Home | History | Annotate | Download | only in payload_consumer
      1 //
      2 // Copyright (C) 2012 The Android Open Source Project
      3 //
      4 // Licensed under the Apache License, Version 2.0 (the "License");
      5 // you may not use this file except in compliance with the License.
      6 // You may obtain a copy of the License at
      7 //
      8 //      http://www.apache.org/licenses/LICENSE-2.0
      9 //
     10 // Unless required by applicable law or agreed to in writing, software
     11 // distributed under the License is distributed on an "AS IS" BASIS,
     12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13 // See the License for the specific language governing permissions and
     14 // limitations under the License.
     15 //
     16 
     17 #include "update_engine/payload_consumer/delta_performer.h"
     18 
     19 #include <endian.h>
     20 #include <errno.h>
     21 #include <linux/fs.h>
     22 
     23 #include <algorithm>
     24 #include <cstring>
     25 #include <memory>
     26 #include <string>
     27 #include <vector>
     28 
     29 #include <base/files/file_util.h>
     30 #include <base/format_macros.h>
     31 #include <base/strings/string_number_conversions.h>
     32 #include <base/strings/string_util.h>
     33 #include <base/strings/stringprintf.h>
     34 #include <brillo/data_encoding.h>
     35 #include <brillo/make_unique_ptr.h>
     36 #include <bsdiff/bspatch.h>
     37 #include <google/protobuf/repeated_field.h>
     38 
     39 #include "update_engine/common/constants.h"
     40 #include "update_engine/common/hardware_interface.h"
     41 #include "update_engine/common/prefs_interface.h"
     42 #include "update_engine/common/subprocess.h"
     43 #include "update_engine/common/terminator.h"
     44 #include "update_engine/payload_consumer/bzip_extent_writer.h"
     45 #include "update_engine/payload_consumer/download_action.h"
     46 #include "update_engine/payload_consumer/extent_writer.h"
     47 #if USE_MTD
     48 #include "update_engine/payload_consumer/mtd_file_descriptor.h"
     49 #endif
     50 #include "update_engine/payload_consumer/payload_constants.h"
     51 #include "update_engine/payload_consumer/payload_verifier.h"
     52 #include "update_engine/payload_consumer/xz_extent_writer.h"
     53 
     54 using google::protobuf::RepeatedPtrField;
     55 using std::min;
     56 using std::string;
     57 using std::vector;
     58 
     59 namespace chromeos_update_engine {
     60 
     61 const uint64_t DeltaPerformer::kDeltaVersionOffset = sizeof(kDeltaMagic);
     62 const uint64_t DeltaPerformer::kDeltaVersionSize = 8;
     63 const uint64_t DeltaPerformer::kDeltaManifestSizeOffset =
     64     kDeltaVersionOffset + kDeltaVersionSize;
     65 const uint64_t DeltaPerformer::kDeltaManifestSizeSize = 8;
     66 const uint64_t DeltaPerformer::kDeltaMetadataSignatureSizeSize = 4;
     67 const uint64_t DeltaPerformer::kMaxPayloadHeaderSize = 24;
     68 const uint64_t DeltaPerformer::kSupportedMajorPayloadVersion = 2;
     69 const uint32_t DeltaPerformer::kSupportedMinorPayloadVersion = 3;
     70 
     71 const unsigned DeltaPerformer::kProgressLogMaxChunks = 10;
     72 const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30;
     73 const unsigned DeltaPerformer::kProgressDownloadWeight = 50;
     74 const unsigned DeltaPerformer::kProgressOperationsWeight = 50;
     75 
     76 namespace {
     77 const int kUpdateStateOperationInvalid = -1;
     78 const int kMaxResumedUpdateFailures = 10;
     79 #if USE_MTD
     80 const int kUbiVolumeAttachTimeout = 5 * 60;
     81 #endif
     82 
     83 FileDescriptorPtr CreateFileDescriptor(const char* path) {
     84   FileDescriptorPtr ret;
     85 #if USE_MTD
     86   if (strstr(path, "/dev/ubi") == path) {
     87     if (!UbiFileDescriptor::IsUbi(path)) {
     88       // The volume might not have been attached at boot time.
     89       int volume_no;
     90       if (utils::SplitPartitionName(path, nullptr, &volume_no)) {
     91         utils::TryAttachingUbiVolume(volume_no, kUbiVolumeAttachTimeout);
     92       }
     93     }
     94     if (UbiFileDescriptor::IsUbi(path)) {
     95       LOG(INFO) << path << " is a UBI device.";
     96       ret.reset(new UbiFileDescriptor);
     97     }
     98   } else if (MtdFileDescriptor::IsMtd(path)) {
     99     LOG(INFO) << path << " is an MTD device.";
    100     ret.reset(new MtdFileDescriptor);
    101   } else {
    102     LOG(INFO) << path << " is not an MTD nor a UBI device.";
    103 #endif
    104     ret.reset(new EintrSafeFileDescriptor);
    105 #if USE_MTD
    106   }
    107 #endif
    108   return ret;
    109 }
    110 
    111 // Opens path for read/write. On success returns an open FileDescriptor
    112 // and sets *err to 0. On failure, sets *err to errno and returns nullptr.
    113 FileDescriptorPtr OpenFile(const char* path, int mode, int* err) {
    114   // Try to mark the block device read-only based on the mode. Ignore any
    115   // failure since this won't work when passing regular files.
    116   utils::SetBlockDeviceReadOnly(path, (mode & O_ACCMODE) == O_RDONLY);
    117 
    118   FileDescriptorPtr fd = CreateFileDescriptor(path);
    119 #if USE_MTD
    120   // On NAND devices, we can either read, or write, but not both. So here we
    121   // use O_WRONLY.
    122   if (UbiFileDescriptor::IsUbi(path) || MtdFileDescriptor::IsMtd(path)) {
    123     mode = O_WRONLY;
    124   }
    125 #endif
    126   if (!fd->Open(path, mode, 000)) {
    127     *err = errno;
    128     PLOG(ERROR) << "Unable to open file " << path;
    129     return nullptr;
    130   }
    131   *err = 0;
    132   return fd;
    133 }
    134 
    135 // Discard the tail of the block device referenced by |fd|, from the offset
    136 // |data_size| until the end of the block device. Returns whether the data was
    137 // discarded.
    138 bool DiscardPartitionTail(const FileDescriptorPtr& fd, uint64_t data_size) {
    139   uint64_t part_size = fd->BlockDevSize();
    140   if (!part_size || part_size <= data_size)
    141     return false;
    142 
    143   struct blkioctl_request {
    144     int number;
    145     const char* name;
    146   };
    147   const vector<blkioctl_request> blkioctl_requests = {
    148       {BLKDISCARD, "BLKDISCARD"},
    149       {BLKSECDISCARD, "BLKSECDISCARD"},
    150 #ifdef BLKZEROOUT
    151       {BLKZEROOUT, "BLKZEROOUT"},
    152 #endif
    153   };
    154   for (const auto& req : blkioctl_requests) {
    155     int error = 0;
    156     if (fd->BlkIoctl(req.number, data_size, part_size - data_size, &error) &&
    157         error == 0) {
    158       return true;
    159     }
    160     LOG(WARNING) << "Error discarding the last "
    161                  << (part_size - data_size) / 1024 << " KiB using ioctl("
    162                  << req.name << ")";
    163   }
    164   return false;
    165 }
    166 
    167 }  // namespace
    168 
    169 
    170 // Computes the ratio of |part| and |total|, scaled to |norm|, using integer
    171 // arithmetic.
    172 static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) {
    173   return part * norm / total;
    174 }
    175 
    176 void DeltaPerformer::LogProgress(const char* message_prefix) {
    177   // Format operations total count and percentage.
    178   string total_operations_str("?");
    179   string completed_percentage_str("");
    180   if (num_total_operations_) {
    181     total_operations_str = std::to_string(num_total_operations_);
    182     // Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
    183     completed_percentage_str =
    184         base::StringPrintf(" (%" PRIu64 "%%)",
    185                            IntRatio(next_operation_num_, num_total_operations_,
    186                                     100));
    187   }
    188 
    189   // Format download total count and percentage.
    190   size_t payload_size = payload_->size;
    191   string payload_size_str("?");
    192   string downloaded_percentage_str("");
    193   if (payload_size) {
    194     payload_size_str = std::to_string(payload_size);
    195     // Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
    196     downloaded_percentage_str =
    197         base::StringPrintf(" (%" PRIu64 "%%)",
    198                            IntRatio(total_bytes_received_, payload_size, 100));
    199   }
    200 
    201   LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_
    202             << "/" << total_operations_str << " operations"
    203             << completed_percentage_str << ", " << total_bytes_received_
    204             << "/" << payload_size_str << " bytes downloaded"
    205             << downloaded_percentage_str << ", overall progress "
    206             << overall_progress_ << "%";
    207 }
    208 
    209 void DeltaPerformer::UpdateOverallProgress(bool force_log,
    210                                            const char* message_prefix) {
    211   // Compute our download and overall progress.
    212   unsigned new_overall_progress = 0;
    213   static_assert(kProgressDownloadWeight + kProgressOperationsWeight == 100,
    214                 "Progress weights don't add up");
    215   // Only consider download progress if its total size is known; otherwise
    216   // adjust the operations weight to compensate for the absence of download
    217   // progress. Also, make sure to cap the download portion at
    218   // kProgressDownloadWeight, in case we end up downloading more than we
    219   // initially expected (this indicates a problem, but could generally happen).
    220   // TODO(garnold) the correction of operations weight when we do not have the
    221   // total payload size, as well as the conditional guard below, should both be
    222   // eliminated once we ensure that the payload_size in the install plan is
    223   // always given and is non-zero. This currently isn't the case during unit
    224   // tests (see chromium-os:37969).
    225   size_t payload_size = payload_->size;
    226   unsigned actual_operations_weight = kProgressOperationsWeight;
    227   if (payload_size)
    228     new_overall_progress += min(
    229         static_cast<unsigned>(IntRatio(total_bytes_received_, payload_size,
    230                                        kProgressDownloadWeight)),
    231         kProgressDownloadWeight);
    232   else
    233     actual_operations_weight += kProgressDownloadWeight;
    234 
    235   // Only add completed operations if their total number is known; we definitely
    236   // expect an update to have at least one operation, so the expectation is that
    237   // this will eventually reach |actual_operations_weight|.
    238   if (num_total_operations_)
    239     new_overall_progress += IntRatio(next_operation_num_, num_total_operations_,
    240                                      actual_operations_weight);
    241 
    242   // Progress ratio cannot recede, unless our assumptions about the total
    243   // payload size, total number of operations, or the monotonicity of progress
    244   // is breached.
    245   if (new_overall_progress < overall_progress_) {
    246     LOG(WARNING) << "progress counter receded from " << overall_progress_
    247                  << "% down to " << new_overall_progress << "%; this is a bug";
    248     force_log = true;
    249   }
    250   overall_progress_ = new_overall_progress;
    251 
    252   // Update chunk index, log as needed: if forced by called, or we completed a
    253   // progress chunk, or a timeout has expired.
    254   base::Time curr_time = base::Time::Now();
    255   unsigned curr_progress_chunk =
    256       overall_progress_ * kProgressLogMaxChunks / 100;
    257   if (force_log || curr_progress_chunk > last_progress_chunk_ ||
    258       curr_time > forced_progress_log_time_) {
    259     forced_progress_log_time_ = curr_time + forced_progress_log_wait_;
    260     LogProgress(message_prefix);
    261   }
    262   last_progress_chunk_ = curr_progress_chunk;
    263 }
    264 
    265 
    266 size_t DeltaPerformer::CopyDataToBuffer(const char** bytes_p, size_t* count_p,
    267                                         size_t max) {
    268   const size_t count = *count_p;
    269   if (!count)
    270     return 0;  // Special case shortcut.
    271   size_t read_len = min(count, max - buffer_.size());
    272   const char* bytes_start = *bytes_p;
    273   const char* bytes_end = bytes_start + read_len;
    274   buffer_.insert(buffer_.end(), bytes_start, bytes_end);
    275   *bytes_p = bytes_end;
    276   *count_p = count - read_len;
    277   return read_len;
    278 }
    279 
    280 
    281 bool DeltaPerformer::HandleOpResult(bool op_result, const char* op_type_name,
    282                                     ErrorCode* error) {
    283   if (op_result)
    284     return true;
    285 
    286   size_t partition_first_op_num =
    287       current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0;
    288   LOG(ERROR) << "Failed to perform " << op_type_name << " operation "
    289              << next_operation_num_ << ", which is the operation "
    290              << next_operation_num_ - partition_first_op_num
    291              << " in partition \""
    292              << partitions_[current_partition_].partition_name() << "\"";
    293   if (*error == ErrorCode::kSuccess)
    294     *error = ErrorCode::kDownloadOperationExecutionError;
    295   return false;
    296 }
    297 
    298 int DeltaPerformer::Close() {
    299   int err = -CloseCurrentPartition();
    300   LOG_IF(ERROR, !payload_hash_calculator_.Finalize() ||
    301                 !signed_hash_calculator_.Finalize())
    302       << "Unable to finalize the hash.";
    303   if (!buffer_.empty()) {
    304     LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes";
    305     if (err >= 0)
    306       err = 1;
    307   }
    308   return -err;
    309 }
    310 
    311 int DeltaPerformer::CloseCurrentPartition() {
    312   int err = 0;
    313   if (source_fd_ && !source_fd_->Close()) {
    314     err = errno;
    315     PLOG(ERROR) << "Error closing source partition";
    316     if (!err)
    317       err = 1;
    318   }
    319   source_fd_.reset();
    320   source_path_.clear();
    321 
    322   if (target_fd_ && !target_fd_->Close()) {
    323     err = errno;
    324     PLOG(ERROR) << "Error closing target partition";
    325     if (!err)
    326       err = 1;
    327   }
    328   target_fd_.reset();
    329   target_path_.clear();
    330   return -err;
    331 }
    332 
    333 bool DeltaPerformer::OpenCurrentPartition() {
    334   if (current_partition_ >= partitions_.size())
    335     return false;
    336 
    337   const PartitionUpdate& partition = partitions_[current_partition_];
    338   size_t num_previous_partitions =
    339       install_plan_->partitions.size() - partitions_.size();
    340   const InstallPlan::Partition& install_part =
    341       install_plan_->partitions[num_previous_partitions + current_partition_];
    342   // Open source fds if we have a delta payload with minor version >= 2.
    343   if (payload_->type == InstallPayloadType::kDelta &&
    344       GetMinorVersion() != kInPlaceMinorPayloadVersion) {
    345     source_path_ = install_part.source_path;
    346     int err;
    347     source_fd_ = OpenFile(source_path_.c_str(), O_RDONLY, &err);
    348     if (!source_fd_) {
    349       LOG(ERROR) << "Unable to open source partition "
    350                  << partition.partition_name() << " on slot "
    351                  << BootControlInterface::SlotName(install_plan_->source_slot)
    352                  << ", file " << source_path_;
    353       return false;
    354     }
    355   }
    356 
    357   target_path_ = install_part.target_path;
    358   int err;
    359   target_fd_ = OpenFile(target_path_.c_str(), O_RDWR, &err);
    360   if (!target_fd_) {
    361     LOG(ERROR) << "Unable to open target partition "
    362                << partition.partition_name() << " on slot "
    363                << BootControlInterface::SlotName(install_plan_->target_slot)
    364                << ", file " << target_path_;
    365     return false;
    366   }
    367 
    368   LOG(INFO) << "Applying " << partition.operations().size()
    369             << " operations to partition \"" << partition.partition_name()
    370             << "\"";
    371 
    372   // Discard the end of the partition, but ignore failures.
    373   DiscardPartitionTail(target_fd_, install_part.target_size);
    374 
    375   return true;
    376 }
    377 
    378 namespace {
    379 
    380 void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) {
    381   string sha256 = brillo::data_encoding::Base64Encode(info.hash());
    382   LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256
    383             << " size: " << info.size();
    384 }
    385 
    386 void LogPartitionInfo(const vector<PartitionUpdate>& partitions) {
    387   for (const PartitionUpdate& partition : partitions) {
    388     LogPartitionInfoHash(partition.old_partition_info(),
    389                          "old " + partition.partition_name());
    390     LogPartitionInfoHash(partition.new_partition_info(),
    391                          "new " + partition.partition_name());
    392   }
    393 }
    394 
    395 }  // namespace
    396 
    397 bool DeltaPerformer::GetMetadataSignatureSizeOffset(
    398     uint64_t* out_offset) const {
    399   if (GetMajorVersion() == kBrilloMajorPayloadVersion) {
    400     *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize;
    401     return true;
    402   }
    403   return false;
    404 }
    405 
    406 bool DeltaPerformer::GetManifestOffset(uint64_t* out_offset) const {
    407   // Actual manifest begins right after the manifest size field or
    408   // metadata signature size field if major version >= 2.
    409   if (major_payload_version_ == kChromeOSMajorPayloadVersion) {
    410     *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize;
    411     return true;
    412   }
    413   if (major_payload_version_ == kBrilloMajorPayloadVersion) {
    414     *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize +
    415                   kDeltaMetadataSignatureSizeSize;
    416     return true;
    417   }
    418   LOG(ERROR) << "Unknown major payload version: " << major_payload_version_;
    419   return false;
    420 }
    421 
    422 uint64_t DeltaPerformer::GetMetadataSize() const {
    423   return metadata_size_;
    424 }
    425 
    426 uint64_t DeltaPerformer::GetMajorVersion() const {
    427   return major_payload_version_;
    428 }
    429 
    430 uint32_t DeltaPerformer::GetMinorVersion() const {
    431   if (manifest_.has_minor_version()) {
    432     return manifest_.minor_version();
    433   } else {
    434     return payload_->type == InstallPayloadType::kDelta
    435                ? kSupportedMinorPayloadVersion
    436                : kFullPayloadMinorVersion;
    437   }
    438 }
    439 
    440 bool DeltaPerformer::GetManifest(DeltaArchiveManifest* out_manifest_p) const {
    441   if (!manifest_parsed_)
    442     return false;
    443   *out_manifest_p = manifest_;
    444   return true;
    445 }
    446 
    447 bool DeltaPerformer::IsHeaderParsed() const {
    448   return metadata_size_ != 0;
    449 }
    450 
    451 DeltaPerformer::MetadataParseResult DeltaPerformer::ParsePayloadMetadata(
    452     const brillo::Blob& payload, ErrorCode* error) {
    453   *error = ErrorCode::kSuccess;
    454   uint64_t manifest_offset;
    455 
    456   if (!IsHeaderParsed()) {
    457     // Ensure we have data to cover the major payload version.
    458     if (payload.size() < kDeltaManifestSizeOffset)
    459       return kMetadataParseInsufficientData;
    460 
    461     // Validate the magic string.
    462     if (memcmp(payload.data(), kDeltaMagic, sizeof(kDeltaMagic)) != 0) {
    463       LOG(ERROR) << "Bad payload format -- invalid delta magic.";
    464       *error = ErrorCode::kDownloadInvalidMetadataMagicString;
    465       return kMetadataParseError;
    466     }
    467 
    468     // Extract the payload version from the metadata.
    469     static_assert(sizeof(major_payload_version_) == kDeltaVersionSize,
    470                   "Major payload version size mismatch");
    471     memcpy(&major_payload_version_,
    472            &payload[kDeltaVersionOffset],
    473            kDeltaVersionSize);
    474     // switch big endian to host
    475     major_payload_version_ = be64toh(major_payload_version_);
    476 
    477     if (major_payload_version_ != supported_major_version_ &&
    478         major_payload_version_ != kChromeOSMajorPayloadVersion) {
    479       LOG(ERROR) << "Bad payload format -- unsupported payload version: "
    480           << major_payload_version_;
    481       *error = ErrorCode::kUnsupportedMajorPayloadVersion;
    482       return kMetadataParseError;
    483     }
    484 
    485     // Get the manifest offset now that we have payload version.
    486     if (!GetManifestOffset(&manifest_offset)) {
    487       *error = ErrorCode::kUnsupportedMajorPayloadVersion;
    488       return kMetadataParseError;
    489     }
    490     // Check again with the manifest offset.
    491     if (payload.size() < manifest_offset)
    492       return kMetadataParseInsufficientData;
    493 
    494     // Next, parse the manifest size.
    495     static_assert(sizeof(manifest_size_) == kDeltaManifestSizeSize,
    496                   "manifest_size size mismatch");
    497     memcpy(&manifest_size_,
    498            &payload[kDeltaManifestSizeOffset],
    499            kDeltaManifestSizeSize);
    500     manifest_size_ = be64toh(manifest_size_);  // switch big endian to host
    501 
    502     if (GetMajorVersion() == kBrilloMajorPayloadVersion) {
    503       // Parse the metadata signature size.
    504       static_assert(sizeof(metadata_signature_size_) ==
    505                     kDeltaMetadataSignatureSizeSize,
    506                     "metadata_signature_size size mismatch");
    507       uint64_t metadata_signature_size_offset;
    508       if (!GetMetadataSignatureSizeOffset(&metadata_signature_size_offset)) {
    509         *error = ErrorCode::kError;
    510         return kMetadataParseError;
    511       }
    512       memcpy(&metadata_signature_size_,
    513              &payload[metadata_signature_size_offset],
    514              kDeltaMetadataSignatureSizeSize);
    515       metadata_signature_size_ = be32toh(metadata_signature_size_);
    516     }
    517 
    518     // If the metadata size is present in install plan, check for it immediately
    519     // even before waiting for that many number of bytes to be downloaded in the
    520     // payload. This will prevent any attack which relies on us downloading data
    521     // beyond the expected metadata size.
    522     metadata_size_ = manifest_offset + manifest_size_;
    523     if (install_plan_->hash_checks_mandatory) {
    524       if (payload_->metadata_size != metadata_size_) {
    525         LOG(ERROR) << "Mandatory metadata size in Omaha response ("
    526                    << payload_->metadata_size
    527                    << ") is missing/incorrect, actual = " << metadata_size_;
    528         *error = ErrorCode::kDownloadInvalidMetadataSize;
    529         return kMetadataParseError;
    530       }
    531     }
    532   }
    533 
    534   // Now that we have validated the metadata size, we should wait for the full
    535   // metadata and its signature (if exist) to be read in before we can parse it.
    536   if (payload.size() < metadata_size_ + metadata_signature_size_)
    537     return kMetadataParseInsufficientData;
    538 
    539   // Log whether we validated the size or simply trusting what's in the payload
    540   // here. This is logged here (after we received the full metadata data) so
    541   // that we just log once (instead of logging n times) if it takes n
    542   // DeltaPerformer::Write calls to download the full manifest.
    543   if (payload_->metadata_size == metadata_size_) {
    544     LOG(INFO) << "Manifest size in payload matches expected value from Omaha";
    545   } else {
    546     // For mandatory-cases, we'd have already returned a kMetadataParseError
    547     // above. We'll be here only for non-mandatory cases. Just send a UMA stat.
    548     LOG(WARNING) << "Ignoring missing/incorrect metadata size ("
    549                  << payload_->metadata_size
    550                  << ") in Omaha response as validation is not mandatory. "
    551                  << "Trusting metadata size in payload = " << metadata_size_;
    552   }
    553 
    554   // We have the full metadata in |payload|. Verify its integrity
    555   // and authenticity based on the information we have in Omaha response.
    556   *error = ValidateMetadataSignature(payload);
    557   if (*error != ErrorCode::kSuccess) {
    558     if (install_plan_->hash_checks_mandatory) {
    559       // The autoupdate_CatchBadSignatures test checks for this string
    560       // in log-files. Keep in sync.
    561       LOG(ERROR) << "Mandatory metadata signature validation failed";
    562       return kMetadataParseError;
    563     }
    564 
    565     // For non-mandatory cases, just send a UMA stat.
    566     LOG(WARNING) << "Ignoring metadata signature validation failures";
    567     *error = ErrorCode::kSuccess;
    568   }
    569 
    570   if (!GetManifestOffset(&manifest_offset)) {
    571     *error = ErrorCode::kUnsupportedMajorPayloadVersion;
    572     return kMetadataParseError;
    573   }
    574   // The payload metadata is deemed valid, it's safe to parse the protobuf.
    575   if (!manifest_.ParseFromArray(&payload[manifest_offset], manifest_size_)) {
    576     LOG(ERROR) << "Unable to parse manifest in update file.";
    577     *error = ErrorCode::kDownloadManifestParseError;
    578     return kMetadataParseError;
    579   }
    580 
    581   manifest_parsed_ = true;
    582   return kMetadataParseSuccess;
    583 }
    584 
    585 // Wrapper around write. Returns true if all requested bytes
    586 // were written, or false on any error, regardless of progress
    587 // and stores an action exit code in |error|.
    588 bool DeltaPerformer::Write(const void* bytes, size_t count, ErrorCode *error) {
    589   *error = ErrorCode::kSuccess;
    590 
    591   const char* c_bytes = reinterpret_cast<const char*>(bytes);
    592 
    593   // Update the total byte downloaded count and the progress logs.
    594   total_bytes_received_ += count;
    595   UpdateOverallProgress(false, "Completed ");
    596 
    597   while (!manifest_valid_) {
    598     // Read data up to the needed limit; this is either maximium payload header
    599     // size, or the full metadata size (once it becomes known).
    600     const bool do_read_header = !IsHeaderParsed();
    601     CopyDataToBuffer(&c_bytes, &count,
    602                      (do_read_header ? kMaxPayloadHeaderSize :
    603                       metadata_size_ + metadata_signature_size_));
    604 
    605     MetadataParseResult result = ParsePayloadMetadata(buffer_, error);
    606     if (result == kMetadataParseError)
    607       return false;
    608     if (result == kMetadataParseInsufficientData) {
    609       // If we just processed the header, make an attempt on the manifest.
    610       if (do_read_header && IsHeaderParsed())
    611         continue;
    612 
    613       return true;
    614     }
    615 
    616     // Checks the integrity of the payload manifest.
    617     if ((*error = ValidateManifest()) != ErrorCode::kSuccess)
    618       return false;
    619     manifest_valid_ = true;
    620 
    621     // Clear the download buffer.
    622     DiscardBuffer(false, metadata_size_);
    623 
    624     // This populates |partitions_| and the |install_plan.partitions| with the
    625     // list of partitions from the manifest.
    626     if (!ParseManifestPartitions(error))
    627       return false;
    628 
    629     // |install_plan.partitions| was filled in, nothing need to be done here if
    630     // the payload was already applied, returns false to terminate http fetcher,
    631     // but keep |error| as ErrorCode::kSuccess.
    632     if (payload_->already_applied)
    633       return false;
    634 
    635     num_total_operations_ = 0;
    636     for (const auto& partition : partitions_) {
    637       num_total_operations_ += partition.operations_size();
    638       acc_num_operations_.push_back(num_total_operations_);
    639     }
    640 
    641     LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestMetadataSize,
    642                                       metadata_size_))
    643         << "Unable to save the manifest metadata size.";
    644     LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestSignatureSize,
    645                                       metadata_signature_size_))
    646         << "Unable to save the manifest signature size.";
    647 
    648     if (!PrimeUpdateState()) {
    649       *error = ErrorCode::kDownloadStateInitializationError;
    650       LOG(ERROR) << "Unable to prime the update state.";
    651       return false;
    652     }
    653 
    654     if (!OpenCurrentPartition()) {
    655       *error = ErrorCode::kInstallDeviceOpenError;
    656       return false;
    657     }
    658 
    659     if (next_operation_num_ > 0)
    660       UpdateOverallProgress(true, "Resuming after ");
    661     LOG(INFO) << "Starting to apply update payload operations";
    662   }
    663 
    664   while (next_operation_num_ < num_total_operations_) {
    665     // Check if we should cancel the current attempt for any reason.
    666     // In this case, *error will have already been populated with the reason
    667     // why we're canceling.
    668     if (download_delegate_ && download_delegate_->ShouldCancel(error))
    669       return false;
    670 
    671     // We know there are more operations to perform because we didn't reach the
    672     // |num_total_operations_| limit yet.
    673     while (next_operation_num_ >= acc_num_operations_[current_partition_]) {
    674       CloseCurrentPartition();
    675       current_partition_++;
    676       if (!OpenCurrentPartition()) {
    677         *error = ErrorCode::kInstallDeviceOpenError;
    678         return false;
    679       }
    680     }
    681     const size_t partition_operation_num = next_operation_num_ - (
    682         current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0);
    683 
    684     const InstallOperation& op =
    685         partitions_[current_partition_].operations(partition_operation_num);
    686 
    687     CopyDataToBuffer(&c_bytes, &count, op.data_length());
    688 
    689     // Check whether we received all of the next operation's data payload.
    690     if (!CanPerformInstallOperation(op))
    691       return true;
    692 
    693     // Validate the operation only if the metadata signature is present.
    694     // Otherwise, keep the old behavior. This serves as a knob to disable
    695     // the validation logic in case we find some regression after rollout.
    696     // NOTE: If hash checks are mandatory and if metadata_signature is empty,
    697     // we would have already failed in ParsePayloadMetadata method and thus not
    698     // even be here. So no need to handle that case again here.
    699     if (!payload_->metadata_signature.empty()) {
    700       // Note: Validate must be called only if CanPerformInstallOperation is
    701       // called. Otherwise, we might be failing operations before even if there
    702       // isn't sufficient data to compute the proper hash.
    703       *error = ValidateOperationHash(op);
    704       if (*error != ErrorCode::kSuccess) {
    705         if (install_plan_->hash_checks_mandatory) {
    706           LOG(ERROR) << "Mandatory operation hash check failed";
    707           return false;
    708         }
    709 
    710         // For non-mandatory cases, just send a UMA stat.
    711         LOG(WARNING) << "Ignoring operation validation errors";
    712         *error = ErrorCode::kSuccess;
    713       }
    714     }
    715 
    716     // Makes sure we unblock exit when this operation completes.
    717     ScopedTerminatorExitUnblocker exit_unblocker =
    718         ScopedTerminatorExitUnblocker();  // Avoids a compiler unused var bug.
    719 
    720     bool op_result;
    721     switch (op.type()) {
    722       case InstallOperation::REPLACE:
    723       case InstallOperation::REPLACE_BZ:
    724       case InstallOperation::REPLACE_XZ:
    725         op_result = PerformReplaceOperation(op);
    726         break;
    727       case InstallOperation::ZERO:
    728       case InstallOperation::DISCARD:
    729         op_result = PerformZeroOrDiscardOperation(op);
    730         break;
    731       case InstallOperation::MOVE:
    732         op_result = PerformMoveOperation(op);
    733         break;
    734       case InstallOperation::BSDIFF:
    735         op_result = PerformBsdiffOperation(op);
    736         break;
    737       case InstallOperation::SOURCE_COPY:
    738         op_result = PerformSourceCopyOperation(op, error);
    739         break;
    740       case InstallOperation::SOURCE_BSDIFF:
    741         op_result = PerformSourceBsdiffOperation(op, error);
    742         break;
    743       case InstallOperation::IMGDIFF:
    744         // TODO(deymo): Replace with PUFFIN operation.
    745         op_result = false;
    746         break;
    747       default:
    748         op_result = false;
    749     }
    750     if (!HandleOpResult(op_result, InstallOperationTypeName(op.type()), error))
    751       return false;
    752 
    753     next_operation_num_++;
    754     UpdateOverallProgress(false, "Completed ");
    755     CheckpointUpdateProgress();
    756   }
    757 
    758   // In major version 2, we don't add dummy operation to the payload.
    759   // If we already extracted the signature we should skip this step.
    760   if (major_payload_version_ == kBrilloMajorPayloadVersion &&
    761       manifest_.has_signatures_offset() && manifest_.has_signatures_size() &&
    762       signatures_message_data_.empty()) {
    763     if (manifest_.signatures_offset() != buffer_offset_) {
    764       LOG(ERROR) << "Payload signatures offset points to blob offset "
    765                  << manifest_.signatures_offset()
    766                  << " but signatures are expected at offset "
    767                  << buffer_offset_;
    768       *error = ErrorCode::kDownloadPayloadVerificationError;
    769       return false;
    770     }
    771     CopyDataToBuffer(&c_bytes, &count, manifest_.signatures_size());
    772     // Needs more data to cover entire signature.
    773     if (buffer_.size() < manifest_.signatures_size())
    774       return true;
    775     if (!ExtractSignatureMessage()) {
    776       LOG(ERROR) << "Extract payload signature failed.";
    777       *error = ErrorCode::kDownloadPayloadVerificationError;
    778       return false;
    779     }
    780     DiscardBuffer(true, 0);
    781     // Since we extracted the SignatureMessage we need to advance the
    782     // checkpoint, otherwise we would reload the signature and try to extract
    783     // it again.
    784     CheckpointUpdateProgress();
    785   }
    786 
    787   return true;
    788 }
    789 
    790 bool DeltaPerformer::IsManifestValid() {
    791   return manifest_valid_;
    792 }
    793 
    794 bool DeltaPerformer::ParseManifestPartitions(ErrorCode* error) {
    795   if (major_payload_version_ == kBrilloMajorPayloadVersion) {
    796     partitions_.clear();
    797     for (const PartitionUpdate& partition : manifest_.partitions()) {
    798       partitions_.push_back(partition);
    799     }
    800     manifest_.clear_partitions();
    801   } else if (major_payload_version_ == kChromeOSMajorPayloadVersion) {
    802     LOG(INFO) << "Converting update information from old format.";
    803     PartitionUpdate root_part;
    804     root_part.set_partition_name(kLegacyPartitionNameRoot);
    805 #ifdef __ANDROID__
    806     LOG(WARNING) << "Legacy payload major version provided to an Android "
    807                     "build. Assuming no post-install. Please use major version "
    808                     "2 or newer.";
    809     root_part.set_run_postinstall(false);
    810 #else
    811     root_part.set_run_postinstall(true);
    812 #endif  // __ANDROID__
    813     if (manifest_.has_old_rootfs_info()) {
    814       *root_part.mutable_old_partition_info() = manifest_.old_rootfs_info();
    815       manifest_.clear_old_rootfs_info();
    816     }
    817     if (manifest_.has_new_rootfs_info()) {
    818       *root_part.mutable_new_partition_info() = manifest_.new_rootfs_info();
    819       manifest_.clear_new_rootfs_info();
    820     }
    821     *root_part.mutable_operations() = manifest_.install_operations();
    822     manifest_.clear_install_operations();
    823     partitions_.push_back(std::move(root_part));
    824 
    825     PartitionUpdate kern_part;
    826     kern_part.set_partition_name(kLegacyPartitionNameKernel);
    827     kern_part.set_run_postinstall(false);
    828     if (manifest_.has_old_kernel_info()) {
    829       *kern_part.mutable_old_partition_info() = manifest_.old_kernel_info();
    830       manifest_.clear_old_kernel_info();
    831     }
    832     if (manifest_.has_new_kernel_info()) {
    833       *kern_part.mutable_new_partition_info() = manifest_.new_kernel_info();
    834       manifest_.clear_new_kernel_info();
    835     }
    836     *kern_part.mutable_operations() = manifest_.kernel_install_operations();
    837     manifest_.clear_kernel_install_operations();
    838     partitions_.push_back(std::move(kern_part));
    839   }
    840 
    841   // Fill in the InstallPlan::partitions based on the partitions from the
    842   // payload.
    843   for (const auto& partition : partitions_) {
    844     InstallPlan::Partition install_part;
    845     install_part.name = partition.partition_name();
    846     install_part.run_postinstall =
    847         partition.has_run_postinstall() && partition.run_postinstall();
    848     if (install_part.run_postinstall) {
    849       install_part.postinstall_path =
    850           (partition.has_postinstall_path() ? partition.postinstall_path()
    851                                             : kPostinstallDefaultScript);
    852       install_part.filesystem_type = partition.filesystem_type();
    853       install_part.postinstall_optional = partition.postinstall_optional();
    854     }
    855 
    856     if (partition.has_old_partition_info()) {
    857       const PartitionInfo& info = partition.old_partition_info();
    858       install_part.source_size = info.size();
    859       install_part.source_hash.assign(info.hash().begin(), info.hash().end());
    860     }
    861 
    862     if (!partition.has_new_partition_info()) {
    863       LOG(ERROR) << "Unable to get new partition hash info on partition "
    864                  << install_part.name << ".";
    865       *error = ErrorCode::kDownloadNewPartitionInfoError;
    866       return false;
    867     }
    868     const PartitionInfo& info = partition.new_partition_info();
    869     install_part.target_size = info.size();
    870     install_part.target_hash.assign(info.hash().begin(), info.hash().end());
    871 
    872     install_plan_->partitions.push_back(install_part);
    873   }
    874 
    875   if (!install_plan_->LoadPartitionsFromSlots(boot_control_)) {
    876     LOG(ERROR) << "Unable to determine all the partition devices.";
    877     *error = ErrorCode::kInstallDeviceOpenError;
    878     return false;
    879   }
    880   LogPartitionInfo(partitions_);
    881   return true;
    882 }
    883 
    884 bool DeltaPerformer::CanPerformInstallOperation(
    885     const chromeos_update_engine::InstallOperation& operation) {
    886   // If we don't have a data blob we can apply it right away.
    887   if (!operation.has_data_offset() && !operation.has_data_length())
    888     return true;
    889 
    890   // See if we have the entire data blob in the buffer
    891   if (operation.data_offset() < buffer_offset_) {
    892     LOG(ERROR) << "we threw away data it seems?";
    893     return false;
    894   }
    895 
    896   return (operation.data_offset() + operation.data_length() <=
    897           buffer_offset_ + buffer_.size());
    898 }
    899 
    900 bool DeltaPerformer::PerformReplaceOperation(
    901     const InstallOperation& operation) {
    902   CHECK(operation.type() == InstallOperation::REPLACE ||
    903         operation.type() == InstallOperation::REPLACE_BZ ||
    904         operation.type() == InstallOperation::REPLACE_XZ);
    905 
    906   // Since we delete data off the beginning of the buffer as we use it,
    907   // the data we need should be exactly at the beginning of the buffer.
    908   TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
    909   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
    910 
    911   // Extract the signature message if it's in this operation.
    912   if (ExtractSignatureMessageFromOperation(operation)) {
    913     // If this is dummy replace operation, we ignore it after extracting the
    914     // signature.
    915     DiscardBuffer(true, 0);
    916     return true;
    917   }
    918 
    919   // Setup the ExtentWriter stack based on the operation type.
    920   std::unique_ptr<ExtentWriter> writer =
    921     brillo::make_unique_ptr(new ZeroPadExtentWriter(
    922       brillo::make_unique_ptr(new DirectExtentWriter())));
    923 
    924   if (operation.type() == InstallOperation::REPLACE_BZ) {
    925     writer.reset(new BzipExtentWriter(std::move(writer)));
    926   } else if (operation.type() == InstallOperation::REPLACE_XZ) {
    927     writer.reset(new XzExtentWriter(std::move(writer)));
    928   }
    929 
    930   // Create a vector of extents to pass to the ExtentWriter.
    931   vector<Extent> extents;
    932   for (int i = 0; i < operation.dst_extents_size(); i++) {
    933     extents.push_back(operation.dst_extents(i));
    934   }
    935 
    936   TEST_AND_RETURN_FALSE(writer->Init(target_fd_, extents, block_size_));
    937   TEST_AND_RETURN_FALSE(writer->Write(buffer_.data(), operation.data_length()));
    938   TEST_AND_RETURN_FALSE(writer->End());
    939 
    940   // Update buffer
    941   DiscardBuffer(true, buffer_.size());
    942   return true;
    943 }
    944 
    945 bool DeltaPerformer::PerformZeroOrDiscardOperation(
    946     const InstallOperation& operation) {
    947   CHECK(operation.type() == InstallOperation::DISCARD ||
    948         operation.type() == InstallOperation::ZERO);
    949 
    950   // These operations have no blob.
    951   TEST_AND_RETURN_FALSE(!operation.has_data_offset());
    952   TEST_AND_RETURN_FALSE(!operation.has_data_length());
    953 
    954 #ifdef BLKZEROOUT
    955   bool attempt_ioctl = true;
    956   int request =
    957       (operation.type() == InstallOperation::ZERO ? BLKZEROOUT : BLKDISCARD);
    958 #else  // !defined(BLKZEROOUT)
    959   bool attempt_ioctl = false;
    960   int request = 0;
    961 #endif  // !defined(BLKZEROOUT)
    962 
    963   brillo::Blob zeros;
    964   for (const Extent& extent : operation.dst_extents()) {
    965     const uint64_t start = extent.start_block() * block_size_;
    966     const uint64_t length = extent.num_blocks() * block_size_;
    967     if (attempt_ioctl) {
    968       int result = 0;
    969       if (target_fd_->BlkIoctl(request, start, length, &result) && result == 0)
    970         continue;
    971       attempt_ioctl = false;
    972       zeros.resize(16 * block_size_);
    973     }
    974     // In case of failure, we fall back to writing 0 to the selected region.
    975     for (uint64_t offset = 0; offset < length; offset += zeros.size()) {
    976       uint64_t chunk_length = min(length - offset,
    977                                   static_cast<uint64_t>(zeros.size()));
    978       TEST_AND_RETURN_FALSE(
    979           utils::PWriteAll(target_fd_, zeros.data(), chunk_length, start + offset));
    980     }
    981   }
    982   return true;
    983 }
    984 
    985 bool DeltaPerformer::PerformMoveOperation(const InstallOperation& operation) {
    986   // Calculate buffer size. Note, this function doesn't do a sliding
    987   // window to copy in case the source and destination blocks overlap.
    988   // If we wanted to do a sliding window, we could program the server
    989   // to generate deltas that effectively did a sliding window.
    990 
    991   uint64_t blocks_to_read = 0;
    992   for (int i = 0; i < operation.src_extents_size(); i++)
    993     blocks_to_read += operation.src_extents(i).num_blocks();
    994 
    995   uint64_t blocks_to_write = 0;
    996   for (int i = 0; i < operation.dst_extents_size(); i++)
    997     blocks_to_write += operation.dst_extents(i).num_blocks();
    998 
    999   DCHECK_EQ(blocks_to_write, blocks_to_read);
   1000   brillo::Blob buf(blocks_to_write * block_size_);
   1001 
   1002   // Read in bytes.
   1003   ssize_t bytes_read = 0;
   1004   for (int i = 0; i < operation.src_extents_size(); i++) {
   1005     ssize_t bytes_read_this_iteration = 0;
   1006     const Extent& extent = operation.src_extents(i);
   1007     const size_t bytes = extent.num_blocks() * block_size_;
   1008     TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole);
   1009     TEST_AND_RETURN_FALSE(utils::PReadAll(target_fd_,
   1010                                           &buf[bytes_read],
   1011                                           bytes,
   1012                                           extent.start_block() * block_size_,
   1013                                           &bytes_read_this_iteration));
   1014     TEST_AND_RETURN_FALSE(
   1015         bytes_read_this_iteration == static_cast<ssize_t>(bytes));
   1016     bytes_read += bytes_read_this_iteration;
   1017   }
   1018 
   1019   // Write bytes out.
   1020   ssize_t bytes_written = 0;
   1021   for (int i = 0; i < operation.dst_extents_size(); i++) {
   1022     const Extent& extent = operation.dst_extents(i);
   1023     const size_t bytes = extent.num_blocks() * block_size_;
   1024     TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole);
   1025     TEST_AND_RETURN_FALSE(utils::PWriteAll(target_fd_,
   1026                                            &buf[bytes_written],
   1027                                            bytes,
   1028                                            extent.start_block() * block_size_));
   1029     bytes_written += bytes;
   1030   }
   1031   DCHECK_EQ(bytes_written, bytes_read);
   1032   DCHECK_EQ(bytes_written, static_cast<ssize_t>(buf.size()));
   1033   return true;
   1034 }
   1035 
   1036 namespace {
   1037 
   1038 // Takes |extents| and fills an empty vector |blocks| with a block index for
   1039 // each block in |extents|. For example, [(3, 2), (8, 1)] would give [3, 4, 8].
   1040 void ExtentsToBlocks(const RepeatedPtrField<Extent>& extents,
   1041                      vector<uint64_t>* blocks) {
   1042   for (const Extent& ext : extents) {
   1043     for (uint64_t j = 0; j < ext.num_blocks(); j++)
   1044       blocks->push_back(ext.start_block() + j);
   1045   }
   1046 }
   1047 
   1048 // Takes |extents| and returns the number of blocks in those extents.
   1049 uint64_t GetBlockCount(const RepeatedPtrField<Extent>& extents) {
   1050   uint64_t sum = 0;
   1051   for (const Extent& ext : extents) {
   1052     sum += ext.num_blocks();
   1053   }
   1054   return sum;
   1055 }
   1056 
   1057 // Compare |calculated_hash| with source hash in |operation|, return false and
   1058 // dump hash and set |error| if don't match.
   1059 bool ValidateSourceHash(const brillo::Blob& calculated_hash,
   1060                         const InstallOperation& operation,
   1061                         ErrorCode* error) {
   1062   brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(),
   1063                                     operation.src_sha256_hash().end());
   1064   if (calculated_hash != expected_source_hash) {
   1065     LOG(ERROR) << "The hash of the source data on disk for this operation "
   1066                << "doesn't match the expected value. This could mean that the "
   1067                << "delta update payload was targeted for another version, or "
   1068                << "that the source partition was modified after it was "
   1069                << "installed, for example, by mounting a filesystem.";
   1070     LOG(ERROR) << "Expected:   sha256|hex = "
   1071                << base::HexEncode(expected_source_hash.data(),
   1072                                   expected_source_hash.size());
   1073     LOG(ERROR) << "Calculated: sha256|hex = "
   1074                << base::HexEncode(calculated_hash.data(),
   1075                                   calculated_hash.size());
   1076 
   1077     vector<string> source_extents;
   1078     for (const Extent& ext : operation.src_extents()) {
   1079       source_extents.push_back(
   1080           base::StringPrintf("%" PRIu64 ":%" PRIu64,
   1081                              static_cast<uint64_t>(ext.start_block()),
   1082                              static_cast<uint64_t>(ext.num_blocks())));
   1083     }
   1084     LOG(ERROR) << "Operation source (offset:size) in blocks: "
   1085                << base::JoinString(source_extents, ",");
   1086 
   1087     *error = ErrorCode::kDownloadStateInitializationError;
   1088     return false;
   1089   }
   1090   return true;
   1091 }
   1092 
   1093 }  // namespace
   1094 
   1095 bool DeltaPerformer::PerformSourceCopyOperation(
   1096     const InstallOperation& operation, ErrorCode* error) {
   1097   if (operation.has_src_length())
   1098     TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
   1099   if (operation.has_dst_length())
   1100     TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
   1101 
   1102   uint64_t blocks_to_read = GetBlockCount(operation.src_extents());
   1103   uint64_t blocks_to_write = GetBlockCount(operation.dst_extents());
   1104   TEST_AND_RETURN_FALSE(blocks_to_write ==  blocks_to_read);
   1105 
   1106   // Create vectors of all the individual src/dst blocks.
   1107   vector<uint64_t> src_blocks;
   1108   vector<uint64_t> dst_blocks;
   1109   ExtentsToBlocks(operation.src_extents(), &src_blocks);
   1110   ExtentsToBlocks(operation.dst_extents(), &dst_blocks);
   1111   DCHECK_EQ(src_blocks.size(), blocks_to_read);
   1112   DCHECK_EQ(src_blocks.size(), dst_blocks.size());
   1113 
   1114   brillo::Blob buf(block_size_);
   1115   ssize_t bytes_read = 0;
   1116   HashCalculator source_hasher;
   1117   // Read/write one block at a time.
   1118   for (uint64_t i = 0; i < blocks_to_read; i++) {
   1119     ssize_t bytes_read_this_iteration = 0;
   1120     uint64_t src_block = src_blocks[i];
   1121     uint64_t dst_block = dst_blocks[i];
   1122 
   1123     // Read in bytes.
   1124     TEST_AND_RETURN_FALSE(
   1125         utils::PReadAll(source_fd_,
   1126                         buf.data(),
   1127                         block_size_,
   1128                         src_block * block_size_,
   1129                         &bytes_read_this_iteration));
   1130 
   1131     // Write bytes out.
   1132     TEST_AND_RETURN_FALSE(
   1133         utils::PWriteAll(target_fd_,
   1134                          buf.data(),
   1135                          block_size_,
   1136                          dst_block * block_size_));
   1137 
   1138     bytes_read += bytes_read_this_iteration;
   1139     TEST_AND_RETURN_FALSE(bytes_read_this_iteration ==
   1140                           static_cast<ssize_t>(block_size_));
   1141 
   1142     if (operation.has_src_sha256_hash())
   1143       TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), buf.size()));
   1144   }
   1145 
   1146   if (operation.has_src_sha256_hash()) {
   1147     TEST_AND_RETURN_FALSE(source_hasher.Finalize());
   1148     TEST_AND_RETURN_FALSE(
   1149         ValidateSourceHash(source_hasher.raw_hash(), operation, error));
   1150   }
   1151 
   1152   DCHECK_EQ(bytes_read, static_cast<ssize_t>(blocks_to_read * block_size_));
   1153   return true;
   1154 }
   1155 
   1156 bool DeltaPerformer::ExtentsToBsdiffPositionsString(
   1157     const RepeatedPtrField<Extent>& extents,
   1158     uint64_t block_size,
   1159     uint64_t full_length,
   1160     string* positions_string) {
   1161   string ret;
   1162   uint64_t length = 0;
   1163   for (const Extent& extent : extents) {
   1164     int64_t start = extent.start_block() * block_size;
   1165     uint64_t this_length =
   1166         min(full_length - length,
   1167             static_cast<uint64_t>(extent.num_blocks()) * block_size);
   1168     ret += base::StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length);
   1169     length += this_length;
   1170   }
   1171   TEST_AND_RETURN_FALSE(length == full_length);
   1172   if (!ret.empty())
   1173     ret.resize(ret.size() - 1);  // Strip trailing comma off
   1174   *positions_string = ret;
   1175   return true;
   1176 }
   1177 
   1178 bool DeltaPerformer::PerformBsdiffOperation(const InstallOperation& operation) {
   1179   // Since we delete data off the beginning of the buffer as we use it,
   1180   // the data we need should be exactly at the beginning of the buffer.
   1181   TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
   1182   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
   1183 
   1184   string input_positions;
   1185   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(),
   1186                                                        block_size_,
   1187                                                        operation.src_length(),
   1188                                                        &input_positions));
   1189   string output_positions;
   1190   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(),
   1191                                                        block_size_,
   1192                                                        operation.dst_length(),
   1193                                                        &output_positions));
   1194 
   1195   TEST_AND_RETURN_FALSE(bsdiff::bspatch(target_path_.c_str(),
   1196                                         target_path_.c_str(),
   1197                                         buffer_.data(),
   1198                                         buffer_.size(),
   1199                                         input_positions.c_str(),
   1200                                         output_positions.c_str()) == 0);
   1201   DiscardBuffer(true, buffer_.size());
   1202 
   1203   if (operation.dst_length() % block_size_) {
   1204     // Zero out rest of final block.
   1205     // TODO(adlr): build this into bspatch; it's more efficient that way.
   1206     const Extent& last_extent =
   1207         operation.dst_extents(operation.dst_extents_size() - 1);
   1208     const uint64_t end_byte =
   1209         (last_extent.start_block() + last_extent.num_blocks()) * block_size_;
   1210     const uint64_t begin_byte =
   1211         end_byte - (block_size_ - operation.dst_length() % block_size_);
   1212     brillo::Blob zeros(end_byte - begin_byte);
   1213     TEST_AND_RETURN_FALSE(
   1214         utils::PWriteAll(target_fd_, zeros.data(), end_byte - begin_byte, begin_byte));
   1215   }
   1216   return true;
   1217 }
   1218 
   1219 bool DeltaPerformer::PerformSourceBsdiffOperation(
   1220     const InstallOperation& operation, ErrorCode* error) {
   1221   // Since we delete data off the beginning of the buffer as we use it,
   1222   // the data we need should be exactly at the beginning of the buffer.
   1223   TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
   1224   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
   1225   if (operation.has_src_length())
   1226     TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
   1227   if (operation.has_dst_length())
   1228     TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
   1229 
   1230   if (operation.has_src_sha256_hash()) {
   1231     HashCalculator source_hasher;
   1232     const uint64_t kMaxBlocksToRead = 512;  // 2MB if block size is 4KB
   1233     brillo::Blob buf(kMaxBlocksToRead * block_size_);
   1234     for (const Extent& extent : operation.src_extents()) {
   1235       for (uint64_t i = 0; i < extent.num_blocks(); i += kMaxBlocksToRead) {
   1236         uint64_t blocks_to_read = min(
   1237             kMaxBlocksToRead, static_cast<uint64_t>(extent.num_blocks()) - i);
   1238         ssize_t bytes_to_read = blocks_to_read * block_size_;
   1239         ssize_t bytes_read_this_iteration = 0;
   1240         TEST_AND_RETURN_FALSE(
   1241             utils::PReadAll(source_fd_, buf.data(), bytes_to_read,
   1242                             (extent.start_block() + i) * block_size_,
   1243                             &bytes_read_this_iteration));
   1244         TEST_AND_RETURN_FALSE(bytes_read_this_iteration == bytes_to_read);
   1245         TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), bytes_to_read));
   1246       }
   1247     }
   1248     TEST_AND_RETURN_FALSE(source_hasher.Finalize());
   1249     TEST_AND_RETURN_FALSE(
   1250         ValidateSourceHash(source_hasher.raw_hash(), operation, error));
   1251   }
   1252 
   1253   string input_positions;
   1254   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(),
   1255                                                        block_size_,
   1256                                                        operation.src_length(),
   1257                                                        &input_positions));
   1258   string output_positions;
   1259   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(),
   1260                                                        block_size_,
   1261                                                        operation.dst_length(),
   1262                                                        &output_positions));
   1263 
   1264   TEST_AND_RETURN_FALSE(bsdiff::bspatch(source_path_.c_str(),
   1265                                         target_path_.c_str(),
   1266                                         buffer_.data(),
   1267                                         buffer_.size(),
   1268                                         input_positions.c_str(),
   1269                                         output_positions.c_str()) == 0);
   1270   DiscardBuffer(true, buffer_.size());
   1271   return true;
   1272 }
   1273 
   1274 bool DeltaPerformer::ExtractSignatureMessageFromOperation(
   1275     const InstallOperation& operation) {
   1276   if (operation.type() != InstallOperation::REPLACE ||
   1277       !manifest_.has_signatures_offset() ||
   1278       manifest_.signatures_offset() != operation.data_offset()) {
   1279     return false;
   1280   }
   1281   TEST_AND_RETURN_FALSE(manifest_.has_signatures_size() &&
   1282                         manifest_.signatures_size() == operation.data_length());
   1283   TEST_AND_RETURN_FALSE(ExtractSignatureMessage());
   1284   return true;
   1285 }
   1286 
   1287 bool DeltaPerformer::ExtractSignatureMessage() {
   1288   TEST_AND_RETURN_FALSE(signatures_message_data_.empty());
   1289   TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset());
   1290   TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size());
   1291   signatures_message_data_.assign(
   1292       buffer_.begin(),
   1293       buffer_.begin() + manifest_.signatures_size());
   1294 
   1295   // Save the signature blob because if the update is interrupted after the
   1296   // download phase we don't go through this path anymore. Some alternatives to
   1297   // consider:
   1298   //
   1299   // 1. On resume, re-download the signature blob from the server and re-verify
   1300   // it.
   1301   //
   1302   // 2. Verify the signature as soon as it's received and don't checkpoint the
   1303   // blob and the signed sha-256 context.
   1304   LOG_IF(WARNING, !prefs_->SetString(kPrefsUpdateStateSignatureBlob,
   1305                                      string(signatures_message_data_.begin(),
   1306                                             signatures_message_data_.end())))
   1307       << "Unable to store the signature blob.";
   1308 
   1309   LOG(INFO) << "Extracted signature data of size "
   1310             << manifest_.signatures_size() << " at "
   1311             << manifest_.signatures_offset();
   1312   return true;
   1313 }
   1314 
   1315 bool DeltaPerformer::GetPublicKeyFromResponse(base::FilePath *out_tmp_key) {
   1316   if (hardware_->IsOfficialBuild() ||
   1317       utils::FileExists(public_key_path_.c_str()) ||
   1318       install_plan_->public_key_rsa.empty())
   1319     return false;
   1320 
   1321   if (!utils::DecodeAndStoreBase64String(install_plan_->public_key_rsa,
   1322                                          out_tmp_key))
   1323     return false;
   1324 
   1325   return true;
   1326 }
   1327 
   1328 ErrorCode DeltaPerformer::ValidateMetadataSignature(
   1329     const brillo::Blob& payload) {
   1330   if (payload.size() < metadata_size_ + metadata_signature_size_)
   1331     return ErrorCode::kDownloadMetadataSignatureError;
   1332 
   1333   brillo::Blob metadata_signature_blob, metadata_signature_protobuf_blob;
   1334   if (!payload_->metadata_signature.empty()) {
   1335     // Convert base64-encoded signature to raw bytes.
   1336     if (!brillo::data_encoding::Base64Decode(payload_->metadata_signature,
   1337                                              &metadata_signature_blob)) {
   1338       LOG(ERROR) << "Unable to decode base64 metadata signature: "
   1339                  << payload_->metadata_signature;
   1340       return ErrorCode::kDownloadMetadataSignatureError;
   1341     }
   1342   } else if (major_payload_version_ == kBrilloMajorPayloadVersion) {
   1343     metadata_signature_protobuf_blob.assign(
   1344         payload.begin() + metadata_size_,
   1345         payload.begin() + metadata_size_ + metadata_signature_size_);
   1346   }
   1347 
   1348   if (metadata_signature_blob.empty() &&
   1349       metadata_signature_protobuf_blob.empty()) {
   1350     if (install_plan_->hash_checks_mandatory) {
   1351       LOG(ERROR) << "Missing mandatory metadata signature in both Omaha "
   1352                  << "response and payload.";
   1353       return ErrorCode::kDownloadMetadataSignatureMissingError;
   1354     }
   1355 
   1356     LOG(WARNING) << "Cannot validate metadata as the signature is empty";
   1357     return ErrorCode::kSuccess;
   1358   }
   1359 
   1360   // See if we should use the public RSA key in the Omaha response.
   1361   base::FilePath path_to_public_key(public_key_path_);
   1362   base::FilePath tmp_key;
   1363   if (GetPublicKeyFromResponse(&tmp_key))
   1364     path_to_public_key = tmp_key;
   1365   ScopedPathUnlinker tmp_key_remover(tmp_key.value());
   1366   if (tmp_key.empty())
   1367     tmp_key_remover.set_should_remove(false);
   1368 
   1369   LOG(INFO) << "Verifying metadata hash signature using public key: "
   1370             << path_to_public_key.value();
   1371 
   1372   brillo::Blob calculated_metadata_hash;
   1373   if (!HashCalculator::RawHashOfBytes(
   1374           payload.data(), metadata_size_, &calculated_metadata_hash)) {
   1375     LOG(ERROR) << "Unable to compute actual hash of manifest";
   1376     return ErrorCode::kDownloadMetadataSignatureVerificationError;
   1377   }
   1378 
   1379   PayloadVerifier::PadRSA2048SHA256Hash(&calculated_metadata_hash);
   1380   if (calculated_metadata_hash.empty()) {
   1381     LOG(ERROR) << "Computed actual hash of metadata is empty.";
   1382     return ErrorCode::kDownloadMetadataSignatureVerificationError;
   1383   }
   1384 
   1385   if (!metadata_signature_blob.empty()) {
   1386     brillo::Blob expected_metadata_hash;
   1387     if (!PayloadVerifier::GetRawHashFromSignature(metadata_signature_blob,
   1388                                                   path_to_public_key.value(),
   1389                                                   &expected_metadata_hash)) {
   1390       LOG(ERROR) << "Unable to compute expected hash from metadata signature";
   1391       return ErrorCode::kDownloadMetadataSignatureError;
   1392     }
   1393     if (calculated_metadata_hash != expected_metadata_hash) {
   1394       LOG(ERROR) << "Manifest hash verification failed. Expected hash = ";
   1395       utils::HexDumpVector(expected_metadata_hash);
   1396       LOG(ERROR) << "Calculated hash = ";
   1397       utils::HexDumpVector(calculated_metadata_hash);
   1398       return ErrorCode::kDownloadMetadataSignatureMismatch;
   1399     }
   1400   } else {
   1401     if (!PayloadVerifier::VerifySignature(metadata_signature_protobuf_blob,
   1402                                           path_to_public_key.value(),
   1403                                           calculated_metadata_hash)) {
   1404       LOG(ERROR) << "Manifest hash verification failed.";
   1405       return ErrorCode::kDownloadMetadataSignatureMismatch;
   1406     }
   1407   }
   1408 
   1409   // The autoupdate_CatchBadSignatures test checks for this string in
   1410   // log-files. Keep in sync.
   1411   LOG(INFO) << "Metadata hash signature matches value in Omaha response.";
   1412   return ErrorCode::kSuccess;
   1413 }
   1414 
   1415 ErrorCode DeltaPerformer::ValidateManifest() {
   1416   // Perform assorted checks to sanity check the manifest, make sure it
   1417   // matches data from other sources, and that it is a supported version.
   1418 
   1419   bool has_old_fields =
   1420       (manifest_.has_old_kernel_info() || manifest_.has_old_rootfs_info());
   1421   for (const PartitionUpdate& partition : manifest_.partitions()) {
   1422     has_old_fields = has_old_fields || partition.has_old_partition_info();
   1423   }
   1424 
   1425   // The presence of an old partition hash is the sole indicator for a delta
   1426   // update.
   1427   InstallPayloadType actual_payload_type =
   1428       has_old_fields ? InstallPayloadType::kDelta : InstallPayloadType::kFull;
   1429 
   1430   if (payload_->type == InstallPayloadType::kUnknown) {
   1431     LOG(INFO) << "Detected a '"
   1432               << InstallPayloadTypeToString(actual_payload_type)
   1433               << "' payload.";
   1434     payload_->type = actual_payload_type;
   1435   } else if (payload_->type != actual_payload_type) {
   1436     LOG(ERROR) << "InstallPlan expected a '"
   1437                << InstallPayloadTypeToString(payload_->type)
   1438                << "' payload but the downloaded manifest contains a '"
   1439                << InstallPayloadTypeToString(actual_payload_type)
   1440                << "' payload.";
   1441     return ErrorCode::kPayloadMismatchedType;
   1442   }
   1443 
   1444   // Check that the minor version is compatible.
   1445   if (actual_payload_type == InstallPayloadType::kFull) {
   1446     if (manifest_.minor_version() != kFullPayloadMinorVersion) {
   1447       LOG(ERROR) << "Manifest contains minor version "
   1448                  << manifest_.minor_version()
   1449                  << ", but all full payloads should have version "
   1450                  << kFullPayloadMinorVersion << ".";
   1451       return ErrorCode::kUnsupportedMinorPayloadVersion;
   1452     }
   1453   } else {
   1454     if (manifest_.minor_version() != supported_minor_version_) {
   1455       LOG(ERROR) << "Manifest contains minor version "
   1456                  << manifest_.minor_version()
   1457                  << " not the supported "
   1458                  << supported_minor_version_;
   1459       return ErrorCode::kUnsupportedMinorPayloadVersion;
   1460     }
   1461   }
   1462 
   1463   if (major_payload_version_ != kChromeOSMajorPayloadVersion) {
   1464     if (manifest_.has_old_rootfs_info() ||
   1465         manifest_.has_new_rootfs_info() ||
   1466         manifest_.has_old_kernel_info() ||
   1467         manifest_.has_new_kernel_info() ||
   1468         manifest_.install_operations_size() != 0 ||
   1469         manifest_.kernel_install_operations_size() != 0) {
   1470       LOG(ERROR) << "Manifest contains deprecated field only supported in "
   1471                  << "major payload version 1, but the payload major version is "
   1472                  << major_payload_version_;
   1473       return ErrorCode::kPayloadMismatchedType;
   1474     }
   1475   }
   1476 
   1477   // TODO(garnold) we should be adding more and more manifest checks, such as
   1478   // partition boundaries etc (see chromium-os:37661).
   1479 
   1480   return ErrorCode::kSuccess;
   1481 }
   1482 
   1483 ErrorCode DeltaPerformer::ValidateOperationHash(
   1484     const InstallOperation& operation) {
   1485   if (!operation.data_sha256_hash().size()) {
   1486     if (!operation.data_length()) {
   1487       // Operations that do not have any data blob won't have any operation hash
   1488       // either. So, these operations are always considered validated since the
   1489       // metadata that contains all the non-data-blob portions of the operation
   1490       // has already been validated. This is true for both HTTP and HTTPS cases.
   1491       return ErrorCode::kSuccess;
   1492     }
   1493 
   1494     // No hash is present for an operation that has data blobs. This shouldn't
   1495     // happen normally for any client that has this code, because the
   1496     // corresponding update should have been produced with the operation
   1497     // hashes. So if it happens it means either we've turned operation hash
   1498     // generation off in DeltaDiffGenerator or it's a regression of some sort.
   1499     // One caveat though: The last operation is a dummy signature operation
   1500     // that doesn't have a hash at the time the manifest is created. So we
   1501     // should not complaint about that operation. This operation can be
   1502     // recognized by the fact that it's offset is mentioned in the manifest.
   1503     if (manifest_.signatures_offset() &&
   1504         manifest_.signatures_offset() == operation.data_offset()) {
   1505       LOG(INFO) << "Skipping hash verification for signature operation "
   1506                 << next_operation_num_ + 1;
   1507     } else {
   1508       if (install_plan_->hash_checks_mandatory) {
   1509         LOG(ERROR) << "Missing mandatory operation hash for operation "
   1510                    << next_operation_num_ + 1;
   1511         return ErrorCode::kDownloadOperationHashMissingError;
   1512       }
   1513 
   1514       LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1
   1515                    << " as there's no operation hash in manifest";
   1516     }
   1517     return ErrorCode::kSuccess;
   1518   }
   1519 
   1520   brillo::Blob expected_op_hash;
   1521   expected_op_hash.assign(operation.data_sha256_hash().data(),
   1522                           (operation.data_sha256_hash().data() +
   1523                            operation.data_sha256_hash().size()));
   1524 
   1525   brillo::Blob calculated_op_hash;
   1526   if (!HashCalculator::RawHashOfBytes(
   1527           buffer_.data(), operation.data_length(), &calculated_op_hash)) {
   1528     LOG(ERROR) << "Unable to compute actual hash of operation "
   1529                << next_operation_num_;
   1530     return ErrorCode::kDownloadOperationHashVerificationError;
   1531   }
   1532 
   1533   if (calculated_op_hash != expected_op_hash) {
   1534     LOG(ERROR) << "Hash verification failed for operation "
   1535                << next_operation_num_ << ". Expected hash = ";
   1536     utils::HexDumpVector(expected_op_hash);
   1537     LOG(ERROR) << "Calculated hash over " << operation.data_length()
   1538                << " bytes at offset: " << operation.data_offset() << " = ";
   1539     utils::HexDumpVector(calculated_op_hash);
   1540     return ErrorCode::kDownloadOperationHashMismatch;
   1541   }
   1542 
   1543   return ErrorCode::kSuccess;
   1544 }
   1545 
   1546 #define TEST_AND_RETURN_VAL(_retval, _condition)                \
   1547   do {                                                          \
   1548     if (!(_condition)) {                                        \
   1549       LOG(ERROR) << "VerifyPayload failure: " << #_condition;   \
   1550       return _retval;                                           \
   1551     }                                                           \
   1552   } while (0);
   1553 
   1554 ErrorCode DeltaPerformer::VerifyPayload(
   1555     const brillo::Blob& update_check_response_hash,
   1556     const uint64_t update_check_response_size) {
   1557 
   1558   // See if we should use the public RSA key in the Omaha response.
   1559   base::FilePath path_to_public_key(public_key_path_);
   1560   base::FilePath tmp_key;
   1561   if (GetPublicKeyFromResponse(&tmp_key))
   1562     path_to_public_key = tmp_key;
   1563   ScopedPathUnlinker tmp_key_remover(tmp_key.value());
   1564   if (tmp_key.empty())
   1565     tmp_key_remover.set_should_remove(false);
   1566 
   1567   LOG(INFO) << "Verifying payload using public key: "
   1568             << path_to_public_key.value();
   1569 
   1570   // Verifies the download size.
   1571   TEST_AND_RETURN_VAL(ErrorCode::kPayloadSizeMismatchError,
   1572                       update_check_response_size ==
   1573                       metadata_size_ + metadata_signature_size_ +
   1574                       buffer_offset_);
   1575 
   1576   // Verifies the payload hash.
   1577   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadVerificationError,
   1578                       !payload_hash_calculator_.raw_hash().empty());
   1579   TEST_AND_RETURN_VAL(
   1580       ErrorCode::kPayloadHashMismatchError,
   1581       payload_hash_calculator_.raw_hash() == update_check_response_hash);
   1582 
   1583   // Verifies the signed payload hash.
   1584   if (!utils::FileExists(path_to_public_key.value().c_str())) {
   1585     LOG(WARNING) << "Not verifying signed delta payload -- missing public key.";
   1586     return ErrorCode::kSuccess;
   1587   }
   1588   TEST_AND_RETURN_VAL(ErrorCode::kSignedDeltaPayloadExpectedError,
   1589                       !signatures_message_data_.empty());
   1590   brillo::Blob hash_data = signed_hash_calculator_.raw_hash();
   1591   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError,
   1592                       PayloadVerifier::PadRSA2048SHA256Hash(&hash_data));
   1593   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError,
   1594                       !hash_data.empty());
   1595 
   1596   if (!PayloadVerifier::VerifySignature(
   1597       signatures_message_data_, path_to_public_key.value(), hash_data)) {
   1598     // The autoupdate_CatchBadSignatures test checks for this string
   1599     // in log-files. Keep in sync.
   1600     LOG(ERROR) << "Public key verification failed, thus update failed.";
   1601     return ErrorCode::kDownloadPayloadPubKeyVerificationError;
   1602   }
   1603 
   1604   LOG(INFO) << "Payload hash matches value in payload.";
   1605 
   1606   // At this point, we are guaranteed to have downloaded a full payload, i.e
   1607   // the one whose size matches the size mentioned in Omaha response. If any
   1608   // errors happen after this, it's likely a problem with the payload itself or
   1609   // the state of the system and not a problem with the URL or network.  So,
   1610   // indicate that to the download delegate so that AU can backoff
   1611   // appropriately.
   1612   if (download_delegate_)
   1613     download_delegate_->DownloadComplete();
   1614 
   1615   return ErrorCode::kSuccess;
   1616 }
   1617 
   1618 void DeltaPerformer::DiscardBuffer(bool do_advance_offset,
   1619                                    size_t signed_hash_buffer_size) {
   1620   // Update the buffer offset.
   1621   if (do_advance_offset)
   1622     buffer_offset_ += buffer_.size();
   1623 
   1624   // Hash the content.
   1625   payload_hash_calculator_.Update(buffer_.data(), buffer_.size());
   1626   signed_hash_calculator_.Update(buffer_.data(), signed_hash_buffer_size);
   1627 
   1628   // Swap content with an empty vector to ensure that all memory is released.
   1629   brillo::Blob().swap(buffer_);
   1630 }
   1631 
   1632 bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs,
   1633                                      const string& update_check_response_hash) {
   1634   int64_t next_operation = kUpdateStateOperationInvalid;
   1635   if (!(prefs->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) &&
   1636         next_operation != kUpdateStateOperationInvalid &&
   1637         next_operation > 0))
   1638     return false;
   1639 
   1640   string interrupted_hash;
   1641   if (!(prefs->GetString(kPrefsUpdateCheckResponseHash, &interrupted_hash) &&
   1642         !interrupted_hash.empty() &&
   1643         interrupted_hash == update_check_response_hash))
   1644     return false;
   1645 
   1646   int64_t resumed_update_failures;
   1647   // Note that storing this value is optional, but if it is there it should not
   1648   // be more than the limit.
   1649   if (prefs->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures) &&
   1650       resumed_update_failures > kMaxResumedUpdateFailures)
   1651     return false;
   1652 
   1653   // Sanity check the rest.
   1654   int64_t next_data_offset = -1;
   1655   if (!(prefs->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) &&
   1656         next_data_offset >= 0))
   1657     return false;
   1658 
   1659   string sha256_context;
   1660   if (!(prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) &&
   1661         !sha256_context.empty()))
   1662     return false;
   1663 
   1664   int64_t manifest_metadata_size = 0;
   1665   if (!(prefs->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) &&
   1666         manifest_metadata_size > 0))
   1667     return false;
   1668 
   1669   int64_t manifest_signature_size = 0;
   1670   if (!(prefs->GetInt64(kPrefsManifestSignatureSize,
   1671                         &manifest_signature_size) &&
   1672         manifest_signature_size >= 0))
   1673     return false;
   1674 
   1675   return true;
   1676 }
   1677 
   1678 bool DeltaPerformer::ResetUpdateProgress(PrefsInterface* prefs, bool quick) {
   1679   TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation,
   1680                                         kUpdateStateOperationInvalid));
   1681   if (!quick) {
   1682     prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1);
   1683     prefs->SetInt64(kPrefsUpdateStateNextDataLength, 0);
   1684     prefs->SetString(kPrefsUpdateStateSHA256Context, "");
   1685     prefs->SetString(kPrefsUpdateStateSignedSHA256Context, "");
   1686     prefs->SetString(kPrefsUpdateStateSignatureBlob, "");
   1687     prefs->SetInt64(kPrefsManifestMetadataSize, -1);
   1688     prefs->SetInt64(kPrefsManifestSignatureSize, -1);
   1689     prefs->SetInt64(kPrefsResumedUpdateFailures, 0);
   1690   }
   1691   return true;
   1692 }
   1693 
   1694 bool DeltaPerformer::CheckpointUpdateProgress() {
   1695   Terminator::set_exit_blocked(true);
   1696   if (last_updated_buffer_offset_ != buffer_offset_) {
   1697     // Resets the progress in case we die in the middle of the state update.
   1698     ResetUpdateProgress(prefs_, true);
   1699     TEST_AND_RETURN_FALSE(
   1700         prefs_->SetString(kPrefsUpdateStateSHA256Context,
   1701                           payload_hash_calculator_.GetContext()));
   1702     TEST_AND_RETURN_FALSE(
   1703         prefs_->SetString(kPrefsUpdateStateSignedSHA256Context,
   1704                           signed_hash_calculator_.GetContext()));
   1705     TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataOffset,
   1706                                            buffer_offset_));
   1707     last_updated_buffer_offset_ = buffer_offset_;
   1708 
   1709     if (next_operation_num_ < num_total_operations_) {
   1710       size_t partition_index = current_partition_;
   1711       while (next_operation_num_ >= acc_num_operations_[partition_index])
   1712         partition_index++;
   1713       const size_t partition_operation_num = next_operation_num_ - (
   1714           partition_index ? acc_num_operations_[partition_index - 1] : 0);
   1715       const InstallOperation& op =
   1716           partitions_[partition_index].operations(partition_operation_num);
   1717       TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength,
   1718                                              op.data_length()));
   1719     } else {
   1720       TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength,
   1721                                              0));
   1722     }
   1723   }
   1724   TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextOperation,
   1725                                          next_operation_num_));
   1726   return true;
   1727 }
   1728 
   1729 bool DeltaPerformer::PrimeUpdateState() {
   1730   CHECK(manifest_valid_);
   1731   block_size_ = manifest_.block_size();
   1732 
   1733   int64_t next_operation = kUpdateStateOperationInvalid;
   1734   if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) ||
   1735       next_operation == kUpdateStateOperationInvalid ||
   1736       next_operation <= 0) {
   1737     // Initiating a new update, no more state needs to be initialized.
   1738     return true;
   1739   }
   1740   next_operation_num_ = next_operation;
   1741 
   1742   // Resuming an update -- load the rest of the update state.
   1743   int64_t next_data_offset = -1;
   1744   TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsUpdateStateNextDataOffset,
   1745                                          &next_data_offset) &&
   1746                         next_data_offset >= 0);
   1747   buffer_offset_ = next_data_offset;
   1748 
   1749   // The signed hash context and the signature blob may be empty if the
   1750   // interrupted update didn't reach the signature.
   1751   string signed_hash_context;
   1752   if (prefs_->GetString(kPrefsUpdateStateSignedSHA256Context,
   1753                         &signed_hash_context)) {
   1754     TEST_AND_RETURN_FALSE(
   1755         signed_hash_calculator_.SetContext(signed_hash_context));
   1756   }
   1757 
   1758   string signature_blob;
   1759   if (prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signature_blob)) {
   1760     signatures_message_data_.assign(signature_blob.begin(),
   1761                                     signature_blob.end());
   1762   }
   1763 
   1764   string hash_context;
   1765   TEST_AND_RETURN_FALSE(prefs_->GetString(kPrefsUpdateStateSHA256Context,
   1766                                           &hash_context) &&
   1767                         payload_hash_calculator_.SetContext(hash_context));
   1768 
   1769   int64_t manifest_metadata_size = 0;
   1770   TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsManifestMetadataSize,
   1771                                          &manifest_metadata_size) &&
   1772                         manifest_metadata_size > 0);
   1773   metadata_size_ = manifest_metadata_size;
   1774 
   1775   int64_t manifest_signature_size = 0;
   1776   TEST_AND_RETURN_FALSE(
   1777       prefs_->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) &&
   1778       manifest_signature_size >= 0);
   1779   metadata_signature_size_ = manifest_signature_size;
   1780 
   1781   // Advance the download progress to reflect what doesn't need to be
   1782   // re-downloaded.
   1783   total_bytes_received_ += buffer_offset_;
   1784 
   1785   // Speculatively count the resume as a failure.
   1786   int64_t resumed_update_failures;
   1787   if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) {
   1788     resumed_update_failures++;
   1789   } else {
   1790     resumed_update_failures = 1;
   1791   }
   1792   prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures);
   1793   return true;
   1794 }
   1795 
   1796 }  // namespace chromeos_update_engine
   1797