/external/eigen/Eigen/src/Eigenvalues/ |
ComplexSchur.h | 28 * \brief Performs a complex Schur decomposition of a real or complex square matrix 30 * \tparam _MatrixType the type of the matrix of which we are 32 * instantiation of the Matrix class template. 34 * Given a real or complex square matrix A, this class computes the 36 * complex matrix, and T is a complex upper triangular matrix. The 37 * diagonal of the matrix T corresponds to the eigenvalues of the 38 * matrix A. 41 * a given matrix. Alternatively, you can use the 78 * This is a square matrix with entries of type #ComplexScalar. [all...] |
Tridiagonalization.h | 36 * \brief Tridiagonal decomposition of a selfadjoint matrix 38 * \tparam _MatrixType the type of the matrix of which we are computing the 40 * Matrix class template. 42 * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: 43 * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. 45 * A tridiagonal matrix is a matrix which has nonzero elements only on the 47 * decomposition of a selfadjoint matrix is in fact a tridiagonal 49 * eigenvalues and eigenvectors of a selfadjoint matrix. 52 * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType& [all...] |
EigenSolver.h | 25 * \tparam _MatrixType the type of the matrix of which we are computing the 26 * eigendecomposition; this is expected to be an instantiation of the Matrix 29 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars 31 * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and 32 * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = 33 * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we 36 * The eigenvalues and eigenvectors of a matrix may be complex, even when the 37 * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D 39 * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to 47 * a given matrix. Alternatively, you can use the [all...] |
/external/eigen/bench/ |
quat_slerp.cpp | 157 Matrix<RefScalar,Dynamic,1> maxerr(7); 160 Matrix<RefScalar,Dynamic,1> avgerr(7);
|
/external/eigen/unsupported/Eigen/src/KroneckerProduct/ |
KroneckerTensorProduct.h | 78 * \tparam Lhs Type of the left-hand side, a matrix expression. 79 * \tparam Rhs Type of the rignt-hand side, a matrix expression. 104 * If at least one of the operands is a sparse matrix expression, 105 * then this class is returned and evaluates into a sparse matrix. 111 * \tparam Lhs Type of the left-hand side, a matrix expression. 112 * \tparam Rhs Type of the rignt-hand side, a matrix expression. 178 Matrix<int,Dynamic,Dynamic,ColMajor> nnzAB = nnzB * nnzA.transpose(); 216 typedef Matrix<Scalar,Rows,Cols> ReturnType; 256 * \warning If you want to replace a matrix by its Kronecker product 257 * with some matrix, do \b NOT do this [all...] |
/external/eigen/unsupported/test/ |
kronecker_product.cpp | 88 // DM = dense matrix; SM = sparse matrix 90 Matrix<double, 2, 3> DM_a; 111 Matrix<double, 6, 6> DM_fix_ab = kroneckerProduct(DM_a.topLeftCorner<2,3>(),DM_b);
|
/frameworks/base/media/mca/filterpacks/java/android/filterpacks/videosrc/ |
CameraSource.java | 32 import android.opengl.Matrix; 188 Matrix.multiplyMM(mMappedCoords, 0,
|
/frameworks/layoutlib/bridge/src/android/view/ |
RenderNode_Delegate.java | 22 import android.graphics.Matrix; 172 /*package*/ static void getMatrix(RenderNode renderNode, Matrix outMatrix) {
|
/frameworks/support/v17/leanback/src/android/support/v17/leanback/widget/ |
DetailsOverviewSharedElementHelper.java | 17 import android.graphics.Matrix; 69 private Matrix mSavedMatrix; 80 mSavedMatrix = mSavedScaleType == ScaleType.MATRIX ? imageView.getMatrix() : null; 88 // enforcing imageView to update its internal bounds/matrix immediately 103 if (snapshotImageView.getScaleType() == ScaleType.MATRIX) { 116 if (mSavedScaleType == ScaleType.MATRIX) {
|
/external/eigen/unsupported/Eigen/src/SparseExtra/ |
BlockSparseMatrix.h | 19 * \brief A versatile sparse matrix representation where each element is a block 30 * Here, bmat is a b_rows x b_cols block sparse matrix 31 * where each coefficient is a 3x3 dense matrix. 41 * It is thus required in this case to describe the layout of the matrix by calling 44 * In any of the previous case, the matrix can be filled by calling setFromTriplets(). 45 * A regular sparse matrix can be converted to a block sparse matrix and vice versa. 80 typedef Ref<Matrix<typename BlockSparseMatrixT::Scalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > Scalar; 81 typedef Ref<Matrix<typename BlockSparseMatrixT::RealScalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > RealScalar; 100 /* Proxy to view the block sparse matrix as a regular sparse matrix * [all...] |
/frameworks/base/graphics/java/android/graphics/drawable/ |
BitmapDrawable.java | 31 import android.graphics.Matrix; 104 // Mirroring matrix for using with Shaders 105 private Matrix mMirrorMatrix; 549 * Updates the {@code paint}'s shader matrix to be consistent with the 563 final Matrix matrix = getOrCreateMirrorMatrix(); local 564 matrix.reset(); 568 matrix.setTranslate(dx, 0); 569 matrix.setScale(-1, 1); 574 matrix.postScale(densityScale, densityScale) [all...] |
RippleDrawable.java | 35 import android.graphics.Matrix; 134 private Matrix mMaskMatrix; 785 mMaskMatrix = new Matrix(); [all...] |
/packages/apps/Messaging/src/com/android/messaging/util/ |
ImageUtils.java | 26 import android.graphics.Matrix; 136 final Matrix matrix = new Matrix(); local 139 matrix.setRectToRect(source, dest, Matrix.ScaleToFit.CENTER); 141 shader.setLocalMatrix(matrix); 397 // Matrix to undo orientation and scale at the same time 398 private final Matrix mMatrix; 445 mMatrix = new Matrix(); [all...] |
/external/eigen/Eigen/src/SVD/ |
JacobiSVD.h | 25 *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. 74 typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType; 86 bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) 88 if(matrix.rows() > matrix.cols()) 90 m_qr.compute(matrix); 91 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); 119 typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, TrOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime> 133 bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) [all...] |
/external/eigen/test/ |
sparse_product.cpp | 41 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; 42 typedef Matrix<Scalar,Dynamic,1> DenseVector; 43 typedef Matrix<Scalar,1,Dynamic> RowDenseVector; 50 // test matrix-matrix product 134 // sparse * dense matrix 209 // sparse matrix * sparse vector 225 // test matrix - diagonal product 255 // evaluate to a dense matrix to check the .row() and .col() iterator functions 354 typedef Matrix<Scalar, Dynamic, 1> Vector [all...] |
sparse_block.cpp | 37 typedef Matrix<Scalar,Dynamic,Dynamic,SparseMatrixType::IsRowMajor?RowMajor:ColMajor> DenseMatrix; 38 typedef Matrix<Scalar,Dynamic,1> DenseVector; 39 typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
|
/frameworks/ex/camera2/portability/src/com/android/ex/camera2/portability/ |
AndroidCamera2AgentImpl.java | 22 import android.graphics.Matrix; [all...] |
/packages/apps/Gallery/src/com/android/camera/ |
CropImage.java | 30 import android.graphics.Matrix; 289 croppedImage = Util.transform(new Matrix(), croppedImage, 419 Matrix mImageMatrix; 508 Matrix matrix = new Matrix(); 509 matrix.setScale(mScale, mScale); 511 .getWidth(), mBitmap.getHeight(), matrix, true);
|
/cts/apps/CtsVerifier/src/com/android/cts/verifier/camera/video/ |
CameraVideoActivity.java | 20 import android.graphics.Matrix; 698 Matrix transform = new Matrix();
|
/external/eigen/Eigen/src/LU/ |
FullPivLU.h | 30 * \brief LU decomposition of a matrix with complete pivoting, and related features 32 * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition 34 * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is 44 * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, 45 * working with the SVD allows to select the smallest singular values of the matrix, something that 51 * As an exemple, here is how the original matrix can be retrieved: 96 * \param matrix the matrix of which to compute the LU decomposition. 100 explicit FullPivLU(const EigenBase<InputType>& matrix); [all...] |
/external/eigen/Eigen/src/PaStiXSupport/ |
PaStiXSupport.h | 27 * The matrix can be either real or complex, symmetric or not. 95 // Convert the matrix to Fortran-style Numbering 142 typedef Matrix<Scalar,Dynamic,1> Vector; 208 * \c InvalidInput if the input matrix is invalid 220 // Initialize the Pastix data structure, check the matrix 249 mutable Matrix<StorageIndex,Dynamic,1> m_perm; // Permutation vector 250 mutable Matrix<StorageIndex,Dynamic,1> m_invp; // Inverse permutation vector 251 mutable int m_size; // Size of the matrix 297 eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared"); 369 eigen_assert(m_isInitialized && "The matrix should be factorized first") [all...] |
/external/eigen/Eigen/src/QR/ |
FullPivHouseholderQR.h | 38 * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting 40 * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition 42 * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b P', \b Q and \b R 47 * by using Householder transformations. Here, \b P and \b P' are permutation matrices, \b Q a unitary matrix 48 * and \b R an upper triangular matrix. 74 typedef Matrix<StorageIndex, 1, 113 /** \brief Constructs a QR factorization from a given matrix 115 * This constructor computes the QR factorization of the matrix \a matrix by calling 119 * FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()) [all...] |
/external/eigen/Eigen/src/SparseQR/ |
SparseQR.h | 54 * Q is the orthogonal matrix represented as products of Householder reflectors. 58 * R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient. 61 * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> 67 * \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()). 84 typedef Matrix<StorageIndex, Dynamic, 1> IndexVector; 85 typedef Matrix<Scalar, Dynamic, 1> ScalarVector; 97 /** Construct a QR factorization of the matrix \a mat. 99 * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). 108 /** Computes the QR factorization of the sparse matrix \a mat. 110 * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()) [all...] |
/external/eigen/unsupported/Eigen/src/NonLinearOptimization/ |
HybridNonLinearSolver.h | 66 typedef Matrix< Scalar, Dynamic, 1 > FVectorType; 67 typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType; 69 typedef Matrix< Scalar, Dynamic, Dynamic > UpperTriangularType; 197 /* calculate the jacobian matrix. */ 440 /* calculate the jacobian matrix. */
|
/external/llvm/include/llvm/CodeGen/PBQP/ |
Graph.h | 55 typedef typename SolverT::Matrix Matrix; 413 /// @param Costs Cost matrix for new edge. 419 "Matrix dimensions mismatch."); 420 // Get cost matrix from the problem domain. 431 /// @param Costs Cost matrix for new edge. 445 "Matrix dimensions mismatch."); 446 // Get cost matrix from the problem domain. 511 /// @brief Update an edge's cost matrix. 513 /// @param Costs New cost matrix [all...] |