Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass makes sure that all branches are in range.  There are several ways
     11 // in which this could be done.  One aggressive approach is to assume that all
     12 // branches are in range and successively replace those that turn out not
     13 // to be in range with a longer form (branch relaxation).  A simple
     14 // implementation is to continually walk through the function relaxing
     15 // branches until no more changes are needed and a fixed point is reached.
     16 // However, in the pathological worst case, this implementation is
     17 // quadratic in the number of blocks; relaxing branch N can make branch N-1
     18 // go out of range, which in turn can make branch N-2 go out of range,
     19 // and so on.
     20 //
     21 // An alternative approach is to assume that all branches must be
     22 // converted to their long forms, then reinstate the short forms of
     23 // branches that, even under this pessimistic assumption, turn out to be
     24 // in range (branch shortening).  This too can be implemented as a function
     25 // walk that is repeated until a fixed point is reached.  In general,
     26 // the result of shortening is not as good as that of relaxation, and
     27 // shortening is also quadratic in the worst case; shortening branch N
     28 // can bring branch N-1 in range of the short form, which in turn can do
     29 // the same for branch N-2, and so on.  The main advantage of shortening
     30 // is that each walk through the function produces valid code, so it is
     31 // possible to stop at any point after the first walk.  The quadraticness
     32 // could therefore be handled with a maximum pass count, although the
     33 // question then becomes: what maximum count should be used?
     34 //
     35 // On SystemZ, long branches are only needed for functions bigger than 64k,
     36 // which are relatively rare to begin with, and the long branch sequences
     37 // are actually relatively cheap.  It therefore doesn't seem worth spending
     38 // much compilation time on the problem.  Instead, the approach we take is:
     39 //
     40 // (1) Work out the address that each block would have if no branches
     41 //     need relaxing.  Exit the pass early if all branches are in range
     42 //     according to this assumption.
     43 //
     44 // (2) Work out the address that each block would have if all branches
     45 //     need relaxing.
     46 //
     47 // (3) Walk through the block calculating the final address of each instruction
     48 //     and relaxing those that need to be relaxed.  For backward branches,
     49 //     this check uses the final address of the target block, as calculated
     50 //     earlier in the walk.  For forward branches, this check uses the
     51 //     address of the target block that was calculated in (2).  Both checks
     52 //     give a conservatively-correct range.
     53 //
     54 //===----------------------------------------------------------------------===//
     55 
     56 #include "SystemZTargetMachine.h"
     57 #include "llvm/ADT/Statistic.h"
     58 #include "llvm/CodeGen/MachineFunctionPass.h"
     59 #include "llvm/CodeGen/MachineInstrBuilder.h"
     60 #include "llvm/IR/Function.h"
     61 #include "llvm/Support/MathExtras.h"
     62 #include "llvm/Target/TargetInstrInfo.h"
     63 #include "llvm/Target/TargetMachine.h"
     64 #include "llvm/Target/TargetRegisterInfo.h"
     65 
     66 using namespace llvm;
     67 
     68 #define DEBUG_TYPE "systemz-long-branch"
     69 
     70 STATISTIC(LongBranches, "Number of long branches.");
     71 
     72 namespace {
     73 // Represents positional information about a basic block.
     74 struct MBBInfo {
     75   // The address that we currently assume the block has.
     76   uint64_t Address;
     77 
     78   // The size of the block in bytes, excluding terminators.
     79   // This value never changes.
     80   uint64_t Size;
     81 
     82   // The minimum alignment of the block, as a log2 value.
     83   // This value never changes.
     84   unsigned Alignment;
     85 
     86   // The number of terminators in this block.  This value never changes.
     87   unsigned NumTerminators;
     88 
     89   MBBInfo()
     90     : Address(0), Size(0), Alignment(0), NumTerminators(0) {}
     91 };
     92 
     93 // Represents the state of a block terminator.
     94 struct TerminatorInfo {
     95   // If this terminator is a relaxable branch, this points to the branch
     96   // instruction, otherwise it is null.
     97   MachineInstr *Branch;
     98 
     99   // The address that we currently assume the terminator has.
    100   uint64_t Address;
    101 
    102   // The current size of the terminator in bytes.
    103   uint64_t Size;
    104 
    105   // If Branch is nonnull, this is the number of the target block,
    106   // otherwise it is unused.
    107   unsigned TargetBlock;
    108 
    109   // If Branch is nonnull, this is the length of the longest relaxed form,
    110   // otherwise it is zero.
    111   unsigned ExtraRelaxSize;
    112 
    113   TerminatorInfo() : Branch(nullptr), Size(0), TargetBlock(0),
    114                      ExtraRelaxSize(0) {}
    115 };
    116 
    117 // Used to keep track of the current position while iterating over the blocks.
    118 struct BlockPosition {
    119   // The address that we assume this position has.
    120   uint64_t Address;
    121 
    122   // The number of low bits in Address that are known to be the same
    123   // as the runtime address.
    124   unsigned KnownBits;
    125 
    126   BlockPosition(unsigned InitialAlignment)
    127     : Address(0), KnownBits(InitialAlignment) {}
    128 };
    129 
    130 class SystemZLongBranch : public MachineFunctionPass {
    131 public:
    132   static char ID;
    133   SystemZLongBranch(const SystemZTargetMachine &tm)
    134     : MachineFunctionPass(ID), TII(nullptr) {}
    135 
    136   const char *getPassName() const override {
    137     return "SystemZ Long Branch";
    138   }
    139 
    140   bool runOnMachineFunction(MachineFunction &F) override;
    141   MachineFunctionProperties getRequiredProperties() const override {
    142     return MachineFunctionProperties().set(
    143         MachineFunctionProperties::Property::AllVRegsAllocated);
    144   }
    145 
    146 private:
    147   void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
    148   void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
    149                       bool AssumeRelaxed);
    150   TerminatorInfo describeTerminator(MachineInstr &MI);
    151   uint64_t initMBBInfo();
    152   bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
    153   bool mustRelaxABranch();
    154   void setWorstCaseAddresses();
    155   void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
    156   void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
    157   void relaxBranch(TerminatorInfo &Terminator);
    158   void relaxBranches();
    159 
    160   const SystemZInstrInfo *TII;
    161   MachineFunction *MF;
    162   SmallVector<MBBInfo, 16> MBBs;
    163   SmallVector<TerminatorInfo, 16> Terminators;
    164 };
    165 
    166 char SystemZLongBranch::ID = 0;
    167 
    168 const uint64_t MaxBackwardRange = 0x10000;
    169 const uint64_t MaxForwardRange = 0xfffe;
    170 } // end anonymous namespace
    171 
    172 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
    173   return new SystemZLongBranch(TM);
    174 }
    175 
    176 // Position describes the state immediately before Block.  Update Block
    177 // accordingly and move Position to the end of the block's non-terminator
    178 // instructions.
    179 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
    180                                            MBBInfo &Block) {
    181   if (Block.Alignment > Position.KnownBits) {
    182     // When calculating the address of Block, we need to conservatively
    183     // assume that Block had the worst possible misalignment.
    184     Position.Address += ((uint64_t(1) << Block.Alignment) -
    185                          (uint64_t(1) << Position.KnownBits));
    186     Position.KnownBits = Block.Alignment;
    187   }
    188 
    189   // Align the addresses.
    190   uint64_t AlignMask = (uint64_t(1) << Block.Alignment) - 1;
    191   Position.Address = (Position.Address + AlignMask) & ~AlignMask;
    192 
    193   // Record the block's position.
    194   Block.Address = Position.Address;
    195 
    196   // Move past the non-terminators in the block.
    197   Position.Address += Block.Size;
    198 }
    199 
    200 // Position describes the state immediately before Terminator.
    201 // Update Terminator accordingly and move Position past it.
    202 // Assume that Terminator will be relaxed if AssumeRelaxed.
    203 void SystemZLongBranch::skipTerminator(BlockPosition &Position,
    204                                        TerminatorInfo &Terminator,
    205                                        bool AssumeRelaxed) {
    206   Terminator.Address = Position.Address;
    207   Position.Address += Terminator.Size;
    208   if (AssumeRelaxed)
    209     Position.Address += Terminator.ExtraRelaxSize;
    210 }
    211 
    212 // Return a description of terminator instruction MI.
    213 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr &MI) {
    214   TerminatorInfo Terminator;
    215   Terminator.Size = TII->getInstSizeInBytes(MI);
    216   if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
    217     switch (MI.getOpcode()) {
    218     case SystemZ::J:
    219       // Relaxes to JG, which is 2 bytes longer.
    220       Terminator.ExtraRelaxSize = 2;
    221       break;
    222     case SystemZ::BRC:
    223       // Relaxes to BRCL, which is 2 bytes longer.
    224       Terminator.ExtraRelaxSize = 2;
    225       break;
    226     case SystemZ::BRCT:
    227     case SystemZ::BRCTG:
    228       // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
    229       Terminator.ExtraRelaxSize = 6;
    230       break;
    231     case SystemZ::CRJ:
    232     case SystemZ::CLRJ:
    233       // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
    234       Terminator.ExtraRelaxSize = 2;
    235       break;
    236     case SystemZ::CGRJ:
    237     case SystemZ::CLGRJ:
    238       // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
    239       Terminator.ExtraRelaxSize = 4;
    240       break;
    241     case SystemZ::CIJ:
    242     case SystemZ::CGIJ:
    243       // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
    244       Terminator.ExtraRelaxSize = 4;
    245       break;
    246     case SystemZ::CLIJ:
    247     case SystemZ::CLGIJ:
    248       // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
    249       Terminator.ExtraRelaxSize = 6;
    250       break;
    251     default:
    252       llvm_unreachable("Unrecognized branch instruction");
    253     }
    254     Terminator.Branch = &MI;
    255     Terminator.TargetBlock =
    256       TII->getBranchInfo(MI).Target->getMBB()->getNumber();
    257   }
    258   return Terminator;
    259 }
    260 
    261 // Fill MBBs and Terminators, setting the addresses on the assumption
    262 // that no branches need relaxation.  Return the size of the function under
    263 // this assumption.
    264 uint64_t SystemZLongBranch::initMBBInfo() {
    265   MF->RenumberBlocks();
    266   unsigned NumBlocks = MF->size();
    267 
    268   MBBs.clear();
    269   MBBs.resize(NumBlocks);
    270 
    271   Terminators.clear();
    272   Terminators.reserve(NumBlocks);
    273 
    274   BlockPosition Position(MF->getAlignment());
    275   for (unsigned I = 0; I < NumBlocks; ++I) {
    276     MachineBasicBlock *MBB = MF->getBlockNumbered(I);
    277     MBBInfo &Block = MBBs[I];
    278 
    279     // Record the alignment, for quick access.
    280     Block.Alignment = MBB->getAlignment();
    281 
    282     // Calculate the size of the fixed part of the block.
    283     MachineBasicBlock::iterator MI = MBB->begin();
    284     MachineBasicBlock::iterator End = MBB->end();
    285     while (MI != End && !MI->isTerminator()) {
    286       Block.Size += TII->getInstSizeInBytes(*MI);
    287       ++MI;
    288     }
    289     skipNonTerminators(Position, Block);
    290 
    291     // Add the terminators.
    292     while (MI != End) {
    293       if (!MI->isDebugValue()) {
    294         assert(MI->isTerminator() && "Terminator followed by non-terminator");
    295         Terminators.push_back(describeTerminator(*MI));
    296         skipTerminator(Position, Terminators.back(), false);
    297         ++Block.NumTerminators;
    298       }
    299       ++MI;
    300     }
    301   }
    302 
    303   return Position.Address;
    304 }
    305 
    306 // Return true if, under current assumptions, Terminator would need to be
    307 // relaxed if it were placed at address Address.
    308 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
    309                                         uint64_t Address) {
    310   if (!Terminator.Branch)
    311     return false;
    312 
    313   const MBBInfo &Target = MBBs[Terminator.TargetBlock];
    314   if (Address >= Target.Address) {
    315     if (Address - Target.Address <= MaxBackwardRange)
    316       return false;
    317   } else {
    318     if (Target.Address - Address <= MaxForwardRange)
    319       return false;
    320   }
    321 
    322   return true;
    323 }
    324 
    325 // Return true if, under current assumptions, any terminator needs
    326 // to be relaxed.
    327 bool SystemZLongBranch::mustRelaxABranch() {
    328   for (auto &Terminator : Terminators)
    329     if (mustRelaxBranch(Terminator, Terminator.Address))
    330       return true;
    331   return false;
    332 }
    333 
    334 // Set the address of each block on the assumption that all branches
    335 // must be long.
    336 void SystemZLongBranch::setWorstCaseAddresses() {
    337   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
    338   BlockPosition Position(MF->getAlignment());
    339   for (auto &Block : MBBs) {
    340     skipNonTerminators(Position, Block);
    341     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
    342       skipTerminator(Position, *TI, true);
    343       ++TI;
    344     }
    345   }
    346 }
    347 
    348 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
    349 // by a BRCL on the result.
    350 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
    351                                            unsigned AddOpcode) {
    352   MachineBasicBlock *MBB = MI->getParent();
    353   DebugLoc DL = MI->getDebugLoc();
    354   BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
    355     .addOperand(MI->getOperand(0))
    356     .addOperand(MI->getOperand(1))
    357     .addImm(-1);
    358   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
    359     .addImm(SystemZ::CCMASK_ICMP)
    360     .addImm(SystemZ::CCMASK_CMP_NE)
    361     .addOperand(MI->getOperand(2));
    362   // The implicit use of CC is a killing use.
    363   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
    364   MI->eraseFromParent();
    365 }
    366 
    367 // Split MI into the comparison given by CompareOpcode followed
    368 // a BRCL on the result.
    369 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
    370                                            unsigned CompareOpcode) {
    371   MachineBasicBlock *MBB = MI->getParent();
    372   DebugLoc DL = MI->getDebugLoc();
    373   BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
    374     .addOperand(MI->getOperand(0))
    375     .addOperand(MI->getOperand(1));
    376   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
    377     .addImm(SystemZ::CCMASK_ICMP)
    378     .addOperand(MI->getOperand(2))
    379     .addOperand(MI->getOperand(3));
    380   // The implicit use of CC is a killing use.
    381   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
    382   MI->eraseFromParent();
    383 }
    384 
    385 // Relax the branch described by Terminator.
    386 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
    387   MachineInstr *Branch = Terminator.Branch;
    388   switch (Branch->getOpcode()) {
    389   case SystemZ::J:
    390     Branch->setDesc(TII->get(SystemZ::JG));
    391     break;
    392   case SystemZ::BRC:
    393     Branch->setDesc(TII->get(SystemZ::BRCL));
    394     break;
    395   case SystemZ::BRCT:
    396     splitBranchOnCount(Branch, SystemZ::AHI);
    397     break;
    398   case SystemZ::BRCTG:
    399     splitBranchOnCount(Branch, SystemZ::AGHI);
    400     break;
    401   case SystemZ::CRJ:
    402     splitCompareBranch(Branch, SystemZ::CR);
    403     break;
    404   case SystemZ::CGRJ:
    405     splitCompareBranch(Branch, SystemZ::CGR);
    406     break;
    407   case SystemZ::CIJ:
    408     splitCompareBranch(Branch, SystemZ::CHI);
    409     break;
    410   case SystemZ::CGIJ:
    411     splitCompareBranch(Branch, SystemZ::CGHI);
    412     break;
    413   case SystemZ::CLRJ:
    414     splitCompareBranch(Branch, SystemZ::CLR);
    415     break;
    416   case SystemZ::CLGRJ:
    417     splitCompareBranch(Branch, SystemZ::CLGR);
    418     break;
    419   case SystemZ::CLIJ:
    420     splitCompareBranch(Branch, SystemZ::CLFI);
    421     break;
    422   case SystemZ::CLGIJ:
    423     splitCompareBranch(Branch, SystemZ::CLGFI);
    424     break;
    425   default:
    426     llvm_unreachable("Unrecognized branch");
    427   }
    428 
    429   Terminator.Size += Terminator.ExtraRelaxSize;
    430   Terminator.ExtraRelaxSize = 0;
    431   Terminator.Branch = nullptr;
    432 
    433   ++LongBranches;
    434 }
    435 
    436 // Run a shortening pass and relax any branches that need to be relaxed.
    437 void SystemZLongBranch::relaxBranches() {
    438   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
    439   BlockPosition Position(MF->getAlignment());
    440   for (auto &Block : MBBs) {
    441     skipNonTerminators(Position, Block);
    442     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
    443       assert(Position.Address <= TI->Address &&
    444              "Addresses shouldn't go forwards");
    445       if (mustRelaxBranch(*TI, Position.Address))
    446         relaxBranch(*TI);
    447       skipTerminator(Position, *TI, false);
    448       ++TI;
    449     }
    450   }
    451 }
    452 
    453 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
    454   TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
    455   MF = &F;
    456   uint64_t Size = initMBBInfo();
    457   if (Size <= MaxForwardRange || !mustRelaxABranch())
    458     return false;
    459 
    460   setWorstCaseAddresses();
    461   relaxBranches();
    462   return true;
    463 }
    464