ge25519_double_scalarmult_vartime(ge25519_p3 *r, const ge25519_p3 *p1, const sc25519 *s1, const ge25519_p3 *p2, const sc25519 *s2)
    263 {
    264   ge25519_p1p1 tp1p1;
    265   ge25519_p3 pre[16];
    266   unsigned char b[127];
    267   int i;
    268 
    269   /* precomputation                                                        s2 s1 */
    270   setneutral(pre);                                                      /* 00 00 */
    271   pre[1] = *p1;                                                         /* 00 01 */
    272   dbl_p1p1(&tp1p1,(ge25519_p2 *)p1);      p1p1_to_p3( &pre[2], &tp1p1); /* 00 10 */
    273   add_p1p1(&tp1p1,&pre[1], &pre[2]);      p1p1_to_p3( &pre[3], &tp1p1); /* 00 11 */
    274   pre[4] = *p2;                                                         /* 01 00 */
    275   add_p1p1(&tp1p1,&pre[1], &pre[4]);      p1p1_to_p3( &pre[5], &tp1p1); /* 01 01 */
    276   add_p1p1(&tp1p1,&pre[2], &pre[4]);      p1p1_to_p3( &pre[6], &tp1p1); /* 01 10 */
    277   add_p1p1(&tp1p1,&pre[3], &pre[4]);      p1p1_to_p3( &pre[7], &tp1p1); /* 01 11 */
    278   dbl_p1p1(&tp1p1,(ge25519_p2 *)p2);      p1p1_to_p3( &pre[8], &tp1p1); /* 10 00 */
    279   add_p1p1(&tp1p1,&pre[1], &pre[8]);      p1p1_to_p3( &pre[9], &tp1p1); /* 10 01 */
    280   dbl_p1p1(&tp1p1,(ge25519_p2 *)&pre[5]); p1p1_to_p3(&pre[10], &tp1p1); /* 10 10 */
    281   add_p1p1(&tp1p1,&pre[3], &pre[8]);      p1p1_to_p3(&pre[11], &tp1p1); /* 10 11 */
    282   add_p1p1(&tp1p1,&pre[4], &pre[8]);      p1p1_to_p3(&pre[12], &tp1p1); /* 11 00 */
    283   add_p1p1(&tp1p1,&pre[1],&pre[12]);      p1p1_to_p3(&pre[13], &tp1p1); /* 11 01 */
    284   add_p1p1(&tp1p1,&pre[2],&pre[12]);      p1p1_to_p3(&pre[14], &tp1p1); /* 11 10 */
    285   add_p1p1(&tp1p1,&pre[3],&pre[12]);      p1p1_to_p3(&pre[15], &tp1p1); /* 11 11 */
    286 
    287   sc25519_2interleave2(b,s1,s2);
    288 
    289   /* scalar multiplication */
    290   *r = pre[b[126]];
    291   for(i=125;i>=0;i--)
    292   {
    293     dbl_p1p1(&tp1p1, (ge25519_p2 *)r);
    294     p1p1_to_p2((ge25519_p2 *) r, &tp1p1);
    295     dbl_p1p1(&tp1p1, (ge25519_p2 *)r);
    296     if(b[i]!=0)
    297     {
    298       p1p1_to_p3(r, &tp1p1);
    299       add_p1p1(&tp1p1, r, &pre[b[i]]);
    300     }
    301     if(i != 0) p1p1_to_p2((ge25519_p2 *)r, &tp1p1);
    302     else p1p1_to_p3(r, &tp1p1);
    303   }
    304 }
    305 
    306 void ge25519_scalarmult_base(ge25519_p3 *r, const sc25519 *s)
    307 {
    308   signed char b[85];
    309   int i;
    310   ge25519_aff t;
    311   sc25519_window3(b,s);
    312 
    313   choose_t((ge25519_aff *)r, 0, b[0]);
    314   fe25519_setone(&r->z);
    315   fe25519_mul(&r->t, &r->x, &r->y);
    316   for(i=1;i<85;i++)
    317   {
    318     choose_t(&t, (unsigned long long) i, b[i]);
    319     ge25519_mixadd2(r, &t);
    320   }
    321 }
    322