/external/eigen/Eigen/src/QR/ |
ColPivHouseholderQR_LAPACKE.h | 71 m_maxpivot=m_qr.diagonal().cwiseAbs().maxCoeff(); \
|
ColPivHouseholderQR.h | 401 * diagonal coefficient of R. 453 return abs(m_qr.diagonal().prod()); 461 return m_qr.diagonal().cwiseAbs().array().log().sum(); 536 // generate the householder vector, store it below the diagonal 540 // apply the householder transformation to the diagonal coefficient 543 // remember the maximum absolute value of diagonal coefficients
|
/external/eigen/blas/f2c/ |
dsbmv.c | 78 /* column, with the leading diagonal of the matrix in row */ 79 /* ( k + 1 ) of the array, the first super-diagonal starting at */ 96 /* column, with the leading diagonal of the matrix in row 1 of */ 97 /* the array, the first sub-diagonal starting at position 1 in */
|
ssbmv.c | 78 /* column, with the leading diagonal of the matrix in row */ 79 /* ( k + 1 ) of the array, the first super-diagonal starting at */ 96 /* column, with the leading diagonal of the matrix in row 1 of */ 97 /* the array, the first sub-diagonal starting at position 1 in */
|
chbmv.c | 83 /* column, with the leading diagonal of the matrix in row */ 84 /* ( k + 1 ) of the array, the first super-diagonal starting at */ 101 /* column, with the leading diagonal of the matrix in row 1 of */ 102 /* the array, the first sub-diagonal starting at position 1 in */ 116 /* Note that the imaginary parts of the diagonal elements need */
|
zhbmv.c | 84 /* column, with the leading diagonal of the matrix in row */ 85 /* ( k + 1 ) of the array, the first super-diagonal starting at */ 102 /* column, with the leading diagonal of the matrix in row 1 of */ 103 /* the array, the first sub-diagonal starting at position 1 in */ 117 /* Note that the imaginary parts of the diagonal elements need */
|
/external/eigen/test/ |
inplace_decomposition.cpp | 34 A.diagonal().array() += 1e-3;
|
qr_colpivoting.cpp | 121 // Verify that the absolute value of the diagonal elements in R are 184 // Verify that the absolute value of the diagonal elements in R are 204 // even for a graded matrix, the diagonal of R falls of roughly 278 RealScalar absdet = abs(m1.diagonal().prod());
|
schur_real.cpp | 29 // part of a 2x2 diagonal block with imaginary eigenvalues.
|
geo_hyperplane.cpp | 61 while(scaling.diagonal().cwiseAbs().minCoeff()<RealScalar(1e-4)) scaling.diagonal() = VectorType::Random();
|
sparse_solver.h | 323 if(A.diagonal().size() <= maxRealWorldSize) 454 if(A.diagonal().size() <= maxRealWorldSize) 492 dA.diagonal() = (dA.diagonal().array()==0).select(1,dA.diagonal());
|
/external/eigen/unsupported/Eigen/src/NonLinearOptimization/ |
r1updt.h | 83 /* test for zero diagonal elements in the output s. */
|
/external/python/cpython2/Demo/curses/ |
tclock.py | 23 # draw a diagonal line using Bresenham's algorithm
|
/frameworks/ml/nn/common/operations/ |
LSTM.h | 75 // Peephole weights tensors of size {n_cell}, representing a diagonal matrix.
|
/packages/inputmethods/LatinIME/java/src/com/android/inputmethod/keyboard/internal/ |
BogusMoveEventDetector.java | 33 // These thresholds' unit is a diagonal length of a key.
|
/development/samples/TicTacToeLib/src/com/example/android/tictactoe/library/ |
GameActivity.java | 234 private void setFinished(State player, int col, int row, int diagonal) {
239 mGameView.setFinished(col, row, diagonal);
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/ode/nonstiff/ |
GraggBulirschStoerIntegrator.java | 525 * @param diag working diagonal of the Aitken-Neville's 532 // update the diagonal 565 final double[][] diagonal = new double[sequence.length-1][]; local 568 diagonal[k] = new double[y0.length]; 680 (k == 0) ? yMidDots[0] : diagonal[k-1], 818 extrapolate(0, j, diagonal, yMidDots[0]); 836 diagonal[j-1][i] = factor * fk[l2+j][middleIndex+l][i]; 838 extrapolate(l2, j, diagonal, yMidDots[l+1]); [all...] |
/external/dng_sdk/source/ |
dng_rect.h | 188 real64 Diagonal () const 331 real64 Diagonal () const
|
/external/eigen/Eigen/src/Eigenvalues/ |
RealQZ.h | 31 * matrix is a block-triangular matrix whose diagonal consists of 1-by-1 277 /** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */ 295 /** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */ 309 /** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */ 598 // if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations 619 // For each non triangular 2x2 diagonal block of S, 620 // reduce the respective 2x2 diagonal block of T to positive diagonal form using 2x2 SVD.
|
/external/eigen/Eigen/src/SparseLU/ |
SparseLU_SupernodalMatrix.h | 250 Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode 258 ++it; // Skip the diagonal element
|
/external/eigen/doc/ |
ClassHierarchy.dox | 69 diagonal matrices, sparse matrices, etc... 118 Finally, consider an example of something that is not a dense expression, for instance a diagonal matrix. The
|
TopicLinearAlgebraDecompositions.dox | 230 <li><a name="note1">\b 1: </a>There exist two variants of the LDLT algorithm. Eigen's one produces a pure diagonal D matrix, and therefore it cannot handle indefinite matrices, unlike Lapack's one which produces a block diagonal D matrix.</li>
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/linear/ |
EigenDecompositionImpl.java | 36 * by {@link #getD()} is always diagonal and the imaginary values returned 42 * the upper part of the matrix, the part below the diagonal is not accessed at 59 /** Main diagonal of the tridiagonal matrix. */ 62 /** Secondary diagonal of the tridiagonal matrix. */ 114 * @param main Main diagonal of the symmetric triadiagonal form 469 * to tri-diagonal form.
|
/external/eigen/Eigen/src/Core/ |
ProductEvaluators.h | 65 struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> > 66 : public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > 68 typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType; 69 typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base; 72 : Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>( [all...] |
/external/eigen/Eigen/src/SVD/ |
BDCSVD.h | 53 * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization, 420 m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n); 559 m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals; 563 // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing 576 m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal(); 720 // if col0(k) == 0, then entry is deflated, so singular value is on diagonal [all...] |