Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright  2010 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eric Anholt <eric (at) anholt.net>
     25  *
     26  */
     27 
     28 #include "brw_fs.h"
     29 #include "brw_fs_live_variables.h"
     30 #include "brw_vec4.h"
     31 #include "brw_cfg.h"
     32 #include "brw_shader.h"
     33 
     34 using namespace brw;
     35 
     36 /** @file brw_fs_schedule_instructions.cpp
     37  *
     38  * List scheduling of FS instructions.
     39  *
     40  * The basic model of the list scheduler is to take a basic block,
     41  * compute a DAG of the dependencies (RAW ordering with latency, WAW
     42  * ordering with latency, WAR ordering), and make a list of the DAG heads.
     43  * Heuristically pick a DAG head, then put all the children that are
     44  * now DAG heads into the list of things to schedule.
     45  *
     46  * The heuristic is the important part.  We're trying to be cheap,
     47  * since actually computing the optimal scheduling is NP complete.
     48  * What we do is track a "current clock".  When we schedule a node, we
     49  * update the earliest-unblocked clock time of its children, and
     50  * increment the clock.  Then, when trying to schedule, we just pick
     51  * the earliest-unblocked instruction to schedule.
     52  *
     53  * Note that often there will be many things which could execute
     54  * immediately, and there are a range of heuristic options to choose
     55  * from in picking among those.
     56  */
     57 
     58 static bool debug = false;
     59 
     60 class instruction_scheduler;
     61 
     62 class schedule_node : public exec_node
     63 {
     64 public:
     65    schedule_node(backend_instruction *inst, instruction_scheduler *sched);
     66    void set_latency_gen4();
     67    void set_latency_gen7(bool is_haswell);
     68 
     69    backend_instruction *inst;
     70    schedule_node **children;
     71    int *child_latency;
     72    int child_count;
     73    int parent_count;
     74    int child_array_size;
     75    int unblocked_time;
     76    int latency;
     77 
     78    /**
     79     * Which iteration of pushing groups of children onto the candidates list
     80     * this node was a part of.
     81     */
     82    unsigned cand_generation;
     83 
     84    /**
     85     * This is the sum of the instruction's latency plus the maximum delay of
     86     * its children, or just the issue_time if it's a leaf node.
     87     */
     88    int delay;
     89 
     90    /**
     91     * Preferred exit node among the (direct or indirect) successors of this
     92     * node.  Among the scheduler nodes blocked by this node, this will be the
     93     * one that may cause earliest program termination, or NULL if none of the
     94     * successors is an exit node.
     95     */
     96    schedule_node *exit;
     97 
     98    bool is_barrier;
     99 };
    100 
    101 /**
    102  * Lower bound of the scheduling time after which one of the instructions
    103  * blocked by this node may lead to program termination.
    104  *
    105  * exit_unblocked_time() determines a strict partial ordering relation '' on
    106  * the set of scheduler nodes as follows:
    107  *
    108  *   n  m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
    109  *
    110  * which can be used to heuristically order nodes according to how early they
    111  * can unblock an exit node and lead to program termination.
    112  */
    113 static inline int
    114 exit_unblocked_time(const schedule_node *n)
    115 {
    116    return n->exit ? n->exit->unblocked_time : INT_MAX;
    117 }
    118 
    119 void
    120 schedule_node::set_latency_gen4()
    121 {
    122    int chans = 8;
    123    int math_latency = 22;
    124 
    125    switch (inst->opcode) {
    126    case SHADER_OPCODE_RCP:
    127       this->latency = 1 * chans * math_latency;
    128       break;
    129    case SHADER_OPCODE_RSQ:
    130       this->latency = 2 * chans * math_latency;
    131       break;
    132    case SHADER_OPCODE_INT_QUOTIENT:
    133    case SHADER_OPCODE_SQRT:
    134    case SHADER_OPCODE_LOG2:
    135       /* full precision log.  partial is 2. */
    136       this->latency = 3 * chans * math_latency;
    137       break;
    138    case SHADER_OPCODE_INT_REMAINDER:
    139    case SHADER_OPCODE_EXP2:
    140       /* full precision.  partial is 3, same throughput. */
    141       this->latency = 4 * chans * math_latency;
    142       break;
    143    case SHADER_OPCODE_POW:
    144       this->latency = 8 * chans * math_latency;
    145       break;
    146    case SHADER_OPCODE_SIN:
    147    case SHADER_OPCODE_COS:
    148       /* minimum latency, max is 12 rounds. */
    149       this->latency = 5 * chans * math_latency;
    150       break;
    151    default:
    152       this->latency = 2;
    153       break;
    154    }
    155 }
    156 
    157 void
    158 schedule_node::set_latency_gen7(bool is_haswell)
    159 {
    160    switch (inst->opcode) {
    161    case BRW_OPCODE_MAD:
    162       /* 2 cycles
    163        *  (since the last two src operands are in different register banks):
    164        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
    165        *
    166        * 3 cycles on IVB, 4 on HSW
    167        *  (since the last two src operands are in the same register bank):
    168        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
    169        *
    170        * 18 cycles on IVB, 16 on HSW
    171        *  (since the last two src operands are in different register banks):
    172        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
    173        * mov(8) null   g4<4,5,1>F                     { align16 WE_normal 1Q };
    174        *
    175        * 20 cycles on IVB, 18 on HSW
    176        *  (since the last two src operands are in the same register bank):
    177        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
    178        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
    179        */
    180 
    181       /* Our register allocator doesn't know about register banks, so use the
    182        * higher latency.
    183        */
    184       latency = is_haswell ? 16 : 18;
    185       break;
    186 
    187    case BRW_OPCODE_LRP:
    188       /* 2 cycles
    189        *  (since the last two src operands are in different register banks):
    190        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
    191        *
    192        * 3 cycles on IVB, 4 on HSW
    193        *  (since the last two src operands are in the same register bank):
    194        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
    195        *
    196        * 16 cycles on IVB, 14 on HSW
    197        *  (since the last two src operands are in different register banks):
    198        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
    199        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
    200        *
    201        * 16 cycles
    202        *  (since the last two src operands are in the same register bank):
    203        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
    204        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
    205        */
    206 
    207       /* Our register allocator doesn't know about register banks, so use the
    208        * higher latency.
    209        */
    210       latency = 14;
    211       break;
    212 
    213    case SHADER_OPCODE_RCP:
    214    case SHADER_OPCODE_RSQ:
    215    case SHADER_OPCODE_SQRT:
    216    case SHADER_OPCODE_LOG2:
    217    case SHADER_OPCODE_EXP2:
    218    case SHADER_OPCODE_SIN:
    219    case SHADER_OPCODE_COS:
    220       /* 2 cycles:
    221        * math inv(8) g4<1>F g2<0,1,0>F      null       { align1 WE_normal 1Q };
    222        *
    223        * 18 cycles:
    224        * math inv(8) g4<1>F g2<0,1,0>F      null       { align1 WE_normal 1Q };
    225        * mov(8)      null   g4<8,8,1>F                 { align1 WE_normal 1Q };
    226        *
    227        * Same for exp2, log2, rsq, sqrt, sin, cos.
    228        */
    229       latency = is_haswell ? 14 : 16;
    230       break;
    231 
    232    case SHADER_OPCODE_POW:
    233       /* 2 cycles:
    234        * math pow(8) g4<1>F g2<0,1,0>F   g2.1<0,1,0>F  { align1 WE_normal 1Q };
    235        *
    236        * 26 cycles:
    237        * math pow(8) g4<1>F g2<0,1,0>F   g2.1<0,1,0>F  { align1 WE_normal 1Q };
    238        * mov(8)      null   g4<8,8,1>F                 { align1 WE_normal 1Q };
    239        */
    240       latency = is_haswell ? 22 : 24;
    241       break;
    242 
    243    case SHADER_OPCODE_TEX:
    244    case SHADER_OPCODE_TXD:
    245    case SHADER_OPCODE_TXF:
    246    case SHADER_OPCODE_TXF_LZ:
    247    case SHADER_OPCODE_TXL:
    248    case SHADER_OPCODE_TXL_LZ:
    249       /* 18 cycles:
    250        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
    251        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
    252        * send(8) g4<1>UW    g114<8,8,1>F
    253        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
    254        *
    255        * 697 +/-49 cycles (min 610, n=26):
    256        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
    257        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
    258        * send(8) g4<1>UW    g114<8,8,1>F
    259        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
    260        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
    261        *
    262        * So the latency on our first texture load of the batchbuffer takes
    263        * ~700 cycles, since the caches are cold at that point.
    264        *
    265        * 840 +/- 92 cycles (min 720, n=25):
    266        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
    267        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
    268        * send(8) g4<1>UW    g114<8,8,1>F
    269        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
    270        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
    271        * send(8) g4<1>UW    g114<8,8,1>F
    272        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
    273        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
    274        *
    275        * On the second load, it takes just an extra ~140 cycles, and after
    276        * accounting for the 14 cycles of the MOV's latency, that makes ~130.
    277        *
    278        * 683 +/- 49 cycles (min = 602, n=47):
    279        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
    280        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
    281        * send(8) g4<1>UW    g114<8,8,1>F
    282        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
    283        * send(8) g50<1>UW   g114<8,8,1>F
    284        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
    285        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
    286        *
    287        * The unit appears to be pipelined, since this matches up with the
    288        * cache-cold case, despite there being two loads here.  If you replace
    289        * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
    290        *
    291        * So, take some number between the cache-hot 140 cycles and the
    292        * cache-cold 700 cycles.  No particular tuning was done on this.
    293        *
    294        * I haven't done significant testing of the non-TEX opcodes.  TXL at
    295        * least looked about the same as TEX.
    296        */
    297       latency = 200;
    298       break;
    299 
    300    case SHADER_OPCODE_TXS:
    301       /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
    302        * cycles (n=15):
    303        * mov(8)   g114<1>UD  0D                        { align1 WE_normal 1Q };
    304        * send(8)  g6<1>UW    g114<8,8,1>F
    305        *   sampler (10, 0, 10, 1) mlen 1 rlen 4        { align1 WE_normal 1Q };
    306        * mov(16)  g6<1>F     g6<8,8,1>D                { align1 WE_normal 1Q };
    307        *
    308        *
    309        * Two loads was 535 +/- 30 cycles (n=19):
    310        * mov(16)   g114<1>UD  0D                       { align1 WE_normal 1H };
    311        * send(16)  g6<1>UW    g114<8,8,1>F
    312        *   sampler (10, 0, 10, 2) mlen 2 rlen 8        { align1 WE_normal 1H };
    313        * mov(16)   g114<1>UD  0D                       { align1 WE_normal 1H };
    314        * mov(16)   g6<1>F     g6<8,8,1>D               { align1 WE_normal 1H };
    315        * send(16)  g8<1>UW    g114<8,8,1>F
    316        *   sampler (10, 0, 10, 2) mlen 2 rlen 8        { align1 WE_normal 1H };
    317        * mov(16)   g8<1>F     g8<8,8,1>D               { align1 WE_normal 1H };
    318        * add(16)   g6<1>F     g6<8,8,1>F   g8<8,8,1>F  { align1 WE_normal 1H };
    319        *
    320        * Since the only caches that should matter are just the
    321        * instruction/state cache containing the surface state, assume that we
    322        * always have hot caches.
    323        */
    324       latency = 100;
    325       break;
    326 
    327    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
    328    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
    329    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
    330    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
    331    case VS_OPCODE_PULL_CONSTANT_LOAD:
    332       /* testing using varying-index pull constants:
    333        *
    334        * 16 cycles:
    335        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
    336        * send(8) g4<1>F  g4<8,8,1>D
    337        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
    338        *
    339        * ~480 cycles:
    340        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
    341        * send(8) g4<1>F  g4<8,8,1>D
    342        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
    343        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
    344        *
    345        * ~620 cycles:
    346        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
    347        * send(8) g4<1>F  g4<8,8,1>D
    348        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
    349        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
    350        * send(8) g4<1>F  g4<8,8,1>D
    351        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
    352        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
    353        *
    354        * So, if it's cache-hot, it's about 140.  If it's cache cold, it's
    355        * about 460.  We expect to mostly be cache hot, so pick something more
    356        * in that direction.
    357        */
    358       latency = 200;
    359       break;
    360 
    361    case SHADER_OPCODE_GEN7_SCRATCH_READ:
    362       /* Testing a load from offset 0, that had been previously written:
    363        *
    364        * send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
    365        * mov(8)  null      g114<8,8,1>F { align1 WE_normal 1Q };
    366        *
    367        * The cycles spent seemed to be grouped around 40-50 (as low as 38),
    368        * then around 140.  Presumably this is cache hit vs miss.
    369        */
    370       latency = 50;
    371       break;
    372 
    373    case SHADER_OPCODE_UNTYPED_ATOMIC:
    374    case SHADER_OPCODE_TYPED_ATOMIC:
    375       /* Test code:
    376        *   mov(8)    g112<1>ud       0x00000000ud       { align1 WE_all 1Q };
    377        *   mov(1)    g112.7<1>ud     g1.7<0,1,0>ud      { align1 WE_all };
    378        *   mov(8)    g113<1>ud       0x00000000ud       { align1 WE_normal 1Q };
    379        *   send(8)   g4<1>ud         g112<8,8,1>ud
    380        *             data (38, 5, 6) mlen 2 rlen 1      { align1 WE_normal 1Q };
    381        *
    382        * Running it 100 times as fragment shader on a 128x128 quad
    383        * gives an average latency of 13867 cycles per atomic op,
    384        * standard deviation 3%.  Note that this is a rather
    385        * pessimistic estimate, the actual latency in cases with few
    386        * collisions between threads and favorable pipelining has been
    387        * seen to be reduced by a factor of 100.
    388        */
    389       latency = 14000;
    390       break;
    391 
    392    case SHADER_OPCODE_UNTYPED_SURFACE_READ:
    393    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
    394    case SHADER_OPCODE_TYPED_SURFACE_READ:
    395    case SHADER_OPCODE_TYPED_SURFACE_WRITE:
    396       /* Test code:
    397        *   mov(8)    g112<1>UD       0x00000000UD       { align1 WE_all 1Q };
    398        *   mov(1)    g112.7<1>UD     g1.7<0,1,0>UD      { align1 WE_all };
    399        *   mov(8)    g113<1>UD       0x00000000UD       { align1 WE_normal 1Q };
    400        *   send(8)   g4<1>UD         g112<8,8,1>UD
    401        *             data (38, 6, 5) mlen 2 rlen 1      { align1 WE_normal 1Q };
    402        *   .
    403        *   . [repeats 8 times]
    404        *   .
    405        *   mov(8)    g112<1>UD       0x00000000UD       { align1 WE_all 1Q };
    406        *   mov(1)    g112.7<1>UD     g1.7<0,1,0>UD      { align1 WE_all };
    407        *   mov(8)    g113<1>UD       0x00000000UD       { align1 WE_normal 1Q };
    408        *   send(8)   g4<1>UD         g112<8,8,1>UD
    409        *             data (38, 6, 5) mlen 2 rlen 1      { align1 WE_normal 1Q };
    410        *
    411        * Running it 100 times as fragment shader on a 128x128 quad
    412        * gives an average latency of 583 cycles per surface read,
    413        * standard deviation 0.9%.
    414        */
    415       latency = is_haswell ? 300 : 600;
    416       break;
    417 
    418    default:
    419       /* 2 cycles:
    420        * mul(8) g4<1>F g2<0,1,0>F      0.5F            { align1 WE_normal 1Q };
    421        *
    422        * 16 cycles:
    423        * mul(8) g4<1>F g2<0,1,0>F      0.5F            { align1 WE_normal 1Q };
    424        * mov(8) null   g4<8,8,1>F                      { align1 WE_normal 1Q };
    425        */
    426       latency = 14;
    427       break;
    428    }
    429 }
    430 
    431 class instruction_scheduler {
    432 public:
    433    instruction_scheduler(backend_shader *s, int grf_count,
    434                          int hw_reg_count, int block_count,
    435                          instruction_scheduler_mode mode)
    436    {
    437       this->bs = s;
    438       this->mem_ctx = ralloc_context(NULL);
    439       this->grf_count = grf_count;
    440       this->hw_reg_count = hw_reg_count;
    441       this->instructions.make_empty();
    442       this->instructions_to_schedule = 0;
    443       this->post_reg_alloc = (mode == SCHEDULE_POST);
    444       this->mode = mode;
    445       if (!post_reg_alloc) {
    446          this->reg_pressure_in = rzalloc_array(mem_ctx, int, block_count);
    447 
    448          this->livein = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
    449          for (int i = 0; i < block_count; i++)
    450             this->livein[i] = rzalloc_array(mem_ctx, BITSET_WORD,
    451                                             BITSET_WORDS(grf_count));
    452 
    453          this->liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
    454          for (int i = 0; i < block_count; i++)
    455             this->liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
    456                                              BITSET_WORDS(grf_count));
    457 
    458          this->hw_liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
    459          for (int i = 0; i < block_count; i++)
    460             this->hw_liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
    461                                                 BITSET_WORDS(hw_reg_count));
    462 
    463          this->written = rzalloc_array(mem_ctx, bool, grf_count);
    464 
    465          this->reads_remaining = rzalloc_array(mem_ctx, int, grf_count);
    466 
    467          this->hw_reads_remaining = rzalloc_array(mem_ctx, int, hw_reg_count);
    468       } else {
    469          this->reg_pressure_in = NULL;
    470          this->livein = NULL;
    471          this->liveout = NULL;
    472          this->hw_liveout = NULL;
    473          this->written = NULL;
    474          this->reads_remaining = NULL;
    475          this->hw_reads_remaining = NULL;
    476       }
    477    }
    478 
    479    ~instruction_scheduler()
    480    {
    481       ralloc_free(this->mem_ctx);
    482    }
    483    void add_barrier_deps(schedule_node *n);
    484    void add_dep(schedule_node *before, schedule_node *after, int latency);
    485    void add_dep(schedule_node *before, schedule_node *after);
    486 
    487    void run(cfg_t *cfg);
    488    void add_insts_from_block(bblock_t *block);
    489    void compute_delays();
    490    void compute_exits();
    491    virtual void calculate_deps() = 0;
    492    virtual schedule_node *choose_instruction_to_schedule() = 0;
    493 
    494    /**
    495     * Returns how many cycles it takes the instruction to issue.
    496     *
    497     * Instructions in gen hardware are handled one simd4 vector at a time,
    498     * with 1 cycle per vector dispatched.  Thus SIMD8 pixel shaders take 2
    499     * cycles to dispatch and SIMD16 (compressed) instructions take 4.
    500     */
    501    virtual int issue_time(backend_instruction *inst) = 0;
    502 
    503    virtual void count_reads_remaining(backend_instruction *inst) = 0;
    504    virtual void setup_liveness(cfg_t *cfg) = 0;
    505    virtual void update_register_pressure(backend_instruction *inst) = 0;
    506    virtual int get_register_pressure_benefit(backend_instruction *inst) = 0;
    507 
    508    void schedule_instructions(bblock_t *block);
    509 
    510    void *mem_ctx;
    511 
    512    bool post_reg_alloc;
    513    int instructions_to_schedule;
    514    int grf_count;
    515    int hw_reg_count;
    516    int reg_pressure;
    517    int block_idx;
    518    exec_list instructions;
    519    backend_shader *bs;
    520 
    521    instruction_scheduler_mode mode;
    522 
    523    /*
    524     * The register pressure at the beginning of each basic block.
    525     */
    526 
    527    int *reg_pressure_in;
    528 
    529    /*
    530     * The virtual GRF's whose range overlaps the beginning of each basic block.
    531     */
    532 
    533    BITSET_WORD **livein;
    534 
    535    /*
    536     * The virtual GRF's whose range overlaps the end of each basic block.
    537     */
    538 
    539    BITSET_WORD **liveout;
    540 
    541    /*
    542     * The hardware GRF's whose range overlaps the end of each basic block.
    543     */
    544 
    545    BITSET_WORD **hw_liveout;
    546 
    547    /*
    548     * Whether we've scheduled a write for this virtual GRF yet.
    549     */
    550 
    551    bool *written;
    552 
    553    /*
    554     * How many reads we haven't scheduled for this virtual GRF yet.
    555     */
    556 
    557    int *reads_remaining;
    558 
    559    /*
    560     * How many reads we haven't scheduled for this hardware GRF yet.
    561     */
    562 
    563    int *hw_reads_remaining;
    564 };
    565 
    566 class fs_instruction_scheduler : public instruction_scheduler
    567 {
    568 public:
    569    fs_instruction_scheduler(fs_visitor *v, int grf_count, int hw_reg_count,
    570                             int block_count,
    571                             instruction_scheduler_mode mode);
    572    void calculate_deps();
    573    bool is_compressed(fs_inst *inst);
    574    schedule_node *choose_instruction_to_schedule();
    575    int issue_time(backend_instruction *inst);
    576    fs_visitor *v;
    577 
    578    void count_reads_remaining(backend_instruction *inst);
    579    void setup_liveness(cfg_t *cfg);
    580    void update_register_pressure(backend_instruction *inst);
    581    int get_register_pressure_benefit(backend_instruction *inst);
    582 };
    583 
    584 fs_instruction_scheduler::fs_instruction_scheduler(fs_visitor *v,
    585                                                    int grf_count, int hw_reg_count,
    586                                                    int block_count,
    587                                                    instruction_scheduler_mode mode)
    588    : instruction_scheduler(v, grf_count, hw_reg_count, block_count, mode),
    589      v(v)
    590 {
    591 }
    592 
    593 static bool
    594 is_src_duplicate(fs_inst *inst, int src)
    595 {
    596    for (int i = 0; i < src; i++)
    597      if (inst->src[i].equals(inst->src[src]))
    598        return true;
    599 
    600   return false;
    601 }
    602 
    603 void
    604 fs_instruction_scheduler::count_reads_remaining(backend_instruction *be)
    605 {
    606    fs_inst *inst = (fs_inst *)be;
    607 
    608    if (!reads_remaining)
    609       return;
    610 
    611    for (int i = 0; i < inst->sources; i++) {
    612       if (is_src_duplicate(inst, i))
    613          continue;
    614 
    615       if (inst->src[i].file == VGRF) {
    616          reads_remaining[inst->src[i].nr]++;
    617       } else if (inst->src[i].file == FIXED_GRF) {
    618          if (inst->src[i].nr >= hw_reg_count)
    619             continue;
    620 
    621          for (unsigned j = 0; j < regs_read(inst, i); j++)
    622             hw_reads_remaining[inst->src[i].nr + j]++;
    623       }
    624    }
    625 }
    626 
    627 void
    628 fs_instruction_scheduler::setup_liveness(cfg_t *cfg)
    629 {
    630    /* First, compute liveness on a per-GRF level using the in/out sets from
    631     * liveness calculation.
    632     */
    633    for (int block = 0; block < cfg->num_blocks; block++) {
    634       for (int i = 0; i < v->live_intervals->num_vars; i++) {
    635          if (BITSET_TEST(v->live_intervals->block_data[block].livein, i)) {
    636             int vgrf = v->live_intervals->vgrf_from_var[i];
    637             if (!BITSET_TEST(livein[block], vgrf)) {
    638                reg_pressure_in[block] += v->alloc.sizes[vgrf];
    639                BITSET_SET(livein[block], vgrf);
    640             }
    641          }
    642 
    643          if (BITSET_TEST(v->live_intervals->block_data[block].liveout, i))
    644             BITSET_SET(liveout[block], v->live_intervals->vgrf_from_var[i]);
    645       }
    646    }
    647 
    648    /* Now, extend the live in/live out sets for when a range crosses a block
    649     * boundary, which matches what our register allocator/interference code
    650     * does to account for force_writemask_all and incompatible exec_mask's.
    651     */
    652    for (int block = 0; block < cfg->num_blocks - 1; block++) {
    653       for (int i = 0; i < grf_count; i++) {
    654          if (v->virtual_grf_start[i] <= cfg->blocks[block]->end_ip &&
    655              v->virtual_grf_end[i] >= cfg->blocks[block + 1]->start_ip) {
    656             if (!BITSET_TEST(livein[block + 1], i)) {
    657                 reg_pressure_in[block + 1] += v->alloc.sizes[i];
    658                 BITSET_SET(livein[block + 1], i);
    659             }
    660 
    661             BITSET_SET(liveout[block], i);
    662          }
    663       }
    664    }
    665 
    666    int payload_last_use_ip[hw_reg_count];
    667    v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
    668 
    669    for (int i = 0; i < hw_reg_count; i++) {
    670       if (payload_last_use_ip[i] == -1)
    671          continue;
    672 
    673       for (int block = 0; block < cfg->num_blocks; block++) {
    674          if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
    675             reg_pressure_in[block]++;
    676 
    677          if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
    678             BITSET_SET(hw_liveout[block], i);
    679       }
    680    }
    681 }
    682 
    683 void
    684 fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
    685 {
    686    fs_inst *inst = (fs_inst *)be;
    687 
    688    if (!reads_remaining)
    689       return;
    690 
    691    if (inst->dst.file == VGRF) {
    692       written[inst->dst.nr] = true;
    693    }
    694 
    695    for (int i = 0; i < inst->sources; i++) {
    696       if (is_src_duplicate(inst, i))
    697           continue;
    698 
    699       if (inst->src[i].file == VGRF) {
    700          reads_remaining[inst->src[i].nr]--;
    701       } else if (inst->src[i].file == FIXED_GRF &&
    702                  inst->src[i].nr < hw_reg_count) {
    703          for (unsigned off = 0; off < regs_read(inst, i); off++)
    704             hw_reads_remaining[inst->src[i].nr + off]--;
    705       }
    706    }
    707 }
    708 
    709 int
    710 fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
    711 {
    712    fs_inst *inst = (fs_inst *)be;
    713    int benefit = 0;
    714 
    715    if (inst->dst.file == VGRF) {
    716       if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
    717           !written[inst->dst.nr])
    718          benefit -= v->alloc.sizes[inst->dst.nr];
    719    }
    720 
    721    for (int i = 0; i < inst->sources; i++) {
    722       if (is_src_duplicate(inst, i))
    723          continue;
    724 
    725       if (inst->src[i].file == VGRF &&
    726           !BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
    727           reads_remaining[inst->src[i].nr] == 1)
    728          benefit += v->alloc.sizes[inst->src[i].nr];
    729 
    730       if (inst->src[i].file == FIXED_GRF &&
    731           inst->src[i].nr < hw_reg_count) {
    732          for (unsigned off = 0; off < regs_read(inst, i); off++) {
    733             int reg = inst->src[i].nr + off;
    734             if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
    735                 hw_reads_remaining[reg] == 1) {
    736                benefit++;
    737             }
    738          }
    739       }
    740    }
    741 
    742    return benefit;
    743 }
    744 
    745 class vec4_instruction_scheduler : public instruction_scheduler
    746 {
    747 public:
    748    vec4_instruction_scheduler(vec4_visitor *v, int grf_count);
    749    void calculate_deps();
    750    schedule_node *choose_instruction_to_schedule();
    751    int issue_time(backend_instruction *inst);
    752    vec4_visitor *v;
    753 
    754    void count_reads_remaining(backend_instruction *inst);
    755    void setup_liveness(cfg_t *cfg);
    756    void update_register_pressure(backend_instruction *inst);
    757    int get_register_pressure_benefit(backend_instruction *inst);
    758 };
    759 
    760 vec4_instruction_scheduler::vec4_instruction_scheduler(vec4_visitor *v,
    761                                                        int grf_count)
    762    : instruction_scheduler(v, grf_count, 0, 0, SCHEDULE_POST),
    763      v(v)
    764 {
    765 }
    766 
    767 void
    768 vec4_instruction_scheduler::count_reads_remaining(backend_instruction *be)
    769 {
    770 }
    771 
    772 void
    773 vec4_instruction_scheduler::setup_liveness(cfg_t *cfg)
    774 {
    775 }
    776 
    777 void
    778 vec4_instruction_scheduler::update_register_pressure(backend_instruction *be)
    779 {
    780 }
    781 
    782 int
    783 vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
    784 {
    785    return 0;
    786 }
    787 
    788 schedule_node::schedule_node(backend_instruction *inst,
    789                              instruction_scheduler *sched)
    790 {
    791    const struct gen_device_info *devinfo = sched->bs->devinfo;
    792 
    793    this->inst = inst;
    794    this->child_array_size = 0;
    795    this->children = NULL;
    796    this->child_latency = NULL;
    797    this->child_count = 0;
    798    this->parent_count = 0;
    799    this->unblocked_time = 0;
    800    this->cand_generation = 0;
    801    this->delay = 0;
    802    this->exit = NULL;
    803    this->is_barrier = false;
    804 
    805    /* We can't measure Gen6 timings directly but expect them to be much
    806     * closer to Gen7 than Gen4.
    807     */
    808    if (!sched->post_reg_alloc)
    809       this->latency = 1;
    810    else if (devinfo->gen >= 6)
    811       set_latency_gen7(devinfo->is_haswell);
    812    else
    813       set_latency_gen4();
    814 }
    815 
    816 void
    817 instruction_scheduler::add_insts_from_block(bblock_t *block)
    818 {
    819    foreach_inst_in_block(backend_instruction, inst, block) {
    820       schedule_node *n = new(mem_ctx) schedule_node(inst, this);
    821 
    822       instructions.push_tail(n);
    823    }
    824 
    825    this->instructions_to_schedule = block->end_ip - block->start_ip + 1;
    826 }
    827 
    828 /** Computation of the delay member of each node. */
    829 void
    830 instruction_scheduler::compute_delays()
    831 {
    832    foreach_in_list_reverse(schedule_node, n, &instructions) {
    833       if (!n->child_count) {
    834          n->delay = issue_time(n->inst);
    835       } else {
    836          for (int i = 0; i < n->child_count; i++) {
    837             assert(n->children[i]->delay);
    838             n->delay = MAX2(n->delay, n->latency + n->children[i]->delay);
    839          }
    840       }
    841    }
    842 }
    843 
    844 void
    845 instruction_scheduler::compute_exits()
    846 {
    847    /* Calculate a lower bound of the scheduling time of each node in the
    848     * graph.  This is analogous to the node's critical path but calculated
    849     * from the top instead of from the bottom of the block.
    850     */
    851    foreach_in_list(schedule_node, n, &instructions) {
    852       for (int i = 0; i < n->child_count; i++) {
    853          n->children[i]->unblocked_time =
    854             MAX2(n->children[i]->unblocked_time,
    855                  n->unblocked_time + issue_time(n->inst) + n->child_latency[i]);
    856       }
    857    }
    858 
    859    /* Calculate the exit of each node by induction based on the exit nodes of
    860     * its children.  The preferred exit of a node is the one among the exit
    861     * nodes of its children which can be unblocked first according to the
    862     * optimistic unblocked time estimate calculated above.
    863     */
    864    foreach_in_list_reverse(schedule_node, n, &instructions) {
    865       n->exit = (n->inst->opcode == FS_OPCODE_DISCARD_JUMP ? n : NULL);
    866 
    867       for (int i = 0; i < n->child_count; i++) {
    868          if (exit_unblocked_time(n->children[i]) < exit_unblocked_time(n))
    869             n->exit = n->children[i]->exit;
    870       }
    871    }
    872 }
    873 
    874 /**
    875  * Add a dependency between two instruction nodes.
    876  *
    877  * The @after node will be scheduled after @before.  We will try to
    878  * schedule it @latency cycles after @before, but no guarantees there.
    879  */
    880 void
    881 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
    882                                int latency)
    883 {
    884    if (!before || !after)
    885       return;
    886 
    887    assert(before != after);
    888 
    889    for (int i = 0; i < before->child_count; i++) {
    890       if (before->children[i] == after) {
    891          before->child_latency[i] = MAX2(before->child_latency[i], latency);
    892          return;
    893       }
    894    }
    895 
    896    if (before->child_array_size <= before->child_count) {
    897       if (before->child_array_size < 16)
    898          before->child_array_size = 16;
    899       else
    900          before->child_array_size *= 2;
    901 
    902       before->children = reralloc(mem_ctx, before->children,
    903                                   schedule_node *,
    904                                   before->child_array_size);
    905       before->child_latency = reralloc(mem_ctx, before->child_latency,
    906                                        int, before->child_array_size);
    907    }
    908 
    909    before->children[before->child_count] = after;
    910    before->child_latency[before->child_count] = latency;
    911    before->child_count++;
    912    after->parent_count++;
    913 }
    914 
    915 void
    916 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
    917 {
    918    if (!before)
    919       return;
    920 
    921    add_dep(before, after, before->latency);
    922 }
    923 
    924 /**
    925  * Sometimes we really want this node to execute after everything that
    926  * was before it and before everything that followed it.  This adds
    927  * the deps to do so.
    928  */
    929 void
    930 instruction_scheduler::add_barrier_deps(schedule_node *n)
    931 {
    932    schedule_node *prev = (schedule_node *)n->prev;
    933    schedule_node *next = (schedule_node *)n->next;
    934 
    935    n->is_barrier = true;
    936 
    937    if (prev) {
    938       while (!prev->is_head_sentinel()) {
    939          add_dep(prev, n, 0);
    940          if (prev->is_barrier)
    941             break;
    942          prev = (schedule_node *)prev->prev;
    943       }
    944    }
    945 
    946    if (next) {
    947       while (!next->is_tail_sentinel()) {
    948          add_dep(n, next, 0);
    949          if (next->is_barrier)
    950             break;
    951          next = (schedule_node *)next->next;
    952       }
    953    }
    954 }
    955 
    956 /* instruction scheduling needs to be aware of when an MRF write
    957  * actually writes 2 MRFs.
    958  */
    959 bool
    960 fs_instruction_scheduler::is_compressed(fs_inst *inst)
    961 {
    962    return inst->exec_size == 16;
    963 }
    964 
    965 static bool
    966 is_scheduling_barrier(const fs_inst *inst)
    967 {
    968    return inst->opcode == FS_OPCODE_PLACEHOLDER_HALT ||
    969           inst->is_control_flow() ||
    970           inst->has_side_effects();
    971 }
    972 
    973 void
    974 fs_instruction_scheduler::calculate_deps()
    975 {
    976    /* Pre-register-allocation, this tracks the last write per VGRF offset.
    977     * After register allocation, reg_offsets are gone and we track individual
    978     * GRF registers.
    979     */
    980    schedule_node *last_grf_write[grf_count * 16];
    981    schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
    982    schedule_node *last_conditional_mod[4] = {};
    983    schedule_node *last_accumulator_write = NULL;
    984    /* Fixed HW registers are assumed to be separate from the virtual
    985     * GRFs, so they can be tracked separately.  We don't really write
    986     * to fixed GRFs much, so don't bother tracking them on a more
    987     * granular level.
    988     */
    989    schedule_node *last_fixed_grf_write = NULL;
    990 
    991    memset(last_grf_write, 0, sizeof(last_grf_write));
    992    memset(last_mrf_write, 0, sizeof(last_mrf_write));
    993 
    994    /* top-to-bottom dependencies: RAW and WAW. */
    995    foreach_in_list(schedule_node, n, &instructions) {
    996       fs_inst *inst = (fs_inst *)n->inst;
    997 
    998       if (is_scheduling_barrier(inst))
    999          add_barrier_deps(n);
   1000 
   1001       /* read-after-write deps. */
   1002       for (int i = 0; i < inst->sources; i++) {
   1003          if (inst->src[i].file == VGRF) {
   1004             if (post_reg_alloc) {
   1005                for (unsigned r = 0; r < regs_read(inst, i); r++)
   1006                   add_dep(last_grf_write[inst->src[i].nr + r], n);
   1007             } else {
   1008                for (unsigned r = 0; r < regs_read(inst, i); r++) {
   1009                   add_dep(last_grf_write[inst->src[i].nr * 16 +
   1010                                          inst->src[i].offset / REG_SIZE + r], n);
   1011                }
   1012             }
   1013          } else if (inst->src[i].file == FIXED_GRF) {
   1014             if (post_reg_alloc) {
   1015                for (unsigned r = 0; r < regs_read(inst, i); r++)
   1016                   add_dep(last_grf_write[inst->src[i].nr + r], n);
   1017             } else {
   1018                add_dep(last_fixed_grf_write, n);
   1019             }
   1020          } else if (inst->src[i].is_accumulator()) {
   1021             add_dep(last_accumulator_write, n);
   1022          } else if (inst->src[i].file == ARF) {
   1023             add_barrier_deps(n);
   1024          }
   1025       }
   1026 
   1027       if (inst->base_mrf != -1) {
   1028          for (int i = 0; i < inst->mlen; i++) {
   1029             /* It looks like the MRF regs are released in the send
   1030              * instruction once it's sent, not when the result comes
   1031              * back.
   1032              */
   1033             add_dep(last_mrf_write[inst->base_mrf + i], n);
   1034          }
   1035       }
   1036 
   1037       if (const unsigned mask = inst->flags_read(v->devinfo)) {
   1038          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
   1039 
   1040          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
   1041             if (mask & (1 << i))
   1042                add_dep(last_conditional_mod[i], n);
   1043          }
   1044       }
   1045 
   1046       if (inst->reads_accumulator_implicitly()) {
   1047          add_dep(last_accumulator_write, n);
   1048       }
   1049 
   1050       /* write-after-write deps. */
   1051       if (inst->dst.file == VGRF) {
   1052          if (post_reg_alloc) {
   1053             for (unsigned r = 0; r < regs_written(inst); r++) {
   1054                add_dep(last_grf_write[inst->dst.nr + r], n);
   1055                last_grf_write[inst->dst.nr + r] = n;
   1056             }
   1057          } else {
   1058             for (unsigned r = 0; r < regs_written(inst); r++) {
   1059                add_dep(last_grf_write[inst->dst.nr * 16 +
   1060                                       inst->dst.offset / REG_SIZE + r], n);
   1061                last_grf_write[inst->dst.nr * 16 +
   1062                               inst->dst.offset / REG_SIZE + r] = n;
   1063             }
   1064          }
   1065       } else if (inst->dst.file == MRF) {
   1066          int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
   1067 
   1068          add_dep(last_mrf_write[reg], n);
   1069          last_mrf_write[reg] = n;
   1070          if (is_compressed(inst)) {
   1071             if (inst->dst.nr & BRW_MRF_COMPR4)
   1072                reg += 4;
   1073             else
   1074                reg++;
   1075             add_dep(last_mrf_write[reg], n);
   1076             last_mrf_write[reg] = n;
   1077          }
   1078       } else if (inst->dst.file == FIXED_GRF) {
   1079          if (post_reg_alloc) {
   1080             for (unsigned r = 0; r < regs_written(inst); r++)
   1081                last_grf_write[inst->dst.nr + r] = n;
   1082          } else {
   1083             last_fixed_grf_write = n;
   1084          }
   1085       } else if (inst->dst.is_accumulator()) {
   1086          add_dep(last_accumulator_write, n);
   1087          last_accumulator_write = n;
   1088       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
   1089          add_barrier_deps(n);
   1090       }
   1091 
   1092       if (inst->mlen > 0 && inst->base_mrf != -1) {
   1093          for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
   1094             add_dep(last_mrf_write[inst->base_mrf + i], n);
   1095             last_mrf_write[inst->base_mrf + i] = n;
   1096          }
   1097       }
   1098 
   1099       if (const unsigned mask = inst->flags_written()) {
   1100          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
   1101 
   1102          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
   1103             if (mask & (1 << i)) {
   1104                add_dep(last_conditional_mod[i], n, 0);
   1105                last_conditional_mod[i] = n;
   1106             }
   1107          }
   1108       }
   1109 
   1110       if (inst->writes_accumulator_implicitly(v->devinfo) &&
   1111           !inst->dst.is_accumulator()) {
   1112          add_dep(last_accumulator_write, n);
   1113          last_accumulator_write = n;
   1114       }
   1115    }
   1116 
   1117    /* bottom-to-top dependencies: WAR */
   1118    memset(last_grf_write, 0, sizeof(last_grf_write));
   1119    memset(last_mrf_write, 0, sizeof(last_mrf_write));
   1120    memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
   1121    last_accumulator_write = NULL;
   1122    last_fixed_grf_write = NULL;
   1123 
   1124    foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
   1125       fs_inst *inst = (fs_inst *)n->inst;
   1126 
   1127       /* write-after-read deps. */
   1128       for (int i = 0; i < inst->sources; i++) {
   1129          if (inst->src[i].file == VGRF) {
   1130             if (post_reg_alloc) {
   1131                for (unsigned r = 0; r < regs_read(inst, i); r++)
   1132                   add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
   1133             } else {
   1134                for (unsigned r = 0; r < regs_read(inst, i); r++) {
   1135                   add_dep(n, last_grf_write[inst->src[i].nr * 16 +
   1136                                             inst->src[i].offset / REG_SIZE + r], 0);
   1137                }
   1138             }
   1139          } else if (inst->src[i].file == FIXED_GRF) {
   1140             if (post_reg_alloc) {
   1141                for (unsigned r = 0; r < regs_read(inst, i); r++)
   1142                   add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
   1143             } else {
   1144                add_dep(n, last_fixed_grf_write, 0);
   1145             }
   1146          } else if (inst->src[i].is_accumulator()) {
   1147             add_dep(n, last_accumulator_write, 0);
   1148          } else if (inst->src[i].file == ARF) {
   1149             add_barrier_deps(n);
   1150          }
   1151       }
   1152 
   1153       if (inst->base_mrf != -1) {
   1154          for (int i = 0; i < inst->mlen; i++) {
   1155             /* It looks like the MRF regs are released in the send
   1156              * instruction once it's sent, not when the result comes
   1157              * back.
   1158              */
   1159             add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
   1160          }
   1161       }
   1162 
   1163       if (const unsigned mask = inst->flags_read(v->devinfo)) {
   1164          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
   1165 
   1166          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
   1167             if (mask & (1 << i))
   1168                add_dep(n, last_conditional_mod[i]);
   1169          }
   1170       }
   1171 
   1172       if (inst->reads_accumulator_implicitly()) {
   1173          add_dep(n, last_accumulator_write);
   1174       }
   1175 
   1176       /* Update the things this instruction wrote, so earlier reads
   1177        * can mark this as WAR dependency.
   1178        */
   1179       if (inst->dst.file == VGRF) {
   1180          if (post_reg_alloc) {
   1181             for (unsigned r = 0; r < regs_written(inst); r++)
   1182                last_grf_write[inst->dst.nr + r] = n;
   1183          } else {
   1184             for (unsigned r = 0; r < regs_written(inst); r++) {
   1185                last_grf_write[inst->dst.nr * 16 +
   1186                               inst->dst.offset / REG_SIZE + r] = n;
   1187             }
   1188          }
   1189       } else if (inst->dst.file == MRF) {
   1190          int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
   1191 
   1192          last_mrf_write[reg] = n;
   1193 
   1194          if (is_compressed(inst)) {
   1195             if (inst->dst.nr & BRW_MRF_COMPR4)
   1196                reg += 4;
   1197             else
   1198                reg++;
   1199 
   1200             last_mrf_write[reg] = n;
   1201          }
   1202       } else if (inst->dst.file == FIXED_GRF) {
   1203          if (post_reg_alloc) {
   1204             for (unsigned r = 0; r < regs_written(inst); r++)
   1205                last_grf_write[inst->dst.nr + r] = n;
   1206          } else {
   1207             last_fixed_grf_write = n;
   1208          }
   1209       } else if (inst->dst.is_accumulator()) {
   1210          last_accumulator_write = n;
   1211       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
   1212          add_barrier_deps(n);
   1213       }
   1214 
   1215       if (inst->mlen > 0 && inst->base_mrf != -1) {
   1216          for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
   1217             last_mrf_write[inst->base_mrf + i] = n;
   1218          }
   1219       }
   1220 
   1221       if (const unsigned mask = inst->flags_written()) {
   1222          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
   1223 
   1224          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
   1225             if (mask & (1 << i))
   1226                last_conditional_mod[i] = n;
   1227          }
   1228       }
   1229 
   1230       if (inst->writes_accumulator_implicitly(v->devinfo)) {
   1231          last_accumulator_write = n;
   1232       }
   1233    }
   1234 }
   1235 
   1236 static bool
   1237 is_scheduling_barrier(const vec4_instruction *inst)
   1238 {
   1239    return inst->is_control_flow() ||
   1240           inst->has_side_effects();
   1241 }
   1242 
   1243 void
   1244 vec4_instruction_scheduler::calculate_deps()
   1245 {
   1246    schedule_node *last_grf_write[grf_count];
   1247    schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
   1248    schedule_node *last_conditional_mod = NULL;
   1249    schedule_node *last_accumulator_write = NULL;
   1250    /* Fixed HW registers are assumed to be separate from the virtual
   1251     * GRFs, so they can be tracked separately.  We don't really write
   1252     * to fixed GRFs much, so don't bother tracking them on a more
   1253     * granular level.
   1254     */
   1255    schedule_node *last_fixed_grf_write = NULL;
   1256 
   1257    memset(last_grf_write, 0, sizeof(last_grf_write));
   1258    memset(last_mrf_write, 0, sizeof(last_mrf_write));
   1259 
   1260    /* top-to-bottom dependencies: RAW and WAW. */
   1261    foreach_in_list(schedule_node, n, &instructions) {
   1262       vec4_instruction *inst = (vec4_instruction *)n->inst;
   1263 
   1264       if (is_scheduling_barrier(inst))
   1265          add_barrier_deps(n);
   1266 
   1267       /* read-after-write deps. */
   1268       for (int i = 0; i < 3; i++) {
   1269          if (inst->src[i].file == VGRF) {
   1270             for (unsigned j = 0; j < regs_read(inst, i); ++j)
   1271                add_dep(last_grf_write[inst->src[i].nr + j], n);
   1272          } else if (inst->src[i].file == FIXED_GRF) {
   1273             add_dep(last_fixed_grf_write, n);
   1274          } else if (inst->src[i].is_accumulator()) {
   1275             assert(last_accumulator_write);
   1276             add_dep(last_accumulator_write, n);
   1277          } else if (inst->src[i].file == ARF) {
   1278             add_barrier_deps(n);
   1279          }
   1280       }
   1281 
   1282       if (!inst->is_send_from_grf()) {
   1283          for (int i = 0; i < inst->mlen; i++) {
   1284             /* It looks like the MRF regs are released in the send
   1285              * instruction once it's sent, not when the result comes
   1286              * back.
   1287              */
   1288             add_dep(last_mrf_write[inst->base_mrf + i], n);
   1289          }
   1290       }
   1291 
   1292       if (inst->reads_flag()) {
   1293          assert(last_conditional_mod);
   1294          add_dep(last_conditional_mod, n);
   1295       }
   1296 
   1297       if (inst->reads_accumulator_implicitly()) {
   1298          assert(last_accumulator_write);
   1299          add_dep(last_accumulator_write, n);
   1300       }
   1301 
   1302       /* write-after-write deps. */
   1303       if (inst->dst.file == VGRF) {
   1304          for (unsigned j = 0; j < regs_written(inst); ++j) {
   1305             add_dep(last_grf_write[inst->dst.nr + j], n);
   1306             last_grf_write[inst->dst.nr + j] = n;
   1307          }
   1308       } else if (inst->dst.file == MRF) {
   1309          add_dep(last_mrf_write[inst->dst.nr], n);
   1310          last_mrf_write[inst->dst.nr] = n;
   1311      } else if (inst->dst.file == FIXED_GRF) {
   1312          last_fixed_grf_write = n;
   1313       } else if (inst->dst.is_accumulator()) {
   1314          add_dep(last_accumulator_write, n);
   1315          last_accumulator_write = n;
   1316       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
   1317          add_barrier_deps(n);
   1318       }
   1319 
   1320       if (inst->mlen > 0 && !inst->is_send_from_grf()) {
   1321          for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
   1322             add_dep(last_mrf_write[inst->base_mrf + i], n);
   1323             last_mrf_write[inst->base_mrf + i] = n;
   1324          }
   1325       }
   1326 
   1327       if (inst->writes_flag()) {
   1328          add_dep(last_conditional_mod, n, 0);
   1329          last_conditional_mod = n;
   1330       }
   1331 
   1332       if (inst->writes_accumulator_implicitly(v->devinfo) &&
   1333           !inst->dst.is_accumulator()) {
   1334          add_dep(last_accumulator_write, n);
   1335          last_accumulator_write = n;
   1336       }
   1337    }
   1338 
   1339    /* bottom-to-top dependencies: WAR */
   1340    memset(last_grf_write, 0, sizeof(last_grf_write));
   1341    memset(last_mrf_write, 0, sizeof(last_mrf_write));
   1342    last_conditional_mod = NULL;
   1343    last_accumulator_write = NULL;
   1344    last_fixed_grf_write = NULL;
   1345 
   1346    foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
   1347       vec4_instruction *inst = (vec4_instruction *)n->inst;
   1348 
   1349       /* write-after-read deps. */
   1350       for (int i = 0; i < 3; i++) {
   1351          if (inst->src[i].file == VGRF) {
   1352             for (unsigned j = 0; j < regs_read(inst, i); ++j)
   1353                add_dep(n, last_grf_write[inst->src[i].nr + j]);
   1354          } else if (inst->src[i].file == FIXED_GRF) {
   1355             add_dep(n, last_fixed_grf_write);
   1356          } else if (inst->src[i].is_accumulator()) {
   1357             add_dep(n, last_accumulator_write);
   1358          } else if (inst->src[i].file == ARF) {
   1359             add_barrier_deps(n);
   1360          }
   1361       }
   1362 
   1363       if (!inst->is_send_from_grf()) {
   1364          for (int i = 0; i < inst->mlen; i++) {
   1365             /* It looks like the MRF regs are released in the send
   1366              * instruction once it's sent, not when the result comes
   1367              * back.
   1368              */
   1369             add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
   1370          }
   1371       }
   1372 
   1373       if (inst->reads_flag()) {
   1374          add_dep(n, last_conditional_mod);
   1375       }
   1376 
   1377       if (inst->reads_accumulator_implicitly()) {
   1378          add_dep(n, last_accumulator_write);
   1379       }
   1380 
   1381       /* Update the things this instruction wrote, so earlier reads
   1382        * can mark this as WAR dependency.
   1383        */
   1384       if (inst->dst.file == VGRF) {
   1385          for (unsigned j = 0; j < regs_written(inst); ++j)
   1386             last_grf_write[inst->dst.nr + j] = n;
   1387       } else if (inst->dst.file == MRF) {
   1388          last_mrf_write[inst->dst.nr] = n;
   1389       } else if (inst->dst.file == FIXED_GRF) {
   1390          last_fixed_grf_write = n;
   1391       } else if (inst->dst.is_accumulator()) {
   1392          last_accumulator_write = n;
   1393       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
   1394          add_barrier_deps(n);
   1395       }
   1396 
   1397       if (inst->mlen > 0 && !inst->is_send_from_grf()) {
   1398          for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
   1399             last_mrf_write[inst->base_mrf + i] = n;
   1400          }
   1401       }
   1402 
   1403       if (inst->writes_flag()) {
   1404          last_conditional_mod = n;
   1405       }
   1406 
   1407       if (inst->writes_accumulator_implicitly(v->devinfo)) {
   1408          last_accumulator_write = n;
   1409       }
   1410    }
   1411 }
   1412 
   1413 schedule_node *
   1414 fs_instruction_scheduler::choose_instruction_to_schedule()
   1415 {
   1416    schedule_node *chosen = NULL;
   1417 
   1418    if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
   1419       int chosen_time = 0;
   1420 
   1421       /* Of the instructions ready to execute or the closest to being ready,
   1422        * choose the one most likely to unblock an early program exit, or
   1423        * otherwise the oldest one.
   1424        */
   1425       foreach_in_list(schedule_node, n, &instructions) {
   1426          if (!chosen ||
   1427              exit_unblocked_time(n) < exit_unblocked_time(chosen) ||
   1428              (exit_unblocked_time(n) == exit_unblocked_time(chosen) &&
   1429               n->unblocked_time < chosen_time)) {
   1430             chosen = n;
   1431             chosen_time = n->unblocked_time;
   1432          }
   1433       }
   1434    } else {
   1435       /* Before register allocation, we don't care about the latencies of
   1436        * instructions.  All we care about is reducing live intervals of
   1437        * variables so that we can avoid register spilling, or get SIMD16
   1438        * shaders which naturally do a better job of hiding instruction
   1439        * latency.
   1440        */
   1441       foreach_in_list(schedule_node, n, &instructions) {
   1442          fs_inst *inst = (fs_inst *)n->inst;
   1443 
   1444          if (!chosen) {
   1445             chosen = n;
   1446             continue;
   1447          }
   1448 
   1449          /* Most important: If we can definitely reduce register pressure, do
   1450           * so immediately.
   1451           */
   1452          int register_pressure_benefit = get_register_pressure_benefit(n->inst);
   1453          int chosen_register_pressure_benefit =
   1454             get_register_pressure_benefit(chosen->inst);
   1455 
   1456          if (register_pressure_benefit > 0 &&
   1457              register_pressure_benefit > chosen_register_pressure_benefit) {
   1458             chosen = n;
   1459             continue;
   1460          } else if (chosen_register_pressure_benefit > 0 &&
   1461                     (register_pressure_benefit <
   1462                      chosen_register_pressure_benefit)) {
   1463             continue;
   1464          }
   1465 
   1466          if (mode == SCHEDULE_PRE_LIFO) {
   1467             /* Prefer instructions that recently became available for
   1468              * scheduling.  These are the things that are most likely to
   1469              * (eventually) make a variable dead and reduce register pressure.
   1470              * Typical register pressure estimates don't work for us because
   1471              * most of our pressure comes from texturing, where no single
   1472              * instruction to schedule will make a vec4 value dead.
   1473              */
   1474             if (n->cand_generation > chosen->cand_generation) {
   1475                chosen = n;
   1476                continue;
   1477             } else if (n->cand_generation < chosen->cand_generation) {
   1478                continue;
   1479             }
   1480 
   1481             /* On MRF-using chips, prefer non-SEND instructions.  If we don't
   1482              * do this, then because we prefer instructions that just became
   1483              * candidates, we'll end up in a pattern of scheduling a SEND,
   1484              * then the MRFs for the next SEND, then the next SEND, then the
   1485              * MRFs, etc., without ever consuming the results of a send.
   1486              */
   1487             if (v->devinfo->gen < 7) {
   1488                fs_inst *chosen_inst = (fs_inst *)chosen->inst;
   1489 
   1490                /* We use size_written > 4 * exec_size as our test for the kind
   1491                 * of send instruction to avoid -- only sends generate many
   1492                 * regs, and a single-result send is probably actually reducing
   1493                 * register pressure.
   1494                 */
   1495                if (inst->size_written <= 4 * inst->exec_size &&
   1496                    chosen_inst->size_written > 4 * chosen_inst->exec_size) {
   1497                   chosen = n;
   1498                   continue;
   1499                } else if (inst->size_written > chosen_inst->size_written) {
   1500                   continue;
   1501                }
   1502             }
   1503          }
   1504 
   1505          /* For instructions pushed on the cands list at the same time, prefer
   1506           * the one with the highest delay to the end of the program.  This is
   1507           * most likely to have its values able to be consumed first (such as
   1508           * for a large tree of lowered ubo loads, which appear reversed in
   1509           * the instruction stream with respect to when they can be consumed).
   1510           */
   1511          if (n->delay > chosen->delay) {
   1512             chosen = n;
   1513             continue;
   1514          } else if (n->delay < chosen->delay) {
   1515             continue;
   1516          }
   1517 
   1518          /* Prefer the node most likely to unblock an early program exit.
   1519           */
   1520          if (exit_unblocked_time(n) < exit_unblocked_time(chosen)) {
   1521             chosen = n;
   1522             continue;
   1523          } else if (exit_unblocked_time(n) > exit_unblocked_time(chosen)) {
   1524             continue;
   1525          }
   1526 
   1527          /* If all other metrics are equal, we prefer the first instruction in
   1528           * the list (program execution).
   1529           */
   1530       }
   1531    }
   1532 
   1533    return chosen;
   1534 }
   1535 
   1536 schedule_node *
   1537 vec4_instruction_scheduler::choose_instruction_to_schedule()
   1538 {
   1539    schedule_node *chosen = NULL;
   1540    int chosen_time = 0;
   1541 
   1542    /* Of the instructions ready to execute or the closest to being ready,
   1543     * choose the oldest one.
   1544     */
   1545    foreach_in_list(schedule_node, n, &instructions) {
   1546       if (!chosen || n->unblocked_time < chosen_time) {
   1547          chosen = n;
   1548          chosen_time = n->unblocked_time;
   1549       }
   1550    }
   1551 
   1552    return chosen;
   1553 }
   1554 
   1555 int
   1556 fs_instruction_scheduler::issue_time(backend_instruction *inst)
   1557 {
   1558    if (is_compressed((fs_inst *)inst))
   1559       return 4;
   1560    else
   1561       return 2;
   1562 }
   1563 
   1564 int
   1565 vec4_instruction_scheduler::issue_time(backend_instruction *inst)
   1566 {
   1567    /* We always execute as two vec4s in parallel. */
   1568    return 2;
   1569 }
   1570 
   1571 void
   1572 instruction_scheduler::schedule_instructions(bblock_t *block)
   1573 {
   1574    const struct gen_device_info *devinfo = bs->devinfo;
   1575    int time = 0;
   1576    if (!post_reg_alloc)
   1577       reg_pressure = reg_pressure_in[block->num];
   1578    block_idx = block->num;
   1579 
   1580    /* Remove non-DAG heads from the list. */
   1581    foreach_in_list_safe(schedule_node, n, &instructions) {
   1582       if (n->parent_count != 0)
   1583          n->remove();
   1584    }
   1585 
   1586    unsigned cand_generation = 1;
   1587    while (!instructions.is_empty()) {
   1588       schedule_node *chosen = choose_instruction_to_schedule();
   1589 
   1590       /* Schedule this instruction. */
   1591       assert(chosen);
   1592       chosen->remove();
   1593       chosen->inst->exec_node::remove();
   1594       block->instructions.push_tail(chosen->inst);
   1595       instructions_to_schedule--;
   1596 
   1597       if (!post_reg_alloc) {
   1598          reg_pressure -= get_register_pressure_benefit(chosen->inst);
   1599          update_register_pressure(chosen->inst);
   1600       }
   1601 
   1602       /* If we expected a delay for scheduling, then bump the clock to reflect
   1603        * that.  In reality, the hardware will switch to another hyperthread
   1604        * and may not return to dispatching our thread for a while even after
   1605        * we're unblocked.  After this, we have the time when the chosen
   1606        * instruction will start executing.
   1607        */
   1608       time = MAX2(time, chosen->unblocked_time);
   1609 
   1610       /* Update the clock for how soon an instruction could start after the
   1611        * chosen one.
   1612        */
   1613       time += issue_time(chosen->inst);
   1614 
   1615       if (debug) {
   1616          fprintf(stderr, "clock %4d, scheduled: ", time);
   1617          bs->dump_instruction(chosen->inst);
   1618          if (!post_reg_alloc)
   1619             fprintf(stderr, "(register pressure %d)\n", reg_pressure);
   1620       }
   1621 
   1622       /* Now that we've scheduled a new instruction, some of its
   1623        * children can be promoted to the list of instructions ready to
   1624        * be scheduled.  Update the children's unblocked time for this
   1625        * DAG edge as we do so.
   1626        */
   1627       for (int i = chosen->child_count - 1; i >= 0; i--) {
   1628          schedule_node *child = chosen->children[i];
   1629 
   1630          child->unblocked_time = MAX2(child->unblocked_time,
   1631                                       time + chosen->child_latency[i]);
   1632 
   1633          if (debug) {
   1634             fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count);
   1635             bs->dump_instruction(child->inst);
   1636          }
   1637 
   1638          child->cand_generation = cand_generation;
   1639          child->parent_count--;
   1640          if (child->parent_count == 0) {
   1641             if (debug) {
   1642                fprintf(stderr, "\t\tnow available\n");
   1643             }
   1644             instructions.push_head(child);
   1645          }
   1646       }
   1647       cand_generation++;
   1648 
   1649       /* Shared resource: the mathbox.  There's one mathbox per EU on Gen6+
   1650        * but it's more limited pre-gen6, so if we send something off to it then
   1651        * the next math instruction isn't going to make progress until the first
   1652        * is done.
   1653        */
   1654       if (devinfo->gen < 6 && chosen->inst->is_math()) {
   1655          foreach_in_list(schedule_node, n, &instructions) {
   1656             if (n->inst->is_math())
   1657                n->unblocked_time = MAX2(n->unblocked_time,
   1658                                         time + chosen->latency);
   1659          }
   1660       }
   1661    }
   1662 
   1663    assert(instructions_to_schedule == 0);
   1664 
   1665    block->cycle_count = time;
   1666 }
   1667 
   1668 static unsigned get_cycle_count(cfg_t *cfg)
   1669 {
   1670    unsigned count = 0, multiplier = 1;
   1671    foreach_block(block, cfg) {
   1672       if (block->start()->opcode == BRW_OPCODE_DO)
   1673          multiplier *= 10; /* assume that loops execute ~10 times */
   1674 
   1675       count += block->cycle_count * multiplier;
   1676 
   1677       if (block->end()->opcode == BRW_OPCODE_WHILE)
   1678          multiplier /= 10;
   1679    }
   1680 
   1681    return count;
   1682 }
   1683 
   1684 void
   1685 instruction_scheduler::run(cfg_t *cfg)
   1686 {
   1687    if (debug && !post_reg_alloc) {
   1688       fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
   1689               post_reg_alloc);
   1690          bs->dump_instructions();
   1691    }
   1692 
   1693    if (!post_reg_alloc)
   1694       setup_liveness(cfg);
   1695 
   1696    foreach_block(block, cfg) {
   1697       if (reads_remaining) {
   1698          memset(reads_remaining, 0,
   1699                 grf_count * sizeof(*reads_remaining));
   1700          memset(hw_reads_remaining, 0,
   1701                 hw_reg_count * sizeof(*hw_reads_remaining));
   1702          memset(written, 0, grf_count * sizeof(*written));
   1703 
   1704          foreach_inst_in_block(fs_inst, inst, block)
   1705             count_reads_remaining(inst);
   1706       }
   1707 
   1708       add_insts_from_block(block);
   1709 
   1710       calculate_deps();
   1711 
   1712       compute_delays();
   1713       compute_exits();
   1714 
   1715       schedule_instructions(block);
   1716    }
   1717 
   1718    if (debug && !post_reg_alloc) {
   1719       fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
   1720               post_reg_alloc);
   1721       bs->dump_instructions();
   1722    }
   1723 
   1724    cfg->cycle_count = get_cycle_count(cfg);
   1725 }
   1726 
   1727 void
   1728 fs_visitor::schedule_instructions(instruction_scheduler_mode mode)
   1729 {
   1730    if (mode != SCHEDULE_POST)
   1731       calculate_live_intervals();
   1732 
   1733    int grf_count;
   1734    if (mode == SCHEDULE_POST)
   1735       grf_count = grf_used;
   1736    else
   1737       grf_count = alloc.count;
   1738 
   1739    fs_instruction_scheduler sched(this, grf_count, first_non_payload_grf,
   1740                                   cfg->num_blocks, mode);
   1741    sched.run(cfg);
   1742 
   1743    invalidate_live_intervals();
   1744 }
   1745 
   1746 void
   1747 vec4_visitor::opt_schedule_instructions()
   1748 {
   1749    vec4_instruction_scheduler sched(this, prog_data->total_grf);
   1750    sched.run(cfg);
   1751 
   1752    invalidate_live_intervals();
   1753 }
   1754