Home | History | Annotate | Download | only in f2c
      1 /* zhbmv.f -- translated by f2c (version 20100827).
      2    You must link the resulting object file with libf2c:
      3 	on Microsoft Windows system, link with libf2c.lib;
      4 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
      5 	or, if you install libf2c.a in a standard place, with -lf2c -lm
      6 	-- in that order, at the end of the command line, as in
      7 		cc *.o -lf2c -lm
      8 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
      9 
     10 		http://www.netlib.org/f2c/libf2c.zip
     11 */
     12 
     13 #include "datatypes.h"
     14 
     15 /* Subroutine */ int zhbmv_(char *uplo, integer *n, integer *k, doublecomplex
     16 	*alpha, doublecomplex *a, integer *lda, doublecomplex *x, integer *
     17 	incx, doublecomplex *beta, doublecomplex *y, integer *incy, ftnlen
     18 	uplo_len)
     19 {
     20     /* System generated locals */
     21     integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
     22     doublereal d__1;
     23     doublecomplex z__1, z__2, z__3, z__4;
     24 
     25     /* Builtin functions */
     26     void d_cnjg(doublecomplex *, doublecomplex *);
     27 
     28     /* Local variables */
     29     integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
     30     doublecomplex temp1, temp2;
     31     extern logical lsame_(char *, char *, ftnlen, ftnlen);
     32     integer kplus1;
     33     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
     34 
     35 /*     .. Scalar Arguments .. */
     36 /*     .. */
     37 /*     .. Array Arguments .. */
     38 /*     .. */
     39 
     40 /*  Purpose */
     41 /*  ======= */
     42 
     43 /*  ZHBMV  performs the matrix-vector  operation */
     44 
     45 /*     y := alpha*A*x + beta*y, */
     46 
     47 /*  where alpha and beta are scalars, x and y are n element vectors and */
     48 /*  A is an n by n hermitian band matrix, with k super-diagonals. */
     49 
     50 /*  Arguments */
     51 /*  ========== */
     52 
     53 /*  UPLO   - CHARACTER*1. */
     54 /*           On entry, UPLO specifies whether the upper or lower */
     55 /*           triangular part of the band matrix A is being supplied as */
     56 /*           follows: */
     57 
     58 /*              UPLO = 'U' or 'u'   The upper triangular part of A is */
     59 /*                                  being supplied. */
     60 
     61 /*              UPLO = 'L' or 'l'   The lower triangular part of A is */
     62 /*                                  being supplied. */
     63 
     64 /*           Unchanged on exit. */
     65 
     66 /*  N      - INTEGER. */
     67 /*           On entry, N specifies the order of the matrix A. */
     68 /*           N must be at least zero. */
     69 /*           Unchanged on exit. */
     70 
     71 /*  K      - INTEGER. */
     72 /*           On entry, K specifies the number of super-diagonals of the */
     73 /*           matrix A. K must satisfy  0 .le. K. */
     74 /*           Unchanged on exit. */
     75 
     76 /*  ALPHA  - COMPLEX*16      . */
     77 /*           On entry, ALPHA specifies the scalar alpha. */
     78 /*           Unchanged on exit. */
     79 
     80 /*  A      - COMPLEX*16       array of DIMENSION ( LDA, n ). */
     81 /*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
     82 /*           by n part of the array A must contain the upper triangular */
     83 /*           band part of the hermitian matrix, supplied column by */
     84 /*           column, with the leading diagonal of the matrix in row */
     85 /*           ( k + 1 ) of the array, the first super-diagonal starting at */
     86 /*           position 2 in row k, and so on. The top left k by k triangle */
     87 /*           of the array A is not referenced. */
     88 /*           The following program segment will transfer the upper */
     89 /*           triangular part of a hermitian band matrix from conventional */
     90 /*           full matrix storage to band storage: */
     91 
     92 /*                 DO 20, J = 1, N */
     93 /*                    M = K + 1 - J */
     94 /*                    DO 10, I = MAX( 1, J - K ), J */
     95 /*                       A( M + I, J ) = matrix( I, J ) */
     96 /*              10    CONTINUE */
     97 /*              20 CONTINUE */
     98 
     99 /*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
    100 /*           by n part of the array A must contain the lower triangular */
    101 /*           band part of the hermitian matrix, supplied column by */
    102 /*           column, with the leading diagonal of the matrix in row 1 of */
    103 /*           the array, the first sub-diagonal starting at position 1 in */
    104 /*           row 2, and so on. The bottom right k by k triangle of the */
    105 /*           array A is not referenced. */
    106 /*           The following program segment will transfer the lower */
    107 /*           triangular part of a hermitian band matrix from conventional */
    108 /*           full matrix storage to band storage: */
    109 
    110 /*                 DO 20, J = 1, N */
    111 /*                    M = 1 - J */
    112 /*                    DO 10, I = J, MIN( N, J + K ) */
    113 /*                       A( M + I, J ) = matrix( I, J ) */
    114 /*              10    CONTINUE */
    115 /*              20 CONTINUE */
    116 
    117 /*           Note that the imaginary parts of the diagonal elements need */
    118 /*           not be set and are assumed to be zero. */
    119 /*           Unchanged on exit. */
    120 
    121 /*  LDA    - INTEGER. */
    122 /*           On entry, LDA specifies the first dimension of A as declared */
    123 /*           in the calling (sub) program. LDA must be at least */
    124 /*           ( k + 1 ). */
    125 /*           Unchanged on exit. */
    126 
    127 /*  X      - COMPLEX*16       array of DIMENSION at least */
    128 /*           ( 1 + ( n - 1 )*abs( INCX ) ). */
    129 /*           Before entry, the incremented array X must contain the */
    130 /*           vector x. */
    131 /*           Unchanged on exit. */
    132 
    133 /*  INCX   - INTEGER. */
    134 /*           On entry, INCX specifies the increment for the elements of */
    135 /*           X. INCX must not be zero. */
    136 /*           Unchanged on exit. */
    137 
    138 /*  BETA   - COMPLEX*16      . */
    139 /*           On entry, BETA specifies the scalar beta. */
    140 /*           Unchanged on exit. */
    141 
    142 /*  Y      - COMPLEX*16       array of DIMENSION at least */
    143 /*           ( 1 + ( n - 1 )*abs( INCY ) ). */
    144 /*           Before entry, the incremented array Y must contain the */
    145 /*           vector y. On exit, Y is overwritten by the updated vector y. */
    146 
    147 /*  INCY   - INTEGER. */
    148 /*           On entry, INCY specifies the increment for the elements of */
    149 /*           Y. INCY must not be zero. */
    150 /*           Unchanged on exit. */
    151 
    152 /*  Further Details */
    153 /*  =============== */
    154 
    155 /*  Level 2 Blas routine. */
    156 
    157 /*  -- Written on 22-October-1986. */
    158 /*     Jack Dongarra, Argonne National Lab. */
    159 /*     Jeremy Du Croz, Nag Central Office. */
    160 /*     Sven Hammarling, Nag Central Office. */
    161 /*     Richard Hanson, Sandia National Labs. */
    162 
    163 /*  ===================================================================== */
    164 
    165 /*     .. Parameters .. */
    166 /*     .. */
    167 /*     .. Local Scalars .. */
    168 /*     .. */
    169 /*     .. External Functions .. */
    170 /*     .. */
    171 /*     .. External Subroutines .. */
    172 /*     .. */
    173 /*     .. Intrinsic Functions .. */
    174 /*     .. */
    175 
    176 /*     Test the input parameters. */
    177 
    178     /* Parameter adjustments */
    179     a_dim1 = *lda;
    180     a_offset = 1 + a_dim1;
    181     a -= a_offset;
    182     --x;
    183     --y;
    184 
    185     /* Function Body */
    186     info = 0;
    187     if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
    188 	    ftnlen)1, (ftnlen)1)) {
    189 	info = 1;
    190     } else if (*n < 0) {
    191 	info = 2;
    192     } else if (*k < 0) {
    193 	info = 3;
    194     } else if (*lda < *k + 1) {
    195 	info = 6;
    196     } else if (*incx == 0) {
    197 	info = 8;
    198     } else if (*incy == 0) {
    199 	info = 11;
    200     }
    201     if (info != 0) {
    202 	xerbla_("ZHBMV ", &info, (ftnlen)6);
    203 	return 0;
    204     }
    205 
    206 /*     Quick return if possible. */
    207 
    208     if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
    209                                                          beta->i == 0.))) {
    210 	return 0;
    211     }
    212 
    213 /*     Set up the start points in  X  and  Y. */
    214 
    215     if (*incx > 0) {
    216 	kx = 1;
    217     } else {
    218 	kx = 1 - (*n - 1) * *incx;
    219     }
    220     if (*incy > 0) {
    221 	ky = 1;
    222     } else {
    223 	ky = 1 - (*n - 1) * *incy;
    224     }
    225 
    226 /*     Start the operations. In this version the elements of the array A */
    227 /*     are accessed sequentially with one pass through A. */
    228 
    229 /*     First form  y := beta*y. */
    230 
    231     if (beta->r != 1. || beta->i != 0.) {
    232 	if (*incy == 1) {
    233 	    if (beta->r == 0. && beta->i == 0.) {
    234 		i__1 = *n;
    235 		for (i__ = 1; i__ <= i__1; ++i__) {
    236 		    i__2 = i__;
    237 		    y[i__2].r = 0., y[i__2].i = 0.;
    238 /* L10: */
    239 		}
    240 	    } else {
    241 		i__1 = *n;
    242 		for (i__ = 1; i__ <= i__1; ++i__) {
    243 		    i__2 = i__;
    244 		    i__3 = i__;
    245 		    z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
    246 			    z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
    247 			    .r;
    248 		    y[i__2].r = z__1.r, y[i__2].i = z__1.i;
    249 /* L20: */
    250 		}
    251 	    }
    252 	} else {
    253 	    iy = ky;
    254 	    if (beta->r == 0. && beta->i == 0.) {
    255 		i__1 = *n;
    256 		for (i__ = 1; i__ <= i__1; ++i__) {
    257 		    i__2 = iy;
    258 		    y[i__2].r = 0., y[i__2].i = 0.;
    259 		    iy += *incy;
    260 /* L30: */
    261 		}
    262 	    } else {
    263 		i__1 = *n;
    264 		for (i__ = 1; i__ <= i__1; ++i__) {
    265 		    i__2 = iy;
    266 		    i__3 = iy;
    267 		    z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
    268 			    z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
    269 			    .r;
    270 		    y[i__2].r = z__1.r, y[i__2].i = z__1.i;
    271 		    iy += *incy;
    272 /* L40: */
    273 		}
    274 	    }
    275 	}
    276     }
    277     if (alpha->r == 0. && alpha->i == 0.) {
    278 	return 0;
    279     }
    280     if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
    281 
    282 /*        Form  y  when upper triangle of A is stored. */
    283 
    284 	kplus1 = *k + 1;
    285 	if (*incx == 1 && *incy == 1) {
    286 	    i__1 = *n;
    287 	    for (j = 1; j <= i__1; ++j) {
    288 		i__2 = j;
    289 		z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
    290 			 alpha->r * x[i__2].i + alpha->i * x[i__2].r;
    291 		temp1.r = z__1.r, temp1.i = z__1.i;
    292 		temp2.r = 0., temp2.i = 0.;
    293 		l = kplus1 - j;
    294 /* Computing MAX */
    295 		i__2 = 1, i__3 = j - *k;
    296 		i__4 = j - 1;
    297 		for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
    298 		    i__2 = i__;
    299 		    i__3 = i__;
    300 		    i__5 = l + i__ + j * a_dim1;
    301 		    z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
    302 			    z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
    303 			    .r;
    304 		    z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
    305 		    y[i__2].r = z__1.r, y[i__2].i = z__1.i;
    306 		    d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
    307 		    i__2 = i__;
    308 		    z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i, z__2.i =
    309 			     z__3.r * x[i__2].i + z__3.i * x[i__2].r;
    310 		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
    311 		    temp2.r = z__1.r, temp2.i = z__1.i;
    312 /* L50: */
    313 		}
    314 		i__4 = j;
    315 		i__2 = j;
    316 		i__3 = kplus1 + j * a_dim1;
    317 		d__1 = a[i__3].r;
    318 		z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
    319 		z__2.r = y[i__2].r + z__3.r, z__2.i = y[i__2].i + z__3.i;
    320 		z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
    321 			alpha->r * temp2.i + alpha->i * temp2.r;
    322 		z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
    323 		y[i__4].r = z__1.r, y[i__4].i = z__1.i;
    324 /* L60: */
    325 	    }
    326 	} else {
    327 	    jx = kx;
    328 	    jy = ky;
    329 	    i__1 = *n;
    330 	    for (j = 1; j <= i__1; ++j) {
    331 		i__4 = jx;
    332 		z__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, z__1.i =
    333 			 alpha->r * x[i__4].i + alpha->i * x[i__4].r;
    334 		temp1.r = z__1.r, temp1.i = z__1.i;
    335 		temp2.r = 0., temp2.i = 0.;
    336 		ix = kx;
    337 		iy = ky;
    338 		l = kplus1 - j;
    339 /* Computing MAX */
    340 		i__4 = 1, i__2 = j - *k;
    341 		i__3 = j - 1;
    342 		for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
    343 		    i__4 = iy;
    344 		    i__2 = iy;
    345 		    i__5 = l + i__ + j * a_dim1;
    346 		    z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
    347 			    z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
    348 			    .r;
    349 		    z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
    350 		    y[i__4].r = z__1.r, y[i__4].i = z__1.i;
    351 		    d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
    352 		    i__4 = ix;
    353 		    z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
    354 			     z__3.r * x[i__4].i + z__3.i * x[i__4].r;
    355 		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
    356 		    temp2.r = z__1.r, temp2.i = z__1.i;
    357 		    ix += *incx;
    358 		    iy += *incy;
    359 /* L70: */
    360 		}
    361 		i__3 = jy;
    362 		i__4 = jy;
    363 		i__2 = kplus1 + j * a_dim1;
    364 		d__1 = a[i__2].r;
    365 		z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
    366 		z__2.r = y[i__4].r + z__3.r, z__2.i = y[i__4].i + z__3.i;
    367 		z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
    368 			alpha->r * temp2.i + alpha->i * temp2.r;
    369 		z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
    370 		y[i__3].r = z__1.r, y[i__3].i = z__1.i;
    371 		jx += *incx;
    372 		jy += *incy;
    373 		if (j > *k) {
    374 		    kx += *incx;
    375 		    ky += *incy;
    376 		}
    377 /* L80: */
    378 	    }
    379 	}
    380     } else {
    381 
    382 /*        Form  y  when lower triangle of A is stored. */
    383 
    384 	if (*incx == 1 && *incy == 1) {
    385 	    i__1 = *n;
    386 	    for (j = 1; j <= i__1; ++j) {
    387 		i__3 = j;
    388 		z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
    389 			 alpha->r * x[i__3].i + alpha->i * x[i__3].r;
    390 		temp1.r = z__1.r, temp1.i = z__1.i;
    391 		temp2.r = 0., temp2.i = 0.;
    392 		i__3 = j;
    393 		i__4 = j;
    394 		i__2 = j * a_dim1 + 1;
    395 		d__1 = a[i__2].r;
    396 		z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
    397 		z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
    398 		y[i__3].r = z__1.r, y[i__3].i = z__1.i;
    399 		l = 1 - j;
    400 /* Computing MIN */
    401 		i__4 = *n, i__2 = j + *k;
    402 		i__3 = min(i__4,i__2);
    403 		for (i__ = j + 1; i__ <= i__3; ++i__) {
    404 		    i__4 = i__;
    405 		    i__2 = i__;
    406 		    i__5 = l + i__ + j * a_dim1;
    407 		    z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
    408 			    z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
    409 			    .r;
    410 		    z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
    411 		    y[i__4].r = z__1.r, y[i__4].i = z__1.i;
    412 		    d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
    413 		    i__4 = i__;
    414 		    z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
    415 			     z__3.r * x[i__4].i + z__3.i * x[i__4].r;
    416 		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
    417 		    temp2.r = z__1.r, temp2.i = z__1.i;
    418 /* L90: */
    419 		}
    420 		i__3 = j;
    421 		i__4 = j;
    422 		z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
    423 			alpha->r * temp2.i + alpha->i * temp2.r;
    424 		z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
    425 		y[i__3].r = z__1.r, y[i__3].i = z__1.i;
    426 /* L100: */
    427 	    }
    428 	} else {
    429 	    jx = kx;
    430 	    jy = ky;
    431 	    i__1 = *n;
    432 	    for (j = 1; j <= i__1; ++j) {
    433 		i__3 = jx;
    434 		z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
    435 			 alpha->r * x[i__3].i + alpha->i * x[i__3].r;
    436 		temp1.r = z__1.r, temp1.i = z__1.i;
    437 		temp2.r = 0., temp2.i = 0.;
    438 		i__3 = jy;
    439 		i__4 = jy;
    440 		i__2 = j * a_dim1 + 1;
    441 		d__1 = a[i__2].r;
    442 		z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
    443 		z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
    444 		y[i__3].r = z__1.r, y[i__3].i = z__1.i;
    445 		l = 1 - j;
    446 		ix = jx;
    447 		iy = jy;
    448 /* Computing MIN */
    449 		i__4 = *n, i__2 = j + *k;
    450 		i__3 = min(i__4,i__2);
    451 		for (i__ = j + 1; i__ <= i__3; ++i__) {
    452 		    ix += *incx;
    453 		    iy += *incy;
    454 		    i__4 = iy;
    455 		    i__2 = iy;
    456 		    i__5 = l + i__ + j * a_dim1;
    457 		    z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
    458 			    z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
    459 			    .r;
    460 		    z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
    461 		    y[i__4].r = z__1.r, y[i__4].i = z__1.i;
    462 		    d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
    463 		    i__4 = ix;
    464 		    z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
    465 			     z__3.r * x[i__4].i + z__3.i * x[i__4].r;
    466 		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
    467 		    temp2.r = z__1.r, temp2.i = z__1.i;
    468 /* L110: */
    469 		}
    470 		i__3 = jy;
    471 		i__4 = jy;
    472 		z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
    473 			alpha->r * temp2.i + alpha->i * temp2.r;
    474 		z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
    475 		y[i__3].r = z__1.r, y[i__3].i = z__1.i;
    476 		jx += *incx;
    477 		jy += *incy;
    478 /* L120: */
    479 	    }
    480 	}
    481     }
    482 
    483     return 0;
    484 
    485 /*     End of ZHBMV . */
    486 
    487 } /* zhbmv_ */
    488 
    489