Home | History | Annotate | Download | only in base
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/base/cpu.h"
      6 
      7 #if V8_LIBC_MSVCRT
      8 #include <intrin.h>  // __cpuid()
      9 #endif
     10 #if V8_OS_LINUX
     11 #include <linux/auxvec.h>  // AT_HWCAP
     12 #endif
     13 #if V8_GLIBC_PREREQ(2, 16)
     14 #include <sys/auxv.h>  // getauxval()
     15 #endif
     16 #if V8_OS_QNX
     17 #include <sys/syspage.h>  // cpuinfo
     18 #endif
     19 #if V8_OS_LINUX && V8_HOST_ARCH_PPC
     20 #include <elf.h>
     21 #endif
     22 #if V8_OS_AIX
     23 #include <sys/systemcfg.h>  // _system_configuration
     24 #ifndef POWER_8
     25 #define POWER_8 0x10000
     26 #endif
     27 #ifndef POWER_9
     28 #define POWER_9 0x20000
     29 #endif
     30 #endif
     31 #if V8_OS_POSIX
     32 #include <unistd.h>  // sysconf()
     33 #endif
     34 
     35 #include <ctype.h>
     36 #include <limits.h>
     37 #include <stdio.h>
     38 #include <stdlib.h>
     39 #include <string.h>
     40 #include <algorithm>
     41 
     42 #include "src/base/logging.h"
     43 #if V8_OS_WIN
     44 #include "src/base/win32-headers.h"  // NOLINT
     45 #endif
     46 
     47 namespace v8 {
     48 namespace base {
     49 
     50 #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
     51 
     52 // Define __cpuid() for non-MSVC libraries.
     53 #if !V8_LIBC_MSVCRT
     54 
     55 static V8_INLINE void __cpuid(int cpu_info[4], int info_type) {
     56 // Clear ecx to align with __cpuid() of MSVC:
     57 // https://msdn.microsoft.com/en-us/library/hskdteyh.aspx
     58 #if defined(__i386__) && defined(__pic__)
     59   // Make sure to preserve ebx, which contains the pointer
     60   // to the GOT in case we're generating PIC.
     61   __asm__ volatile(
     62       "mov %%ebx, %%edi\n\t"
     63       "cpuid\n\t"
     64       "xchg %%edi, %%ebx\n\t"
     65       : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
     66         "=d"(cpu_info[3])
     67       : "a"(info_type), "c"(0));
     68 #else
     69   __asm__ volatile("cpuid \n\t"
     70                    : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
     71                      "=d"(cpu_info[3])
     72                    : "a"(info_type), "c"(0));
     73 #endif  // defined(__i386__) && defined(__pic__)
     74 }
     75 
     76 #endif  // !V8_LIBC_MSVCRT
     77 
     78 #elif V8_HOST_ARCH_ARM || V8_HOST_ARCH_ARM64 \
     79     || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
     80 
     81 #if V8_OS_LINUX
     82 
     83 #if V8_HOST_ARCH_ARM
     84 
     85 // See <uapi/asm/hwcap.h> kernel header.
     86 /*
     87  * HWCAP flags - for elf_hwcap (in kernel) and AT_HWCAP
     88  */
     89 #define HWCAP_SWP (1 << 0)
     90 #define HWCAP_HALF  (1 << 1)
     91 #define HWCAP_THUMB (1 << 2)
     92 #define HWCAP_26BIT (1 << 3)  /* Play it safe */
     93 #define HWCAP_FAST_MULT (1 << 4)
     94 #define HWCAP_FPA (1 << 5)
     95 #define HWCAP_VFP (1 << 6)
     96 #define HWCAP_EDSP  (1 << 7)
     97 #define HWCAP_JAVA  (1 << 8)
     98 #define HWCAP_IWMMXT  (1 << 9)
     99 #define HWCAP_CRUNCH  (1 << 10)
    100 #define HWCAP_THUMBEE (1 << 11)
    101 #define HWCAP_NEON  (1 << 12)
    102 #define HWCAP_VFPv3 (1 << 13)
    103 #define HWCAP_VFPv3D16  (1 << 14) /* also set for VFPv4-D16 */
    104 #define HWCAP_TLS (1 << 15)
    105 #define HWCAP_VFPv4 (1 << 16)
    106 #define HWCAP_IDIVA (1 << 17)
    107 #define HWCAP_IDIVT (1 << 18)
    108 #define HWCAP_VFPD32  (1 << 19) /* set if VFP has 32 regs (not 16) */
    109 #define HWCAP_IDIV  (HWCAP_IDIVA | HWCAP_IDIVT)
    110 #define HWCAP_LPAE  (1 << 20)
    111 
    112 static uint32_t ReadELFHWCaps() {
    113   uint32_t result = 0;
    114 #if V8_GLIBC_PREREQ(2, 16)
    115   result = static_cast<uint32_t>(getauxval(AT_HWCAP));
    116 #else
    117   // Read the ELF HWCAP flags by parsing /proc/self/auxv.
    118   FILE* fp = fopen("/proc/self/auxv", "r");
    119   if (fp != NULL) {
    120     struct { uint32_t tag; uint32_t value; } entry;
    121     for (;;) {
    122       size_t n = fread(&entry, sizeof(entry), 1, fp);
    123       if (n == 0 || (entry.tag == 0 && entry.value == 0)) {
    124         break;
    125       }
    126       if (entry.tag == AT_HWCAP) {
    127         result = entry.value;
    128         break;
    129       }
    130     }
    131     fclose(fp);
    132   }
    133 #endif
    134   return result;
    135 }
    136 
    137 #endif  // V8_HOST_ARCH_ARM
    138 
    139 #if V8_HOST_ARCH_MIPS
    140 int __detect_fp64_mode(void) {
    141   double result = 0;
    142   // Bit representation of (double)1 is 0x3FF0000000000000.
    143   __asm__ volatile(
    144       ".set push\n\t"
    145       ".set noreorder\n\t"
    146       ".set oddspreg\n\t"
    147       "lui $t0, 0x3FF0\n\t"
    148       "ldc1 $f0, %0\n\t"
    149       "mtc1 $t0, $f1\n\t"
    150       "sdc1 $f0, %0\n\t"
    151       ".set pop\n\t"
    152       : "+m"(result)
    153       :
    154       : "t0", "$f0", "$f1", "memory");
    155 
    156   return !(result == 1);
    157 }
    158 
    159 
    160 int __detect_mips_arch_revision(void) {
    161   // TODO(dusmil): Do the specific syscall as soon as it is implemented in mips
    162   // kernel.
    163   uint32_t result = 0;
    164   __asm__ volatile(
    165       "move $v0, $zero\n\t"
    166       // Encoding for "addi $v0, $v0, 1" on non-r6,
    167       // which is encoding for "bovc $v0, %v0, 1" on r6.
    168       // Use machine code directly to avoid compilation errors with different
    169       // toolchains and maintain compatibility.
    170       ".word 0x20420001\n\t"
    171       "sw $v0, %0\n\t"
    172       : "=m"(result)
    173       :
    174       : "v0", "memory");
    175   // Result is 0 on r6 architectures, 1 on other architecture revisions.
    176   // Fall-back to the least common denominator which is mips32 revision 1.
    177   return result ? 1 : 6;
    178 }
    179 #endif
    180 
    181 // Extract the information exposed by the kernel via /proc/cpuinfo.
    182 class CPUInfo final {
    183  public:
    184   CPUInfo() : datalen_(0) {
    185     // Get the size of the cpuinfo file by reading it until the end. This is
    186     // required because files under /proc do not always return a valid size
    187     // when using fseek(0, SEEK_END) + ftell(). Nor can the be mmap()-ed.
    188     static const char PATHNAME[] = "/proc/cpuinfo";
    189     FILE* fp = fopen(PATHNAME, "r");
    190     if (fp != NULL) {
    191       for (;;) {
    192         char buffer[256];
    193         size_t n = fread(buffer, 1, sizeof(buffer), fp);
    194         if (n == 0) {
    195           break;
    196         }
    197         datalen_ += n;
    198       }
    199       fclose(fp);
    200     }
    201 
    202     // Read the contents of the cpuinfo file.
    203     data_ = new char[datalen_ + 1];
    204     fp = fopen(PATHNAME, "r");
    205     if (fp != NULL) {
    206       for (size_t offset = 0; offset < datalen_; ) {
    207         size_t n = fread(data_ + offset, 1, datalen_ - offset, fp);
    208         if (n == 0) {
    209           break;
    210         }
    211         offset += n;
    212       }
    213       fclose(fp);
    214     }
    215 
    216     // Zero-terminate the data.
    217     data_[datalen_] = '\0';
    218   }
    219 
    220   ~CPUInfo() {
    221     delete[] data_;
    222   }
    223 
    224   // Extract the content of a the first occurence of a given field in
    225   // the content of the cpuinfo file and return it as a heap-allocated
    226   // string that must be freed by the caller using delete[].
    227   // Return NULL if not found.
    228   char* ExtractField(const char* field) const {
    229     DCHECK(field != NULL);
    230 
    231     // Look for first field occurence, and ensure it starts the line.
    232     size_t fieldlen = strlen(field);
    233     char* p = data_;
    234     for (;;) {
    235       p = strstr(p, field);
    236       if (p == NULL) {
    237         return NULL;
    238       }
    239       if (p == data_ || p[-1] == '\n') {
    240         break;
    241       }
    242       p += fieldlen;
    243     }
    244 
    245     // Skip to the first colon followed by a space.
    246     p = strchr(p + fieldlen, ':');
    247     if (p == NULL || !isspace(p[1])) {
    248       return NULL;
    249     }
    250     p += 2;
    251 
    252     // Find the end of the line.
    253     char* q = strchr(p, '\n');
    254     if (q == NULL) {
    255       q = data_ + datalen_;
    256     }
    257 
    258     // Copy the line into a heap-allocated buffer.
    259     size_t len = q - p;
    260     char* result = new char[len + 1];
    261     if (result != NULL) {
    262       memcpy(result, p, len);
    263       result[len] = '\0';
    264     }
    265     return result;
    266   }
    267 
    268  private:
    269   char* data_;
    270   size_t datalen_;
    271 };
    272 
    273 #if V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
    274 
    275 // Checks that a space-separated list of items contains one given 'item'.
    276 static bool HasListItem(const char* list, const char* item) {
    277   ssize_t item_len = strlen(item);
    278   const char* p = list;
    279   if (p != NULL) {
    280     while (*p != '\0') {
    281       // Skip whitespace.
    282       while (isspace(*p)) ++p;
    283 
    284       // Find end of current list item.
    285       const char* q = p;
    286       while (*q != '\0' && !isspace(*q)) ++q;
    287 
    288       if (item_len == q - p && memcmp(p, item, item_len) == 0) {
    289         return true;
    290       }
    291 
    292       // Skip to next item.
    293       p = q;
    294     }
    295   }
    296   return false;
    297 }
    298 
    299 #endif  // V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
    300 
    301 #endif  // V8_OS_LINUX
    302 
    303 #endif  // V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
    304 
    305 CPU::CPU()
    306     : stepping_(0),
    307       model_(0),
    308       ext_model_(0),
    309       family_(0),
    310       ext_family_(0),
    311       type_(0),
    312       implementer_(0),
    313       architecture_(0),
    314       variant_(-1),
    315       part_(0),
    316       icache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
    317       dcache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
    318       has_fpu_(false),
    319       has_cmov_(false),
    320       has_sahf_(false),
    321       has_mmx_(false),
    322       has_sse_(false),
    323       has_sse2_(false),
    324       has_sse3_(false),
    325       has_ssse3_(false),
    326       has_sse41_(false),
    327       has_sse42_(false),
    328       is_atom_(false),
    329       has_osxsave_(false),
    330       has_avx_(false),
    331       has_fma3_(false),
    332       has_bmi1_(false),
    333       has_bmi2_(false),
    334       has_lzcnt_(false),
    335       has_popcnt_(false),
    336       has_idiva_(false),
    337       has_neon_(false),
    338       has_thumb2_(false),
    339       has_vfp_(false),
    340       has_vfp3_(false),
    341       has_vfp3_d32_(false),
    342       is_fp64_mode_(false),
    343       has_non_stop_time_stamp_counter_(false) {
    344   memcpy(vendor_, "Unknown", 8);
    345 #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
    346   int cpu_info[4];
    347 
    348   // __cpuid with an InfoType argument of 0 returns the number of
    349   // valid Ids in CPUInfo[0] and the CPU identification string in
    350   // the other three array elements. The CPU identification string is
    351   // not in linear order. The code below arranges the information
    352   // in a human readable form. The human readable order is CPUInfo[1] |
    353   // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
    354   // before using memcpy to copy these three array elements to cpu_string.
    355   __cpuid(cpu_info, 0);
    356   unsigned num_ids = cpu_info[0];
    357   std::swap(cpu_info[2], cpu_info[3]);
    358   memcpy(vendor_, cpu_info + 1, 12);
    359   vendor_[12] = '\0';
    360 
    361   // Interpret CPU feature information.
    362   if (num_ids > 0) {
    363     __cpuid(cpu_info, 1);
    364     stepping_ = cpu_info[0] & 0xf;
    365     model_ = ((cpu_info[0] >> 4) & 0xf) + ((cpu_info[0] >> 12) & 0xf0);
    366     family_ = (cpu_info[0] >> 8) & 0xf;
    367     type_ = (cpu_info[0] >> 12) & 0x3;
    368     ext_model_ = (cpu_info[0] >> 16) & 0xf;
    369     ext_family_ = (cpu_info[0] >> 20) & 0xff;
    370     has_fpu_ = (cpu_info[3] & 0x00000001) != 0;
    371     has_cmov_ = (cpu_info[3] & 0x00008000) != 0;
    372     has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
    373     has_sse_ = (cpu_info[3] & 0x02000000) != 0;
    374     has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
    375     has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
    376     has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
    377     has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
    378     has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
    379     has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
    380     has_osxsave_ = (cpu_info[2] & 0x08000000) != 0;
    381     has_avx_ = (cpu_info[2] & 0x10000000) != 0;
    382     has_fma3_ = (cpu_info[2] & 0x00001000) != 0;
    383 
    384     if (family_ == 0x6) {
    385       switch (model_) {
    386         case 0x1c:  // SLT
    387         case 0x26:
    388         case 0x36:
    389         case 0x27:
    390         case 0x35:
    391         case 0x37:  // SLM
    392         case 0x4a:
    393         case 0x4d:
    394         case 0x4c:  // AMT
    395         case 0x6e:
    396           is_atom_ = true;
    397       }
    398     }
    399   }
    400 
    401   // There are separate feature flags for VEX-encoded GPR instructions.
    402   if (num_ids >= 7) {
    403     __cpuid(cpu_info, 7);
    404     has_bmi1_ = (cpu_info[1] & 0x00000008) != 0;
    405     has_bmi2_ = (cpu_info[1] & 0x00000100) != 0;
    406   }
    407 
    408   // Query extended IDs.
    409   __cpuid(cpu_info, 0x80000000);
    410   unsigned num_ext_ids = cpu_info[0];
    411 
    412   // Interpret extended CPU feature information.
    413   if (num_ext_ids > 0x80000000) {
    414     __cpuid(cpu_info, 0x80000001);
    415     has_lzcnt_ = (cpu_info[2] & 0x00000020) != 0;
    416     // SAHF must be probed in long mode.
    417     has_sahf_ = (cpu_info[2] & 0x00000001) != 0;
    418   }
    419 
    420   // Check if CPU has non stoppable time stamp counter.
    421   const unsigned parameter_containing_non_stop_time_stamp_counter = 0x80000007;
    422   if (num_ext_ids >= parameter_containing_non_stop_time_stamp_counter) {
    423     __cpuid(cpu_info, parameter_containing_non_stop_time_stamp_counter);
    424     has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
    425   }
    426 
    427 #elif V8_HOST_ARCH_ARM
    428 
    429 #if V8_OS_LINUX
    430 
    431   CPUInfo cpu_info;
    432 
    433   // Extract implementor from the "CPU implementer" field.
    434   char* implementer = cpu_info.ExtractField("CPU implementer");
    435   if (implementer != NULL) {
    436     char* end;
    437     implementer_ = strtol(implementer, &end, 0);
    438     if (end == implementer) {
    439       implementer_ = 0;
    440     }
    441     delete[] implementer;
    442   }
    443 
    444   char* variant = cpu_info.ExtractField("CPU variant");
    445   if (variant != NULL) {
    446     char* end;
    447     variant_ = strtol(variant, &end, 0);
    448     if (end == variant) {
    449       variant_ = -1;
    450     }
    451     delete[] variant;
    452   }
    453 
    454   // Extract part number from the "CPU part" field.
    455   char* part = cpu_info.ExtractField("CPU part");
    456   if (part != NULL) {
    457     char* end;
    458     part_ = strtol(part, &end, 0);
    459     if (end == part) {
    460       part_ = 0;
    461     }
    462     delete[] part;
    463   }
    464 
    465   // Extract architecture from the "CPU Architecture" field.
    466   // The list is well-known, unlike the the output of
    467   // the 'Processor' field which can vary greatly.
    468   // See the definition of the 'proc_arch' array in
    469   // $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
    470   // same file.
    471   char* architecture = cpu_info.ExtractField("CPU architecture");
    472   if (architecture != NULL) {
    473     char* end;
    474     architecture_ = strtol(architecture, &end, 10);
    475     if (end == architecture) {
    476       // Kernels older than 3.18 report "CPU architecture: AArch64" on ARMv8.
    477       if (strcmp(architecture, "AArch64") == 0) {
    478         architecture_ = 8;
    479       } else {
    480         architecture_ = 0;
    481       }
    482     }
    483     delete[] architecture;
    484 
    485     // Unfortunately, it seems that certain ARMv6-based CPUs
    486     // report an incorrect architecture number of 7!
    487     //
    488     // See http://code.google.com/p/android/issues/detail?id=10812
    489     //
    490     // We try to correct this by looking at the 'elf_platform'
    491     // field reported by the 'Processor' field, which is of the
    492     // form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
    493     // an ARMv6-one. For example, the Raspberry Pi is one popular
    494     // ARMv6 device that reports architecture 7.
    495     if (architecture_ == 7) {
    496       char* processor = cpu_info.ExtractField("Processor");
    497       if (HasListItem(processor, "(v6l)")) {
    498         architecture_ = 6;
    499       }
    500       delete[] processor;
    501     }
    502 
    503     // elf_platform moved to the model name field in Linux v3.8.
    504     if (architecture_ == 7) {
    505       char* processor = cpu_info.ExtractField("model name");
    506       if (HasListItem(processor, "(v6l)")) {
    507         architecture_ = 6;
    508       }
    509       delete[] processor;
    510     }
    511   }
    512 
    513   // Try to extract the list of CPU features from ELF hwcaps.
    514   uint32_t hwcaps = ReadELFHWCaps();
    515   if (hwcaps != 0) {
    516     has_idiva_ = (hwcaps & HWCAP_IDIVA) != 0;
    517     has_neon_ = (hwcaps & HWCAP_NEON) != 0;
    518     has_vfp_ = (hwcaps & HWCAP_VFP) != 0;
    519     has_vfp3_ = (hwcaps & (HWCAP_VFPv3 | HWCAP_VFPv3D16 | HWCAP_VFPv4)) != 0;
    520     has_vfp3_d32_ = (has_vfp3_ && ((hwcaps & HWCAP_VFPv3D16) == 0 ||
    521                                    (hwcaps & HWCAP_VFPD32) != 0));
    522   } else {
    523     // Try to fallback to "Features" CPUInfo field.
    524     char* features = cpu_info.ExtractField("Features");
    525     has_idiva_ = HasListItem(features, "idiva");
    526     has_neon_ = HasListItem(features, "neon");
    527     has_thumb2_ = HasListItem(features, "thumb2");
    528     has_vfp_ = HasListItem(features, "vfp");
    529     if (HasListItem(features, "vfpv3d16")) {
    530       has_vfp3_ = true;
    531     } else if (HasListItem(features, "vfpv3")) {
    532       has_vfp3_ = true;
    533       has_vfp3_d32_ = true;
    534     }
    535     delete[] features;
    536   }
    537 
    538   // Some old kernels will report vfp not vfpv3. Here we make an attempt
    539   // to detect vfpv3 by checking for vfp *and* neon, since neon is only
    540   // available on architectures with vfpv3. Checking neon on its own is
    541   // not enough as it is possible to have neon without vfp.
    542   if (has_vfp_ && has_neon_) {
    543     has_vfp3_ = true;
    544   }
    545 
    546   // VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
    547   if (architecture_ < 7 && has_vfp3_) {
    548     architecture_ = 7;
    549   }
    550 
    551   // ARMv7 implies Thumb2.
    552   if (architecture_ >= 7) {
    553     has_thumb2_ = true;
    554   }
    555 
    556   // The earliest architecture with Thumb2 is ARMv6T2.
    557   if (has_thumb2_ && architecture_ < 6) {
    558     architecture_ = 6;
    559   }
    560 
    561   // We don't support any FPUs other than VFP.
    562   has_fpu_ = has_vfp_;
    563 
    564 #elif V8_OS_QNX
    565 
    566   uint32_t cpu_flags = SYSPAGE_ENTRY(cpuinfo)->flags;
    567   if (cpu_flags & ARM_CPU_FLAG_V7) {
    568     architecture_ = 7;
    569     has_thumb2_ = true;
    570   } else if (cpu_flags & ARM_CPU_FLAG_V6) {
    571     architecture_ = 6;
    572     // QNX doesn't say if Thumb2 is available.
    573     // Assume false for the architectures older than ARMv7.
    574   }
    575   DCHECK(architecture_ >= 6);
    576   has_fpu_ = (cpu_flags & CPU_FLAG_FPU) != 0;
    577   has_vfp_ = has_fpu_;
    578   if (cpu_flags & ARM_CPU_FLAG_NEON) {
    579     has_neon_ = true;
    580     has_vfp3_ = has_vfp_;
    581 #ifdef ARM_CPU_FLAG_VFP_D32
    582     has_vfp3_d32_ = (cpu_flags & ARM_CPU_FLAG_VFP_D32) != 0;
    583 #endif
    584   }
    585   has_idiva_ = (cpu_flags & ARM_CPU_FLAG_IDIV) != 0;
    586 
    587 #endif  // V8_OS_LINUX
    588 
    589 #elif V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
    590 
    591   // Simple detection of FPU at runtime for Linux.
    592   // It is based on /proc/cpuinfo, which reveals hardware configuration
    593   // to user-space applications.  According to MIPS (early 2010), no similar
    594   // facility is universally available on the MIPS architectures,
    595   // so it's up to individual OSes to provide such.
    596   CPUInfo cpu_info;
    597   char* cpu_model = cpu_info.ExtractField("cpu model");
    598   has_fpu_ = HasListItem(cpu_model, "FPU");
    599   delete[] cpu_model;
    600 #ifdef V8_HOST_ARCH_MIPS
    601   is_fp64_mode_ = __detect_fp64_mode();
    602   architecture_ = __detect_mips_arch_revision();
    603 #endif
    604 
    605 #elif V8_HOST_ARCH_ARM64
    606 
    607   CPUInfo cpu_info;
    608 
    609   // Extract implementor from the "CPU implementer" field.
    610   char* implementer = cpu_info.ExtractField("CPU implementer");
    611   if (implementer != NULL) {
    612     char* end;
    613     implementer_ = static_cast<int>(strtol(implementer, &end, 0));
    614     if (end == implementer) {
    615       implementer_ = 0;
    616     }
    617     delete[] implementer;
    618   }
    619 
    620   char* variant = cpu_info.ExtractField("CPU variant");
    621   if (variant != NULL) {
    622     char* end;
    623     variant_ = static_cast<int>(strtol(variant, &end, 0));
    624     if (end == variant) {
    625       variant_ = -1;
    626     }
    627     delete[] variant;
    628   }
    629 
    630   // Extract part number from the "CPU part" field.
    631   char* part = cpu_info.ExtractField("CPU part");
    632   if (part != NULL) {
    633     char* end;
    634     part_ = static_cast<int>(strtol(part, &end, 0));
    635     if (end == part) {
    636       part_ = 0;
    637     }
    638     delete[] part;
    639   }
    640 
    641 #elif V8_HOST_ARCH_PPC
    642 
    643 #ifndef USE_SIMULATOR
    644 #if V8_OS_LINUX
    645   // Read processor info from /proc/self/auxv.
    646   char* auxv_cpu_type = NULL;
    647   FILE* fp = fopen("/proc/self/auxv", "r");
    648   if (fp != NULL) {
    649 #if V8_TARGET_ARCH_PPC64
    650     Elf64_auxv_t entry;
    651 #else
    652     Elf32_auxv_t entry;
    653 #endif
    654     for (;;) {
    655       size_t n = fread(&entry, sizeof(entry), 1, fp);
    656       if (n == 0 || entry.a_type == AT_NULL) {
    657         break;
    658       }
    659       switch (entry.a_type) {
    660         case AT_PLATFORM:
    661           auxv_cpu_type = reinterpret_cast<char*>(entry.a_un.a_val);
    662           break;
    663         case AT_ICACHEBSIZE:
    664           icache_line_size_ = entry.a_un.a_val;
    665           break;
    666         case AT_DCACHEBSIZE:
    667           dcache_line_size_ = entry.a_un.a_val;
    668           break;
    669       }
    670     }
    671     fclose(fp);
    672   }
    673 
    674   part_ = -1;
    675   if (auxv_cpu_type) {
    676     if (strcmp(auxv_cpu_type, "power9") == 0) {
    677       part_ = PPC_POWER9;
    678     } else if (strcmp(auxv_cpu_type, "power8") == 0) {
    679       part_ = PPC_POWER8;
    680     } else if (strcmp(auxv_cpu_type, "power7") == 0) {
    681       part_ = PPC_POWER7;
    682     } else if (strcmp(auxv_cpu_type, "power6") == 0) {
    683       part_ = PPC_POWER6;
    684     } else if (strcmp(auxv_cpu_type, "power5") == 0) {
    685       part_ = PPC_POWER5;
    686     } else if (strcmp(auxv_cpu_type, "ppc970") == 0) {
    687       part_ = PPC_G5;
    688     } else if (strcmp(auxv_cpu_type, "ppc7450") == 0) {
    689       part_ = PPC_G4;
    690     } else if (strcmp(auxv_cpu_type, "pa6t") == 0) {
    691       part_ = PPC_PA6T;
    692     }
    693   }
    694 
    695 #elif V8_OS_AIX
    696   switch (_system_configuration.implementation) {
    697     case POWER_9:
    698       part_ = PPC_POWER9;
    699       break;
    700     case POWER_8:
    701       part_ = PPC_POWER8;
    702       break;
    703     case POWER_7:
    704       part_ = PPC_POWER7;
    705       break;
    706     case POWER_6:
    707       part_ = PPC_POWER6;
    708       break;
    709     case POWER_5:
    710       part_ = PPC_POWER5;
    711       break;
    712   }
    713 #endif  // V8_OS_AIX
    714 #endif  // !USE_SIMULATOR
    715 #endif  // V8_HOST_ARCH_PPC
    716 }
    717 
    718 }  // namespace base
    719 }  // namespace v8
    720