1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "monitor.h" 18 19 #include <vector> 20 21 #include "android-base/stringprintf.h" 22 23 #include "art_method-inl.h" 24 #include "base/mutex.h" 25 #include "base/stl_util.h" 26 #include "base/systrace.h" 27 #include "base/time_utils.h" 28 #include "class_linker.h" 29 #include "dex_file-inl.h" 30 #include "dex_instruction-inl.h" 31 #include "lock_word-inl.h" 32 #include "mirror/class-inl.h" 33 #include "mirror/object-inl.h" 34 #include "object_callbacks.h" 35 #include "scoped_thread_state_change-inl.h" 36 #include "stack.h" 37 #include "thread.h" 38 #include "thread_list.h" 39 #include "verifier/method_verifier.h" 40 #include "well_known_classes.h" 41 42 namespace art { 43 44 using android::base::StringPrintf; 45 46 static constexpr uint64_t kLongWaitMs = 100; 47 48 /* 49 * Every Object has a monitor associated with it, but not every Object is actually locked. Even 50 * the ones that are locked do not need a full-fledged monitor until a) there is actual contention 51 * or b) wait() is called on the Object. 52 * 53 * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s 54 * "Thin locks: featherweight synchronization for Java" (ACM 1998). Things are even easier for us, 55 * though, because we have a full 32 bits to work with. 56 * 57 * The two states of an Object's lock are referred to as "thin" and "fat". A lock may transition 58 * from the "thin" state to the "fat" state and this transition is referred to as inflation. Once 59 * a lock has been inflated it remains in the "fat" state indefinitely. 60 * 61 * The lock value itself is stored in mirror::Object::monitor_ and the representation is described 62 * in the LockWord value type. 63 * 64 * Monitors provide: 65 * - mutually exclusive access to resources 66 * - a way for multiple threads to wait for notification 67 * 68 * In effect, they fill the role of both mutexes and condition variables. 69 * 70 * Only one thread can own the monitor at any time. There may be several threads waiting on it 71 * (the wait call unlocks it). One or more waiting threads may be getting interrupted or notified 72 * at any given time. 73 */ 74 75 uint32_t Monitor::lock_profiling_threshold_ = 0; 76 uint32_t Monitor::stack_dump_lock_profiling_threshold_ = 0; 77 78 void Monitor::Init(uint32_t lock_profiling_threshold, 79 uint32_t stack_dump_lock_profiling_threshold) { 80 lock_profiling_threshold_ = lock_profiling_threshold; 81 stack_dump_lock_profiling_threshold_ = stack_dump_lock_profiling_threshold; 82 } 83 84 Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) 85 : monitor_lock_("a monitor lock", kMonitorLock), 86 monitor_contenders_("monitor contenders", monitor_lock_), 87 num_waiters_(0), 88 owner_(owner), 89 lock_count_(0), 90 obj_(GcRoot<mirror::Object>(obj)), 91 wait_set_(nullptr), 92 hash_code_(hash_code), 93 locking_method_(nullptr), 94 locking_dex_pc_(0), 95 monitor_id_(MonitorPool::ComputeMonitorId(this, self)) { 96 #ifdef __LP64__ 97 DCHECK(false) << "Should not be reached in 64b"; 98 next_free_ = nullptr; 99 #endif 100 // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race 101 // with the owner unlocking the thin-lock. 102 CHECK(owner == nullptr || owner == self || owner->IsSuspended()); 103 // The identity hash code is set for the life time of the monitor. 104 } 105 106 Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code, 107 MonitorId id) 108 : monitor_lock_("a monitor lock", kMonitorLock), 109 monitor_contenders_("monitor contenders", monitor_lock_), 110 num_waiters_(0), 111 owner_(owner), 112 lock_count_(0), 113 obj_(GcRoot<mirror::Object>(obj)), 114 wait_set_(nullptr), 115 hash_code_(hash_code), 116 locking_method_(nullptr), 117 locking_dex_pc_(0), 118 monitor_id_(id) { 119 #ifdef __LP64__ 120 next_free_ = nullptr; 121 #endif 122 // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race 123 // with the owner unlocking the thin-lock. 124 CHECK(owner == nullptr || owner == self || owner->IsSuspended()); 125 // The identity hash code is set for the life time of the monitor. 126 } 127 128 int32_t Monitor::GetHashCode() { 129 while (!HasHashCode()) { 130 if (hash_code_.CompareExchangeWeakRelaxed(0, mirror::Object::GenerateIdentityHashCode())) { 131 break; 132 } 133 } 134 DCHECK(HasHashCode()); 135 return hash_code_.LoadRelaxed(); 136 } 137 138 bool Monitor::Install(Thread* self) { 139 MutexLock mu(self, monitor_lock_); // Uncontended mutex acquisition as monitor isn't yet public. 140 CHECK(owner_ == nullptr || owner_ == self || owner_->IsSuspended()); 141 // Propagate the lock state. 142 LockWord lw(GetObject()->GetLockWord(false)); 143 switch (lw.GetState()) { 144 case LockWord::kThinLocked: { 145 CHECK_EQ(owner_->GetThreadId(), lw.ThinLockOwner()); 146 lock_count_ = lw.ThinLockCount(); 147 break; 148 } 149 case LockWord::kHashCode: { 150 CHECK_EQ(hash_code_.LoadRelaxed(), static_cast<int32_t>(lw.GetHashCode())); 151 break; 152 } 153 case LockWord::kFatLocked: { 154 // The owner_ is suspended but another thread beat us to install a monitor. 155 return false; 156 } 157 case LockWord::kUnlocked: { 158 LOG(FATAL) << "Inflating unlocked lock word"; 159 break; 160 } 161 default: { 162 LOG(FATAL) << "Invalid monitor state " << lw.GetState(); 163 return false; 164 } 165 } 166 LockWord fat(this, lw.GCState()); 167 // Publish the updated lock word, which may race with other threads. 168 bool success = GetObject()->CasLockWordWeakRelease(lw, fat); 169 // Lock profiling. 170 if (success && owner_ != nullptr && lock_profiling_threshold_ != 0) { 171 // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on 172 // abort. 173 locking_method_ = owner_->GetCurrentMethod(&locking_dex_pc_, false); 174 } 175 return success; 176 } 177 178 Monitor::~Monitor() { 179 // Deflated monitors have a null object. 180 } 181 182 void Monitor::AppendToWaitSet(Thread* thread) { 183 DCHECK(owner_ == Thread::Current()); 184 DCHECK(thread != nullptr); 185 DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext(); 186 if (wait_set_ == nullptr) { 187 wait_set_ = thread; 188 return; 189 } 190 191 // push_back. 192 Thread* t = wait_set_; 193 while (t->GetWaitNext() != nullptr) { 194 t = t->GetWaitNext(); 195 } 196 t->SetWaitNext(thread); 197 } 198 199 void Monitor::RemoveFromWaitSet(Thread *thread) { 200 DCHECK(owner_ == Thread::Current()); 201 DCHECK(thread != nullptr); 202 if (wait_set_ == nullptr) { 203 return; 204 } 205 if (wait_set_ == thread) { 206 wait_set_ = thread->GetWaitNext(); 207 thread->SetWaitNext(nullptr); 208 return; 209 } 210 211 Thread* t = wait_set_; 212 while (t->GetWaitNext() != nullptr) { 213 if (t->GetWaitNext() == thread) { 214 t->SetWaitNext(thread->GetWaitNext()); 215 thread->SetWaitNext(nullptr); 216 return; 217 } 218 t = t->GetWaitNext(); 219 } 220 } 221 222 void Monitor::SetObject(mirror::Object* object) { 223 obj_ = GcRoot<mirror::Object>(object); 224 } 225 226 // Note: Adapted from CurrentMethodVisitor in thread.cc. We must not resolve here. 227 228 struct NthCallerWithDexPcVisitor FINAL : public StackVisitor { 229 explicit NthCallerWithDexPcVisitor(Thread* thread, size_t frame) 230 REQUIRES_SHARED(Locks::mutator_lock_) 231 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), 232 method_(nullptr), 233 dex_pc_(0), 234 current_frame_number_(0), 235 wanted_frame_number_(frame) {} 236 bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { 237 ArtMethod* m = GetMethod(); 238 if (m == nullptr || m->IsRuntimeMethod()) { 239 // Runtime method, upcall, or resolution issue. Skip. 240 return true; 241 } 242 243 // Is this the requested frame? 244 if (current_frame_number_ == wanted_frame_number_) { 245 method_ = m; 246 dex_pc_ = GetDexPc(false /* abort_on_error*/); 247 return false; 248 } 249 250 // Look for more. 251 current_frame_number_++; 252 return true; 253 } 254 255 ArtMethod* method_; 256 uint32_t dex_pc_; 257 258 private: 259 size_t current_frame_number_; 260 const size_t wanted_frame_number_; 261 }; 262 263 // This function is inlined and just helps to not have the VLOG and ATRACE check at all the 264 // potential tracing points. 265 void Monitor::AtraceMonitorLock(Thread* self, mirror::Object* obj, bool is_wait) { 266 if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging) && ATRACE_ENABLED())) { 267 AtraceMonitorLockImpl(self, obj, is_wait); 268 } 269 } 270 271 void Monitor::AtraceMonitorLockImpl(Thread* self, mirror::Object* obj, bool is_wait) { 272 // Wait() requires a deeper call stack to be useful. Otherwise you'll see "Waiting at 273 // Object.java". Assume that we'll wait a nontrivial amount, so it's OK to do a longer 274 // stack walk than if !is_wait. 275 NthCallerWithDexPcVisitor visitor(self, is_wait ? 1U : 0U); 276 visitor.WalkStack(false); 277 const char* prefix = is_wait ? "Waiting on " : "Locking "; 278 279 const char* filename; 280 int32_t line_number; 281 TranslateLocation(visitor.method_, visitor.dex_pc_, &filename, &line_number); 282 283 // It would be nice to have a stable "ID" for the object here. However, the only stable thing 284 // would be the identity hashcode. But we cannot use IdentityHashcode here: For one, there are 285 // times when it is unsafe to make that call (see stack dumping for an explanation). More 286 // importantly, we would have to give up on thin-locking when adding systrace locks, as the 287 // identity hashcode is stored in the lockword normally (so can't be used with thin-locks). 288 // 289 // Because of thin-locks we also cannot use the monitor id (as there is no monitor). Monitor ids 290 // also do not have to be stable, as the monitor may be deflated. 291 std::string tmp = StringPrintf("%s %d at %s:%d", 292 prefix, 293 (obj == nullptr ? -1 : static_cast<int32_t>(reinterpret_cast<uintptr_t>(obj))), 294 (filename != nullptr ? filename : "null"), 295 line_number); 296 ATRACE_BEGIN(tmp.c_str()); 297 } 298 299 void Monitor::AtraceMonitorUnlock() { 300 if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging))) { 301 ATRACE_END(); 302 } 303 } 304 305 std::string Monitor::PrettyContentionInfo(const std::string& owner_name, 306 pid_t owner_tid, 307 ArtMethod* owners_method, 308 uint32_t owners_dex_pc, 309 size_t num_waiters) { 310 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 311 const char* owners_filename; 312 int32_t owners_line_number = 0; 313 if (owners_method != nullptr) { 314 TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number); 315 } 316 std::ostringstream oss; 317 oss << "monitor contention with owner " << owner_name << " (" << owner_tid << ")"; 318 if (owners_method != nullptr) { 319 oss << " at " << owners_method->PrettyMethod(); 320 oss << "(" << owners_filename << ":" << owners_line_number << ")"; 321 } 322 oss << " waiters=" << num_waiters; 323 return oss.str(); 324 } 325 326 bool Monitor::TryLockLocked(Thread* self) { 327 if (owner_ == nullptr) { // Unowned. 328 owner_ = self; 329 CHECK_EQ(lock_count_, 0); 330 // When debugging, save the current monitor holder for future 331 // acquisition failures to use in sampled logging. 332 if (lock_profiling_threshold_ != 0) { 333 locking_method_ = self->GetCurrentMethod(&locking_dex_pc_); 334 } 335 } else if (owner_ == self) { // Recursive. 336 lock_count_++; 337 } else { 338 return false; 339 } 340 AtraceMonitorLock(self, GetObject(), false /* is_wait */); 341 return true; 342 } 343 344 bool Monitor::TryLock(Thread* self) { 345 MutexLock mu(self, monitor_lock_); 346 return TryLockLocked(self); 347 } 348 349 void Monitor::Lock(Thread* self) { 350 MutexLock mu(self, monitor_lock_); 351 while (true) { 352 if (TryLockLocked(self)) { 353 return; 354 } 355 // Contended. 356 const bool log_contention = (lock_profiling_threshold_ != 0); 357 uint64_t wait_start_ms = log_contention ? MilliTime() : 0; 358 ArtMethod* owners_method = locking_method_; 359 uint32_t owners_dex_pc = locking_dex_pc_; 360 // Do this before releasing the lock so that we don't get deflated. 361 size_t num_waiters = num_waiters_; 362 ++num_waiters_; 363 364 // If systrace logging is enabled, first look at the lock owner. Acquiring the monitor's 365 // lock and then re-acquiring the mutator lock can deadlock. 366 bool started_trace = false; 367 if (ATRACE_ENABLED()) { 368 if (owner_ != nullptr) { // Did the owner_ give the lock up? 369 std::ostringstream oss; 370 std::string name; 371 owner_->GetThreadName(name); 372 oss << PrettyContentionInfo(name, 373 owner_->GetTid(), 374 owners_method, 375 owners_dex_pc, 376 num_waiters); 377 // Add info for contending thread. 378 uint32_t pc; 379 ArtMethod* m = self->GetCurrentMethod(&pc); 380 const char* filename; 381 int32_t line_number; 382 TranslateLocation(m, pc, &filename, &line_number); 383 oss << " blocking from " 384 << ArtMethod::PrettyMethod(m) << "(" << (filename != nullptr ? filename : "null") 385 << ":" << line_number << ")"; 386 ATRACE_BEGIN(oss.str().c_str()); 387 started_trace = true; 388 } 389 } 390 391 monitor_lock_.Unlock(self); // Let go of locks in order. 392 self->SetMonitorEnterObject(GetObject()); 393 { 394 ScopedThreadSuspension tsc(self, kBlocked); // Change to blocked and give up mutator_lock_. 395 uint32_t original_owner_thread_id = 0u; 396 { 397 // Reacquire monitor_lock_ without mutator_lock_ for Wait. 398 MutexLock mu2(self, monitor_lock_); 399 if (owner_ != nullptr) { // Did the owner_ give the lock up? 400 original_owner_thread_id = owner_->GetThreadId(); 401 monitor_contenders_.Wait(self); // Still contended so wait. 402 } 403 } 404 if (original_owner_thread_id != 0u) { 405 // Woken from contention. 406 if (log_contention) { 407 uint64_t wait_ms = MilliTime() - wait_start_ms; 408 uint32_t sample_percent; 409 if (wait_ms >= lock_profiling_threshold_) { 410 sample_percent = 100; 411 } else { 412 sample_percent = 100 * wait_ms / lock_profiling_threshold_; 413 } 414 if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) { 415 // Reacquire mutator_lock_ for logging. 416 ScopedObjectAccess soa(self); 417 418 bool owner_alive = false; 419 pid_t original_owner_tid = 0; 420 std::string original_owner_name; 421 422 const bool should_dump_stacks = stack_dump_lock_profiling_threshold_ > 0 && 423 wait_ms > stack_dump_lock_profiling_threshold_; 424 std::string owner_stack_dump; 425 426 // Acquire thread-list lock to find thread and keep it from dying until we've got all 427 // the info we need. 428 { 429 MutexLock mu2(Thread::Current(), *Locks::thread_list_lock_); 430 431 // Re-find the owner in case the thread got killed. 432 Thread* original_owner = Runtime::Current()->GetThreadList()->FindThreadByThreadId( 433 original_owner_thread_id); 434 435 if (original_owner != nullptr) { 436 owner_alive = true; 437 original_owner_tid = original_owner->GetTid(); 438 original_owner->GetThreadName(original_owner_name); 439 440 if (should_dump_stacks) { 441 // Very long contention. Dump stacks. 442 struct CollectStackTrace : public Closure { 443 void Run(art::Thread* thread) OVERRIDE 444 REQUIRES_SHARED(art::Locks::mutator_lock_) { 445 thread->DumpJavaStack(oss); 446 } 447 448 std::ostringstream oss; 449 }; 450 CollectStackTrace owner_trace; 451 original_owner->RequestSynchronousCheckpoint(&owner_trace); 452 owner_stack_dump = owner_trace.oss.str(); 453 } 454 } 455 // This is all the data we need. Now drop the thread-list lock, it's OK for the 456 // owner to go away now. 457 } 458 459 // If we found the owner (and thus have owner data), go and log now. 460 if (owner_alive) { 461 // Give the detailed traces for really long contention. 462 if (should_dump_stacks) { 463 // This must be here (and not above) because we cannot hold the thread-list lock 464 // while running the checkpoint. 465 std::ostringstream self_trace_oss; 466 self->DumpJavaStack(self_trace_oss); 467 468 uint32_t pc; 469 ArtMethod* m = self->GetCurrentMethod(&pc); 470 471 LOG(WARNING) << "Long " 472 << PrettyContentionInfo(original_owner_name, 473 original_owner_tid, 474 owners_method, 475 owners_dex_pc, 476 num_waiters) 477 << " in " << ArtMethod::PrettyMethod(m) << " for " 478 << PrettyDuration(MsToNs(wait_ms)) << "\n" 479 << "Current owner stack:\n" << owner_stack_dump 480 << "Contender stack:\n" << self_trace_oss.str(); 481 } else if (wait_ms > kLongWaitMs && owners_method != nullptr) { 482 uint32_t pc; 483 ArtMethod* m = self->GetCurrentMethod(&pc); 484 // TODO: We should maybe check that original_owner is still a live thread. 485 LOG(WARNING) << "Long " 486 << PrettyContentionInfo(original_owner_name, 487 original_owner_tid, 488 owners_method, 489 owners_dex_pc, 490 num_waiters) 491 << " in " << ArtMethod::PrettyMethod(m) << " for " 492 << PrettyDuration(MsToNs(wait_ms)); 493 } 494 LogContentionEvent(self, 495 wait_ms, 496 sample_percent, 497 owners_method, 498 owners_dex_pc); 499 } 500 } 501 } 502 } 503 } 504 if (started_trace) { 505 ATRACE_END(); 506 } 507 self->SetMonitorEnterObject(nullptr); 508 monitor_lock_.Lock(self); // Reacquire locks in order. 509 --num_waiters_; 510 } 511 } 512 513 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...) 514 __attribute__((format(printf, 1, 2))); 515 516 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...) 517 REQUIRES_SHARED(Locks::mutator_lock_) { 518 va_list args; 519 va_start(args, fmt); 520 Thread* self = Thread::Current(); 521 self->ThrowNewExceptionV("Ljava/lang/IllegalMonitorStateException;", fmt, args); 522 if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) { 523 std::ostringstream ss; 524 self->Dump(ss); 525 LOG(Runtime::Current()->IsStarted() ? ::android::base::INFO : ::android::base::ERROR) 526 << self->GetException()->Dump() << "\n" << ss.str(); 527 } 528 va_end(args); 529 } 530 531 static std::string ThreadToString(Thread* thread) { 532 if (thread == nullptr) { 533 return "nullptr"; 534 } 535 std::ostringstream oss; 536 // TODO: alternatively, we could just return the thread's name. 537 oss << *thread; 538 return oss.str(); 539 } 540 541 void Monitor::FailedUnlock(mirror::Object* o, 542 uint32_t expected_owner_thread_id, 543 uint32_t found_owner_thread_id, 544 Monitor* monitor) { 545 // Acquire thread list lock so threads won't disappear from under us. 546 std::string current_owner_string; 547 std::string expected_owner_string; 548 std::string found_owner_string; 549 uint32_t current_owner_thread_id = 0u; 550 { 551 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); 552 ThreadList* const thread_list = Runtime::Current()->GetThreadList(); 553 Thread* expected_owner = thread_list->FindThreadByThreadId(expected_owner_thread_id); 554 Thread* found_owner = thread_list->FindThreadByThreadId(found_owner_thread_id); 555 556 // Re-read owner now that we hold lock. 557 Thread* current_owner = (monitor != nullptr) ? monitor->GetOwner() : nullptr; 558 if (current_owner != nullptr) { 559 current_owner_thread_id = current_owner->GetThreadId(); 560 } 561 // Get short descriptions of the threads involved. 562 current_owner_string = ThreadToString(current_owner); 563 expected_owner_string = expected_owner != nullptr ? ThreadToString(expected_owner) : "unnamed"; 564 found_owner_string = found_owner != nullptr ? ThreadToString(found_owner) : "unnamed"; 565 } 566 567 if (current_owner_thread_id == 0u) { 568 if (found_owner_thread_id == 0u) { 569 ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'" 570 " on thread '%s'", 571 mirror::Object::PrettyTypeOf(o).c_str(), 572 expected_owner_string.c_str()); 573 } else { 574 // Race: the original read found an owner but now there is none 575 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'" 576 " (where now the monitor appears unowned) on thread '%s'", 577 found_owner_string.c_str(), 578 mirror::Object::PrettyTypeOf(o).c_str(), 579 expected_owner_string.c_str()); 580 } 581 } else { 582 if (found_owner_thread_id == 0u) { 583 // Race: originally there was no owner, there is now 584 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'" 585 " (originally believed to be unowned) on thread '%s'", 586 current_owner_string.c_str(), 587 mirror::Object::PrettyTypeOf(o).c_str(), 588 expected_owner_string.c_str()); 589 } else { 590 if (found_owner_thread_id != current_owner_thread_id) { 591 // Race: originally found and current owner have changed 592 ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now" 593 " owned by '%s') on object of type '%s' on thread '%s'", 594 found_owner_string.c_str(), 595 current_owner_string.c_str(), 596 mirror::Object::PrettyTypeOf(o).c_str(), 597 expected_owner_string.c_str()); 598 } else { 599 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'" 600 " on thread '%s", 601 current_owner_string.c_str(), 602 mirror::Object::PrettyTypeOf(o).c_str(), 603 expected_owner_string.c_str()); 604 } 605 } 606 } 607 } 608 609 bool Monitor::Unlock(Thread* self) { 610 DCHECK(self != nullptr); 611 uint32_t owner_thread_id = 0u; 612 { 613 MutexLock mu(self, monitor_lock_); 614 Thread* owner = owner_; 615 if (owner != nullptr) { 616 owner_thread_id = owner->GetThreadId(); 617 } 618 if (owner == self) { 619 // We own the monitor, so nobody else can be in here. 620 AtraceMonitorUnlock(); 621 if (lock_count_ == 0) { 622 owner_ = nullptr; 623 locking_method_ = nullptr; 624 locking_dex_pc_ = 0; 625 // Wake a contender. 626 monitor_contenders_.Signal(self); 627 } else { 628 --lock_count_; 629 } 630 return true; 631 } 632 } 633 // We don't own this, so we're not allowed to unlock it. 634 // The JNI spec says that we should throw IllegalMonitorStateException in this case. 635 FailedUnlock(GetObject(), self->GetThreadId(), owner_thread_id, this); 636 return false; 637 } 638 639 void Monitor::Wait(Thread* self, int64_t ms, int32_t ns, 640 bool interruptShouldThrow, ThreadState why) { 641 DCHECK(self != nullptr); 642 DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping); 643 644 monitor_lock_.Lock(self); 645 646 // Make sure that we hold the lock. 647 if (owner_ != self) { 648 monitor_lock_.Unlock(self); 649 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()"); 650 return; 651 } 652 653 // We need to turn a zero-length timed wait into a regular wait because 654 // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait(). 655 if (why == kTimedWaiting && (ms == 0 && ns == 0)) { 656 why = kWaiting; 657 } 658 659 // Enforce the timeout range. 660 if (ms < 0 || ns < 0 || ns > 999999) { 661 monitor_lock_.Unlock(self); 662 self->ThrowNewExceptionF("Ljava/lang/IllegalArgumentException;", 663 "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns); 664 return; 665 } 666 667 /* 668 * Add ourselves to the set of threads waiting on this monitor, and 669 * release our hold. We need to let it go even if we're a few levels 670 * deep in a recursive lock, and we need to restore that later. 671 * 672 * We append to the wait set ahead of clearing the count and owner 673 * fields so the subroutine can check that the calling thread owns 674 * the monitor. Aside from that, the order of member updates is 675 * not order sensitive as we hold the pthread mutex. 676 */ 677 AppendToWaitSet(self); 678 ++num_waiters_; 679 int prev_lock_count = lock_count_; 680 lock_count_ = 0; 681 owner_ = nullptr; 682 ArtMethod* saved_method = locking_method_; 683 locking_method_ = nullptr; 684 uintptr_t saved_dex_pc = locking_dex_pc_; 685 locking_dex_pc_ = 0; 686 687 AtraceMonitorUnlock(); // For the implict Unlock() just above. This will only end the deepest 688 // nesting, but that is enough for the visualization, and corresponds to 689 // the single Lock() we do afterwards. 690 AtraceMonitorLock(self, GetObject(), true /* is_wait */); 691 692 bool was_interrupted = false; 693 { 694 // Update thread state. If the GC wakes up, it'll ignore us, knowing 695 // that we won't touch any references in this state, and we'll check 696 // our suspend mode before we transition out. 697 ScopedThreadSuspension sts(self, why); 698 699 // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock. 700 MutexLock mu(self, *self->GetWaitMutex()); 701 702 // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is 703 // non-null a notifying or interrupting thread must signal the thread's wait_cond_ to wake it 704 // up. 705 DCHECK(self->GetWaitMonitor() == nullptr); 706 self->SetWaitMonitor(this); 707 708 // Release the monitor lock. 709 monitor_contenders_.Signal(self); 710 monitor_lock_.Unlock(self); 711 712 // Handle the case where the thread was interrupted before we called wait(). 713 if (self->IsInterrupted()) { 714 was_interrupted = true; 715 } else { 716 // Wait for a notification or a timeout to occur. 717 if (why == kWaiting) { 718 self->GetWaitConditionVariable()->Wait(self); 719 } else { 720 DCHECK(why == kTimedWaiting || why == kSleeping) << why; 721 self->GetWaitConditionVariable()->TimedWait(self, ms, ns); 722 } 723 was_interrupted = self->IsInterrupted(); 724 } 725 } 726 727 { 728 // We reset the thread's wait_monitor_ field after transitioning back to runnable so 729 // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging 730 // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads 731 // are waiting on "null".) 732 MutexLock mu(self, *self->GetWaitMutex()); 733 DCHECK(self->GetWaitMonitor() != nullptr); 734 self->SetWaitMonitor(nullptr); 735 } 736 737 // Allocate the interrupted exception not holding the monitor lock since it may cause a GC. 738 // If the GC requires acquiring the monitor for enqueuing cleared references, this would 739 // cause a deadlock if the monitor is held. 740 if (was_interrupted && interruptShouldThrow) { 741 /* 742 * We were interrupted while waiting, or somebody interrupted an 743 * un-interruptible thread earlier and we're bailing out immediately. 744 * 745 * The doc sayeth: "The interrupted status of the current thread is 746 * cleared when this exception is thrown." 747 */ 748 self->SetInterrupted(false); 749 self->ThrowNewException("Ljava/lang/InterruptedException;", nullptr); 750 } 751 752 AtraceMonitorUnlock(); // End Wait(). 753 754 // Re-acquire the monitor and lock. 755 Lock(self); 756 monitor_lock_.Lock(self); 757 self->GetWaitMutex()->AssertNotHeld(self); 758 759 /* 760 * We remove our thread from wait set after restoring the count 761 * and owner fields so the subroutine can check that the calling 762 * thread owns the monitor. Aside from that, the order of member 763 * updates is not order sensitive as we hold the pthread mutex. 764 */ 765 owner_ = self; 766 lock_count_ = prev_lock_count; 767 locking_method_ = saved_method; 768 locking_dex_pc_ = saved_dex_pc; 769 --num_waiters_; 770 RemoveFromWaitSet(self); 771 772 monitor_lock_.Unlock(self); 773 } 774 775 void Monitor::Notify(Thread* self) { 776 DCHECK(self != nullptr); 777 MutexLock mu(self, monitor_lock_); 778 // Make sure that we hold the lock. 779 if (owner_ != self) { 780 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()"); 781 return; 782 } 783 // Signal the first waiting thread in the wait set. 784 while (wait_set_ != nullptr) { 785 Thread* thread = wait_set_; 786 wait_set_ = thread->GetWaitNext(); 787 thread->SetWaitNext(nullptr); 788 789 // Check to see if the thread is still waiting. 790 MutexLock wait_mu(self, *thread->GetWaitMutex()); 791 if (thread->GetWaitMonitor() != nullptr) { 792 thread->GetWaitConditionVariable()->Signal(self); 793 return; 794 } 795 } 796 } 797 798 void Monitor::NotifyAll(Thread* self) { 799 DCHECK(self != nullptr); 800 MutexLock mu(self, monitor_lock_); 801 // Make sure that we hold the lock. 802 if (owner_ != self) { 803 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()"); 804 return; 805 } 806 // Signal all threads in the wait set. 807 while (wait_set_ != nullptr) { 808 Thread* thread = wait_set_; 809 wait_set_ = thread->GetWaitNext(); 810 thread->SetWaitNext(nullptr); 811 thread->Notify(); 812 } 813 } 814 815 bool Monitor::Deflate(Thread* self, mirror::Object* obj) { 816 DCHECK(obj != nullptr); 817 // Don't need volatile since we only deflate with mutators suspended. 818 LockWord lw(obj->GetLockWord(false)); 819 // If the lock isn't an inflated monitor, then we don't need to deflate anything. 820 if (lw.GetState() == LockWord::kFatLocked) { 821 Monitor* monitor = lw.FatLockMonitor(); 822 DCHECK(monitor != nullptr); 823 MutexLock mu(self, monitor->monitor_lock_); 824 // Can't deflate if we have anybody waiting on the CV. 825 if (monitor->num_waiters_ > 0) { 826 return false; 827 } 828 Thread* owner = monitor->owner_; 829 if (owner != nullptr) { 830 // Can't deflate if we are locked and have a hash code. 831 if (monitor->HasHashCode()) { 832 return false; 833 } 834 // Can't deflate if our lock count is too high. 835 if (static_cast<uint32_t>(monitor->lock_count_) > LockWord::kThinLockMaxCount) { 836 return false; 837 } 838 // Deflate to a thin lock. 839 LockWord new_lw = LockWord::FromThinLockId(owner->GetThreadId(), 840 monitor->lock_count_, 841 lw.GCState()); 842 // Assume no concurrent read barrier state changes as mutators are suspended. 843 obj->SetLockWord(new_lw, false); 844 VLOG(monitor) << "Deflated " << obj << " to thin lock " << owner->GetTid() << " / " 845 << monitor->lock_count_; 846 } else if (monitor->HasHashCode()) { 847 LockWord new_lw = LockWord::FromHashCode(monitor->GetHashCode(), lw.GCState()); 848 // Assume no concurrent read barrier state changes as mutators are suspended. 849 obj->SetLockWord(new_lw, false); 850 VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode(); 851 } else { 852 // No lock and no hash, just put an empty lock word inside the object. 853 LockWord new_lw = LockWord::FromDefault(lw.GCState()); 854 // Assume no concurrent read barrier state changes as mutators are suspended. 855 obj->SetLockWord(new_lw, false); 856 VLOG(monitor) << "Deflated" << obj << " to empty lock word"; 857 } 858 // The monitor is deflated, mark the object as null so that we know to delete it during the 859 // next GC. 860 monitor->obj_ = GcRoot<mirror::Object>(nullptr); 861 } 862 return true; 863 } 864 865 void Monitor::Inflate(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) { 866 DCHECK(self != nullptr); 867 DCHECK(obj != nullptr); 868 // Allocate and acquire a new monitor. 869 Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code); 870 DCHECK(m != nullptr); 871 if (m->Install(self)) { 872 if (owner != nullptr) { 873 VLOG(monitor) << "monitor: thread" << owner->GetThreadId() 874 << " created monitor " << m << " for object " << obj; 875 } else { 876 VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code 877 << " created monitor " << m << " for object " << obj; 878 } 879 Runtime::Current()->GetMonitorList()->Add(m); 880 CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked); 881 } else { 882 MonitorPool::ReleaseMonitor(self, m); 883 } 884 } 885 886 void Monitor::InflateThinLocked(Thread* self, Handle<mirror::Object> obj, LockWord lock_word, 887 uint32_t hash_code) { 888 DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked); 889 uint32_t owner_thread_id = lock_word.ThinLockOwner(); 890 if (owner_thread_id == self->GetThreadId()) { 891 // We own the monitor, we can easily inflate it. 892 Inflate(self, self, obj.Get(), hash_code); 893 } else { 894 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 895 // Suspend the owner, inflate. First change to blocked and give up mutator_lock_. 896 self->SetMonitorEnterObject(obj.Get()); 897 bool timed_out; 898 Thread* owner; 899 { 900 ScopedThreadSuspension sts(self, kBlocked); 901 owner = thread_list->SuspendThreadByThreadId(owner_thread_id, 902 SuspendReason::kInternal, 903 &timed_out); 904 } 905 if (owner != nullptr) { 906 // We succeeded in suspending the thread, check the lock's status didn't change. 907 lock_word = obj->GetLockWord(true); 908 if (lock_word.GetState() == LockWord::kThinLocked && 909 lock_word.ThinLockOwner() == owner_thread_id) { 910 // Go ahead and inflate the lock. 911 Inflate(self, owner, obj.Get(), hash_code); 912 } 913 bool resumed = thread_list->Resume(owner, SuspendReason::kInternal); 914 DCHECK(resumed); 915 } 916 self->SetMonitorEnterObject(nullptr); 917 } 918 } 919 920 // Fool annotalysis into thinking that the lock on obj is acquired. 921 static mirror::Object* FakeLock(mirror::Object* obj) 922 EXCLUSIVE_LOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS { 923 return obj; 924 } 925 926 // Fool annotalysis into thinking that the lock on obj is release. 927 static mirror::Object* FakeUnlock(mirror::Object* obj) 928 UNLOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS { 929 return obj; 930 } 931 932 mirror::Object* Monitor::MonitorEnter(Thread* self, mirror::Object* obj, bool trylock) { 933 DCHECK(self != nullptr); 934 DCHECK(obj != nullptr); 935 self->AssertThreadSuspensionIsAllowable(); 936 obj = FakeLock(obj); 937 uint32_t thread_id = self->GetThreadId(); 938 size_t contention_count = 0; 939 StackHandleScope<1> hs(self); 940 Handle<mirror::Object> h_obj(hs.NewHandle(obj)); 941 while (true) { 942 // We initially read the lockword with ordinary Java/relaxed semantics. When stronger 943 // semantics are needed, we address it below. Since GetLockWord bottoms out to a relaxed load, 944 // we can fix it later, in an infrequently executed case, with a fence. 945 LockWord lock_word = h_obj->GetLockWord(false); 946 switch (lock_word.GetState()) { 947 case LockWord::kUnlocked: { 948 // No ordering required for preceding lockword read, since we retest. 949 LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0, lock_word.GCState())); 950 if (h_obj->CasLockWordWeakAcquire(lock_word, thin_locked)) { 951 AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */); 952 return h_obj.Get(); // Success! 953 } 954 continue; // Go again. 955 } 956 case LockWord::kThinLocked: { 957 uint32_t owner_thread_id = lock_word.ThinLockOwner(); 958 if (owner_thread_id == thread_id) { 959 // No ordering required for initial lockword read. 960 // We own the lock, increase the recursion count. 961 uint32_t new_count = lock_word.ThinLockCount() + 1; 962 if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) { 963 LockWord thin_locked(LockWord::FromThinLockId(thread_id, 964 new_count, 965 lock_word.GCState())); 966 // Only this thread pays attention to the count. Thus there is no need for stronger 967 // than relaxed memory ordering. 968 if (!kUseReadBarrier) { 969 h_obj->SetLockWord(thin_locked, false /* volatile */); 970 AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */); 971 return h_obj.Get(); // Success! 972 } else { 973 // Use CAS to preserve the read barrier state. 974 if (h_obj->CasLockWordWeakRelaxed(lock_word, thin_locked)) { 975 AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */); 976 return h_obj.Get(); // Success! 977 } 978 } 979 continue; // Go again. 980 } else { 981 // We'd overflow the recursion count, so inflate the monitor. 982 InflateThinLocked(self, h_obj, lock_word, 0); 983 } 984 } else { 985 if (trylock) { 986 return nullptr; 987 } 988 // Contention. 989 contention_count++; 990 Runtime* runtime = Runtime::Current(); 991 if (contention_count <= runtime->GetMaxSpinsBeforeThinLockInflation()) { 992 // TODO: Consider switching the thread state to kBlocked when we are yielding. 993 // Use sched_yield instead of NanoSleep since NanoSleep can wait much longer than the 994 // parameter you pass in. This can cause thread suspension to take excessively long 995 // and make long pauses. See b/16307460. 996 // TODO: We should literally spin first, without sched_yield. Sched_yield either does 997 // nothing (at significant expense), or guarantees that we wait at least microseconds. 998 // If the owner is running, I would expect the median lock hold time to be hundreds 999 // of nanoseconds or less. 1000 sched_yield(); 1001 } else { 1002 contention_count = 0; 1003 // No ordering required for initial lockword read. Install rereads it anyway. 1004 InflateThinLocked(self, h_obj, lock_word, 0); 1005 } 1006 } 1007 continue; // Start from the beginning. 1008 } 1009 case LockWord::kFatLocked: { 1010 // We should have done an acquire read of the lockword initially, to ensure 1011 // visibility of the monitor data structure. Use an explicit fence instead. 1012 QuasiAtomic::ThreadFenceAcquire(); 1013 Monitor* mon = lock_word.FatLockMonitor(); 1014 if (trylock) { 1015 return mon->TryLock(self) ? h_obj.Get() : nullptr; 1016 } else { 1017 mon->Lock(self); 1018 return h_obj.Get(); // Success! 1019 } 1020 } 1021 case LockWord::kHashCode: 1022 // Inflate with the existing hashcode. 1023 // Again no ordering required for initial lockword read, since we don't rely 1024 // on the visibility of any prior computation. 1025 Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode()); 1026 continue; // Start from the beginning. 1027 default: { 1028 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); 1029 UNREACHABLE(); 1030 } 1031 } 1032 } 1033 } 1034 1035 bool Monitor::MonitorExit(Thread* self, mirror::Object* obj) { 1036 DCHECK(self != nullptr); 1037 DCHECK(obj != nullptr); 1038 self->AssertThreadSuspensionIsAllowable(); 1039 obj = FakeUnlock(obj); 1040 StackHandleScope<1> hs(self); 1041 Handle<mirror::Object> h_obj(hs.NewHandle(obj)); 1042 while (true) { 1043 LockWord lock_word = obj->GetLockWord(true); 1044 switch (lock_word.GetState()) { 1045 case LockWord::kHashCode: 1046 // Fall-through. 1047 case LockWord::kUnlocked: 1048 FailedUnlock(h_obj.Get(), self->GetThreadId(), 0u, nullptr); 1049 return false; // Failure. 1050 case LockWord::kThinLocked: { 1051 uint32_t thread_id = self->GetThreadId(); 1052 uint32_t owner_thread_id = lock_word.ThinLockOwner(); 1053 if (owner_thread_id != thread_id) { 1054 FailedUnlock(h_obj.Get(), thread_id, owner_thread_id, nullptr); 1055 return false; // Failure. 1056 } else { 1057 // We own the lock, decrease the recursion count. 1058 LockWord new_lw = LockWord::Default(); 1059 if (lock_word.ThinLockCount() != 0) { 1060 uint32_t new_count = lock_word.ThinLockCount() - 1; 1061 new_lw = LockWord::FromThinLockId(thread_id, new_count, lock_word.GCState()); 1062 } else { 1063 new_lw = LockWord::FromDefault(lock_word.GCState()); 1064 } 1065 if (!kUseReadBarrier) { 1066 DCHECK_EQ(new_lw.ReadBarrierState(), 0U); 1067 // TODO: This really only needs memory_order_release, but we currently have 1068 // no way to specify that. In fact there seem to be no legitimate uses of SetLockWord 1069 // with a final argument of true. This slows down x86 and ARMv7, but probably not v8. 1070 h_obj->SetLockWord(new_lw, true); 1071 AtraceMonitorUnlock(); 1072 // Success! 1073 return true; 1074 } else { 1075 // Use CAS to preserve the read barrier state. 1076 if (h_obj->CasLockWordWeakRelease(lock_word, new_lw)) { 1077 AtraceMonitorUnlock(); 1078 // Success! 1079 return true; 1080 } 1081 } 1082 continue; // Go again. 1083 } 1084 } 1085 case LockWord::kFatLocked: { 1086 Monitor* mon = lock_word.FatLockMonitor(); 1087 return mon->Unlock(self); 1088 } 1089 default: { 1090 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); 1091 return false; 1092 } 1093 } 1094 } 1095 } 1096 1097 void Monitor::Wait(Thread* self, mirror::Object *obj, int64_t ms, int32_t ns, 1098 bool interruptShouldThrow, ThreadState why) { 1099 DCHECK(self != nullptr); 1100 DCHECK(obj != nullptr); 1101 LockWord lock_word = obj->GetLockWord(true); 1102 while (lock_word.GetState() != LockWord::kFatLocked) { 1103 switch (lock_word.GetState()) { 1104 case LockWord::kHashCode: 1105 // Fall-through. 1106 case LockWord::kUnlocked: 1107 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()"); 1108 return; // Failure. 1109 case LockWord::kThinLocked: { 1110 uint32_t thread_id = self->GetThreadId(); 1111 uint32_t owner_thread_id = lock_word.ThinLockOwner(); 1112 if (owner_thread_id != thread_id) { 1113 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()"); 1114 return; // Failure. 1115 } else { 1116 // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so 1117 // re-load. 1118 Inflate(self, self, obj, 0); 1119 lock_word = obj->GetLockWord(true); 1120 } 1121 break; 1122 } 1123 case LockWord::kFatLocked: // Unreachable given the loop condition above. Fall-through. 1124 default: { 1125 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); 1126 return; 1127 } 1128 } 1129 } 1130 Monitor* mon = lock_word.FatLockMonitor(); 1131 mon->Wait(self, ms, ns, interruptShouldThrow, why); 1132 } 1133 1134 void Monitor::DoNotify(Thread* self, mirror::Object* obj, bool notify_all) { 1135 DCHECK(self != nullptr); 1136 DCHECK(obj != nullptr); 1137 LockWord lock_word = obj->GetLockWord(true); 1138 switch (lock_word.GetState()) { 1139 case LockWord::kHashCode: 1140 // Fall-through. 1141 case LockWord::kUnlocked: 1142 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()"); 1143 return; // Failure. 1144 case LockWord::kThinLocked: { 1145 uint32_t thread_id = self->GetThreadId(); 1146 uint32_t owner_thread_id = lock_word.ThinLockOwner(); 1147 if (owner_thread_id != thread_id) { 1148 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()"); 1149 return; // Failure. 1150 } else { 1151 // We own the lock but there's no Monitor and therefore no waiters. 1152 return; // Success. 1153 } 1154 } 1155 case LockWord::kFatLocked: { 1156 Monitor* mon = lock_word.FatLockMonitor(); 1157 if (notify_all) { 1158 mon->NotifyAll(self); 1159 } else { 1160 mon->Notify(self); 1161 } 1162 return; // Success. 1163 } 1164 default: { 1165 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); 1166 return; 1167 } 1168 } 1169 } 1170 1171 uint32_t Monitor::GetLockOwnerThreadId(mirror::Object* obj) { 1172 DCHECK(obj != nullptr); 1173 LockWord lock_word = obj->GetLockWord(true); 1174 switch (lock_word.GetState()) { 1175 case LockWord::kHashCode: 1176 // Fall-through. 1177 case LockWord::kUnlocked: 1178 return ThreadList::kInvalidThreadId; 1179 case LockWord::kThinLocked: 1180 return lock_word.ThinLockOwner(); 1181 case LockWord::kFatLocked: { 1182 Monitor* mon = lock_word.FatLockMonitor(); 1183 return mon->GetOwnerThreadId(); 1184 } 1185 default: { 1186 LOG(FATAL) << "Unreachable"; 1187 UNREACHABLE(); 1188 } 1189 } 1190 } 1191 1192 void Monitor::DescribeWait(std::ostream& os, const Thread* thread) { 1193 // Determine the wait message and object we're waiting or blocked upon. 1194 mirror::Object* pretty_object = nullptr; 1195 const char* wait_message = nullptr; 1196 uint32_t lock_owner = ThreadList::kInvalidThreadId; 1197 ThreadState state = thread->GetState(); 1198 if (state == kWaiting || state == kTimedWaiting || state == kSleeping) { 1199 wait_message = (state == kSleeping) ? " - sleeping on " : " - waiting on "; 1200 Thread* self = Thread::Current(); 1201 MutexLock mu(self, *thread->GetWaitMutex()); 1202 Monitor* monitor = thread->GetWaitMonitor(); 1203 if (monitor != nullptr) { 1204 pretty_object = monitor->GetObject(); 1205 } 1206 } else if (state == kBlocked) { 1207 wait_message = " - waiting to lock "; 1208 pretty_object = thread->GetMonitorEnterObject(); 1209 if (pretty_object != nullptr) { 1210 if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) { 1211 // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack 1212 // may have not been flipped yet and "pretty_object" may be a from-space (stale) ref, in 1213 // which case the GetLockOwnerThreadId() call below will crash. So explicitly mark/forward 1214 // it here. 1215 pretty_object = ReadBarrier::Mark(pretty_object); 1216 } 1217 lock_owner = pretty_object->GetLockOwnerThreadId(); 1218 } 1219 } 1220 1221 if (wait_message != nullptr) { 1222 if (pretty_object == nullptr) { 1223 os << wait_message << "an unknown object"; 1224 } else { 1225 if ((pretty_object->GetLockWord(true).GetState() == LockWord::kThinLocked) && 1226 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) { 1227 // Getting the identity hashcode here would result in lock inflation and suspension of the 1228 // current thread, which isn't safe if this is the only runnable thread. 1229 os << wait_message << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", 1230 reinterpret_cast<intptr_t>(pretty_object), 1231 pretty_object->PrettyTypeOf().c_str()); 1232 } else { 1233 // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>) 1234 // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread 1235 // suspension and move pretty_object. 1236 const std::string pretty_type(pretty_object->PrettyTypeOf()); 1237 os << wait_message << StringPrintf("<0x%08x> (a %s)", pretty_object->IdentityHashCode(), 1238 pretty_type.c_str()); 1239 } 1240 } 1241 // - waiting to lock <0x613f83d8> (a java.lang.Object) held by thread 5 1242 if (lock_owner != ThreadList::kInvalidThreadId) { 1243 os << " held by thread " << lock_owner; 1244 } 1245 os << "\n"; 1246 } 1247 } 1248 1249 mirror::Object* Monitor::GetContendedMonitor(Thread* thread) { 1250 // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre 1251 // definition of contended that includes a monitor a thread is trying to enter... 1252 mirror::Object* result = thread->GetMonitorEnterObject(); 1253 if (result == nullptr) { 1254 // ...but also a monitor that the thread is waiting on. 1255 MutexLock mu(Thread::Current(), *thread->GetWaitMutex()); 1256 Monitor* monitor = thread->GetWaitMonitor(); 1257 if (monitor != nullptr) { 1258 result = monitor->GetObject(); 1259 } 1260 } 1261 return result; 1262 } 1263 1264 void Monitor::VisitLocks(StackVisitor* stack_visitor, void (*callback)(mirror::Object*, void*), 1265 void* callback_context, bool abort_on_failure) { 1266 ArtMethod* m = stack_visitor->GetMethod(); 1267 CHECK(m != nullptr); 1268 1269 // Native methods are an easy special case. 1270 // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too. 1271 if (m->IsNative()) { 1272 if (m->IsSynchronized()) { 1273 mirror::Object* jni_this = 1274 stack_visitor->GetCurrentHandleScope(sizeof(void*))->GetReference(0); 1275 callback(jni_this, callback_context); 1276 } 1277 return; 1278 } 1279 1280 // Proxy methods should not be synchronized. 1281 if (m->IsProxyMethod()) { 1282 CHECK(!m->IsSynchronized()); 1283 return; 1284 } 1285 1286 // Is there any reason to believe there's any synchronization in this method? 1287 const DexFile::CodeItem* code_item = m->GetCodeItem(); 1288 CHECK(code_item != nullptr) << m->PrettyMethod(); 1289 if (code_item->tries_size_ == 0) { 1290 return; // No "tries" implies no synchronization, so no held locks to report. 1291 } 1292 1293 // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot 1294 // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an 1295 // inconsistent stack anyways. 1296 uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure); 1297 if (!abort_on_failure && dex_pc == DexFile::kDexNoIndex) { 1298 LOG(ERROR) << "Could not find dex_pc for " << m->PrettyMethod(); 1299 return; 1300 } 1301 1302 // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to 1303 // the locks held in this stack frame. 1304 std::vector<uint32_t> monitor_enter_dex_pcs; 1305 verifier::MethodVerifier::FindLocksAtDexPc(m, dex_pc, &monitor_enter_dex_pcs); 1306 for (uint32_t monitor_dex_pc : monitor_enter_dex_pcs) { 1307 // The verifier works in terms of the dex pcs of the monitor-enter instructions. 1308 // We want the registers used by those instructions (so we can read the values out of them). 1309 const Instruction* monitor_enter_instruction = 1310 Instruction::At(&code_item->insns_[monitor_dex_pc]); 1311 1312 // Quick sanity check. 1313 CHECK_EQ(monitor_enter_instruction->Opcode(), Instruction::MONITOR_ENTER) 1314 << "expected monitor-enter @" << monitor_dex_pc << "; was " 1315 << reinterpret_cast<const void*>(monitor_enter_instruction); 1316 1317 uint16_t monitor_register = monitor_enter_instruction->VRegA(); 1318 uint32_t value; 1319 bool success = stack_visitor->GetVReg(m, monitor_register, kReferenceVReg, &value); 1320 CHECK(success) << "Failed to read v" << monitor_register << " of kind " 1321 << kReferenceVReg << " in method " << m->PrettyMethod(); 1322 mirror::Object* o = reinterpret_cast<mirror::Object*>(value); 1323 callback(o, callback_context); 1324 } 1325 } 1326 1327 bool Monitor::IsValidLockWord(LockWord lock_word) { 1328 switch (lock_word.GetState()) { 1329 case LockWord::kUnlocked: 1330 // Nothing to check. 1331 return true; 1332 case LockWord::kThinLocked: 1333 // Basic sanity check of owner. 1334 return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId; 1335 case LockWord::kFatLocked: { 1336 // Check the monitor appears in the monitor list. 1337 Monitor* mon = lock_word.FatLockMonitor(); 1338 MonitorList* list = Runtime::Current()->GetMonitorList(); 1339 MutexLock mu(Thread::Current(), list->monitor_list_lock_); 1340 for (Monitor* list_mon : list->list_) { 1341 if (mon == list_mon) { 1342 return true; // Found our monitor. 1343 } 1344 } 1345 return false; // Fail - unowned monitor in an object. 1346 } 1347 case LockWord::kHashCode: 1348 return true; 1349 default: 1350 LOG(FATAL) << "Unreachable"; 1351 UNREACHABLE(); 1352 } 1353 } 1354 1355 bool Monitor::IsLocked() REQUIRES_SHARED(Locks::mutator_lock_) { 1356 MutexLock mu(Thread::Current(), monitor_lock_); 1357 return owner_ != nullptr; 1358 } 1359 1360 void Monitor::TranslateLocation(ArtMethod* method, 1361 uint32_t dex_pc, 1362 const char** source_file, 1363 int32_t* line_number) { 1364 // If method is null, location is unknown 1365 if (method == nullptr) { 1366 *source_file = ""; 1367 *line_number = 0; 1368 return; 1369 } 1370 *source_file = method->GetDeclaringClassSourceFile(); 1371 if (*source_file == nullptr) { 1372 *source_file = ""; 1373 } 1374 *line_number = method->GetLineNumFromDexPC(dex_pc); 1375 } 1376 1377 uint32_t Monitor::GetOwnerThreadId() { 1378 MutexLock mu(Thread::Current(), monitor_lock_); 1379 Thread* owner = owner_; 1380 if (owner != nullptr) { 1381 return owner->GetThreadId(); 1382 } else { 1383 return ThreadList::kInvalidThreadId; 1384 } 1385 } 1386 1387 MonitorList::MonitorList() 1388 : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock), 1389 monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) { 1390 } 1391 1392 MonitorList::~MonitorList() { 1393 Thread* self = Thread::Current(); 1394 MutexLock mu(self, monitor_list_lock_); 1395 // Release all monitors to the pool. 1396 // TODO: Is it an invariant that *all* open monitors are in the list? Then we could 1397 // clear faster in the pool. 1398 MonitorPool::ReleaseMonitors(self, &list_); 1399 } 1400 1401 void MonitorList::DisallowNewMonitors() { 1402 CHECK(!kUseReadBarrier); 1403 MutexLock mu(Thread::Current(), monitor_list_lock_); 1404 allow_new_monitors_ = false; 1405 } 1406 1407 void MonitorList::AllowNewMonitors() { 1408 CHECK(!kUseReadBarrier); 1409 Thread* self = Thread::Current(); 1410 MutexLock mu(self, monitor_list_lock_); 1411 allow_new_monitors_ = true; 1412 monitor_add_condition_.Broadcast(self); 1413 } 1414 1415 void MonitorList::BroadcastForNewMonitors() { 1416 Thread* self = Thread::Current(); 1417 MutexLock mu(self, monitor_list_lock_); 1418 monitor_add_condition_.Broadcast(self); 1419 } 1420 1421 void MonitorList::Add(Monitor* m) { 1422 Thread* self = Thread::Current(); 1423 MutexLock mu(self, monitor_list_lock_); 1424 // CMS needs this to block for concurrent reference processing because an object allocated during 1425 // the GC won't be marked and concurrent reference processing would incorrectly clear the JNI weak 1426 // ref. But CC (kUseReadBarrier == true) doesn't because of the to-space invariant. 1427 while (!kUseReadBarrier && UNLIKELY(!allow_new_monitors_)) { 1428 // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the 1429 // presence of threads blocking for weak ref access. 1430 self->CheckEmptyCheckpointFromWeakRefAccess(&monitor_list_lock_); 1431 monitor_add_condition_.WaitHoldingLocks(self); 1432 } 1433 list_.push_front(m); 1434 } 1435 1436 void MonitorList::SweepMonitorList(IsMarkedVisitor* visitor) { 1437 Thread* self = Thread::Current(); 1438 MutexLock mu(self, monitor_list_lock_); 1439 for (auto it = list_.begin(); it != list_.end(); ) { 1440 Monitor* m = *it; 1441 // Disable the read barrier in GetObject() as this is called by GC. 1442 mirror::Object* obj = m->GetObject<kWithoutReadBarrier>(); 1443 // The object of a monitor can be null if we have deflated it. 1444 mirror::Object* new_obj = obj != nullptr ? visitor->IsMarked(obj) : nullptr; 1445 if (new_obj == nullptr) { 1446 VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object " 1447 << obj; 1448 MonitorPool::ReleaseMonitor(self, m); 1449 it = list_.erase(it); 1450 } else { 1451 m->SetObject(new_obj); 1452 ++it; 1453 } 1454 } 1455 } 1456 1457 size_t MonitorList::Size() { 1458 Thread* self = Thread::Current(); 1459 MutexLock mu(self, monitor_list_lock_); 1460 return list_.size(); 1461 } 1462 1463 class MonitorDeflateVisitor : public IsMarkedVisitor { 1464 public: 1465 MonitorDeflateVisitor() : self_(Thread::Current()), deflate_count_(0) {} 1466 1467 virtual mirror::Object* IsMarked(mirror::Object* object) OVERRIDE 1468 REQUIRES_SHARED(Locks::mutator_lock_) { 1469 if (Monitor::Deflate(self_, object)) { 1470 DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked); 1471 ++deflate_count_; 1472 // If we deflated, return null so that the monitor gets removed from the array. 1473 return nullptr; 1474 } 1475 return object; // Monitor was not deflated. 1476 } 1477 1478 Thread* const self_; 1479 size_t deflate_count_; 1480 }; 1481 1482 size_t MonitorList::DeflateMonitors() { 1483 MonitorDeflateVisitor visitor; 1484 Locks::mutator_lock_->AssertExclusiveHeld(visitor.self_); 1485 SweepMonitorList(&visitor); 1486 return visitor.deflate_count_; 1487 } 1488 1489 MonitorInfo::MonitorInfo(mirror::Object* obj) : owner_(nullptr), entry_count_(0) { 1490 DCHECK(obj != nullptr); 1491 LockWord lock_word = obj->GetLockWord(true); 1492 switch (lock_word.GetState()) { 1493 case LockWord::kUnlocked: 1494 // Fall-through. 1495 case LockWord::kForwardingAddress: 1496 // Fall-through. 1497 case LockWord::kHashCode: 1498 break; 1499 case LockWord::kThinLocked: 1500 owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner()); 1501 entry_count_ = 1 + lock_word.ThinLockCount(); 1502 // Thin locks have no waiters. 1503 break; 1504 case LockWord::kFatLocked: { 1505 Monitor* mon = lock_word.FatLockMonitor(); 1506 owner_ = mon->owner_; 1507 entry_count_ = 1 + mon->lock_count_; 1508 for (Thread* waiter = mon->wait_set_; waiter != nullptr; waiter = waiter->GetWaitNext()) { 1509 waiters_.push_back(waiter); 1510 } 1511 break; 1512 } 1513 } 1514 } 1515 1516 } // namespace art 1517