Home | History | Annotate | Download | only in Eigenvalues
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009 Claire Maurice
      5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      6 // Copyright (C) 2010,2012 Jitse Niesen <jitse (at) maths.leeds.ac.uk>
      7 //
      8 // This Source Code Form is subject to the terms of the Mozilla
      9 // Public License v. 2.0. If a copy of the MPL was not distributed
     10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     11 
     12 #ifndef EIGEN_COMPLEX_SCHUR_H
     13 #define EIGEN_COMPLEX_SCHUR_H
     14 
     15 #include "./HessenbergDecomposition.h"
     16 
     17 namespace Eigen {
     18 
     19 namespace internal {
     20 template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
     21 }
     22 
     23 /** \eigenvalues_module \ingroup Eigenvalues_Module
     24   *
     25   *
     26   * \class ComplexSchur
     27   *
     28   * \brief Performs a complex Schur decomposition of a real or complex square matrix
     29   *
     30   * \tparam _MatrixType the type of the matrix of which we are
     31   * computing the Schur decomposition; this is expected to be an
     32   * instantiation of the Matrix class template.
     33   *
     34   * Given a real or complex square matrix A, this class computes the
     35   * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
     36   * complex matrix, and T is a complex upper triangular matrix.  The
     37   * diagonal of the matrix T corresponds to the eigenvalues of the
     38   * matrix A.
     39   *
     40   * Call the function compute() to compute the Schur decomposition of
     41   * a given matrix. Alternatively, you can use the
     42   * ComplexSchur(const MatrixType&, bool) constructor which computes
     43   * the Schur decomposition at construction time. Once the
     44   * decomposition is computed, you can use the matrixU() and matrixT()
     45   * functions to retrieve the matrices U and V in the decomposition.
     46   *
     47   * \note This code is inspired from Jampack
     48   *
     49   * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
     50   */
     51 template<typename _MatrixType> class ComplexSchur
     52 {
     53   public:
     54     typedef _MatrixType MatrixType;
     55     enum {
     56       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     57       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     58       Options = MatrixType::Options,
     59       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     60       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
     61     };
     62 
     63     /** \brief Scalar type for matrices of type \p _MatrixType. */
     64     typedef typename MatrixType::Scalar Scalar;
     65     typedef typename NumTraits<Scalar>::Real RealScalar;
     66     typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
     67 
     68     /** \brief Complex scalar type for \p _MatrixType.
     69       *
     70       * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
     71       * \c float or \c double) and just \c Scalar if #Scalar is
     72       * complex.
     73       */
     74     typedef std::complex<RealScalar> ComplexScalar;
     75 
     76     /** \brief Type for the matrices in the Schur decomposition.
     77       *
     78       * This is a square matrix with entries of type #ComplexScalar.
     79       * The size is the same as the size of \p _MatrixType.
     80       */
     81     typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
     82 
     83     /** \brief Default constructor.
     84       *
     85       * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
     86       *
     87       * The default constructor is useful in cases in which the user
     88       * intends to perform decompositions via compute().  The \p size
     89       * parameter is only used as a hint. It is not an error to give a
     90       * wrong \p size, but it may impair performance.
     91       *
     92       * \sa compute() for an example.
     93       */
     94     explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
     95       : m_matT(size,size),
     96         m_matU(size,size),
     97         m_hess(size),
     98         m_isInitialized(false),
     99         m_matUisUptodate(false),
    100         m_maxIters(-1)
    101     {}
    102 
    103     /** \brief Constructor; computes Schur decomposition of given matrix.
    104       *
    105       * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
    106       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
    107       *
    108       * This constructor calls compute() to compute the Schur decomposition.
    109       *
    110       * \sa matrixT() and matrixU() for examples.
    111       */
    112     template<typename InputType>
    113     explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true)
    114       : m_matT(matrix.rows(),matrix.cols()),
    115         m_matU(matrix.rows(),matrix.cols()),
    116         m_hess(matrix.rows()),
    117         m_isInitialized(false),
    118         m_matUisUptodate(false),
    119         m_maxIters(-1)
    120     {
    121       compute(matrix.derived(), computeU);
    122     }
    123 
    124     /** \brief Returns the unitary matrix in the Schur decomposition.
    125       *
    126       * \returns A const reference to the matrix U.
    127       *
    128       * It is assumed that either the constructor
    129       * ComplexSchur(const MatrixType& matrix, bool computeU) or the
    130       * member function compute(const MatrixType& matrix, bool computeU)
    131       * has been called before to compute the Schur decomposition of a
    132       * matrix, and that \p computeU was set to true (the default
    133       * value).
    134       *
    135       * Example: \include ComplexSchur_matrixU.cpp
    136       * Output: \verbinclude ComplexSchur_matrixU.out
    137       */
    138     const ComplexMatrixType& matrixU() const
    139     {
    140       eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
    141       eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
    142       return m_matU;
    143     }
    144 
    145     /** \brief Returns the triangular matrix in the Schur decomposition.
    146       *
    147       * \returns A const reference to the matrix T.
    148       *
    149       * It is assumed that either the constructor
    150       * ComplexSchur(const MatrixType& matrix, bool computeU) or the
    151       * member function compute(const MatrixType& matrix, bool computeU)
    152       * has been called before to compute the Schur decomposition of a
    153       * matrix.
    154       *
    155       * Note that this function returns a plain square matrix. If you want to reference
    156       * only the upper triangular part, use:
    157       * \code schur.matrixT().triangularView<Upper>() \endcode
    158       *
    159       * Example: \include ComplexSchur_matrixT.cpp
    160       * Output: \verbinclude ComplexSchur_matrixT.out
    161       */
    162     const ComplexMatrixType& matrixT() const
    163     {
    164       eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
    165       return m_matT;
    166     }
    167 
    168     /** \brief Computes Schur decomposition of given matrix.
    169       *
    170       * \param[in]  matrix  Square matrix whose Schur decomposition is to be computed.
    171       * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
    172 
    173       * \returns    Reference to \c *this
    174       *
    175       * The Schur decomposition is computed by first reducing the
    176       * matrix to Hessenberg form using the class
    177       * HessenbergDecomposition. The Hessenberg matrix is then reduced
    178       * to triangular form by performing QR iterations with a single
    179       * shift. The cost of computing the Schur decomposition depends
    180       * on the number of iterations; as a rough guide, it may be taken
    181       * on the number of iterations; as a rough guide, it may be taken
    182       * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
    183       * if \a computeU is false.
    184       *
    185       * Example: \include ComplexSchur_compute.cpp
    186       * Output: \verbinclude ComplexSchur_compute.out
    187       *
    188       * \sa compute(const MatrixType&, bool, Index)
    189       */
    190     template<typename InputType>
    191     ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
    192 
    193     /** \brief Compute Schur decomposition from a given Hessenberg matrix
    194      *  \param[in] matrixH Matrix in Hessenberg form H
    195      *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
    196      *  \param computeU Computes the matriX U of the Schur vectors
    197      * \return Reference to \c *this
    198      *
    199      *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH
    200      *  using either the class HessenbergDecomposition or another mean.
    201      *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H
    202      *  When computeU is true, this routine computes the matrix U such that
    203      *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
    204      *
    205      * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
    206      * is not available, the user should give an identity matrix (Q.setIdentity())
    207      *
    208      * \sa compute(const MatrixType&, bool)
    209      */
    210     template<typename HessMatrixType, typename OrthMatrixType>
    211     ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU=true);
    212 
    213     /** \brief Reports whether previous computation was successful.
    214       *
    215       * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
    216       */
    217     ComputationInfo info() const
    218     {
    219       eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
    220       return m_info;
    221     }
    222 
    223     /** \brief Sets the maximum number of iterations allowed.
    224       *
    225       * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
    226       * of the matrix.
    227       */
    228     ComplexSchur& setMaxIterations(Index maxIters)
    229     {
    230       m_maxIters = maxIters;
    231       return *this;
    232     }
    233 
    234     /** \brief Returns the maximum number of iterations. */
    235     Index getMaxIterations()
    236     {
    237       return m_maxIters;
    238     }
    239 
    240     /** \brief Maximum number of iterations per row.
    241       *
    242       * If not otherwise specified, the maximum number of iterations is this number times the size of the
    243       * matrix. It is currently set to 30.
    244       */
    245     static const int m_maxIterationsPerRow = 30;
    246 
    247   protected:
    248     ComplexMatrixType m_matT, m_matU;
    249     HessenbergDecomposition<MatrixType> m_hess;
    250     ComputationInfo m_info;
    251     bool m_isInitialized;
    252     bool m_matUisUptodate;
    253     Index m_maxIters;
    254 
    255   private:
    256     bool subdiagonalEntryIsNeglegible(Index i);
    257     ComplexScalar computeShift(Index iu, Index iter);
    258     void reduceToTriangularForm(bool computeU);
    259     friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
    260 };
    261 
    262 /** If m_matT(i+1,i) is neglegible in floating point arithmetic
    263   * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
    264   * return true, else return false. */
    265 template<typename MatrixType>
    266 inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
    267 {
    268   RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
    269   RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
    270   if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
    271   {
    272     m_matT.coeffRef(i+1,i) = ComplexScalar(0);
    273     return true;
    274   }
    275   return false;
    276 }
    277 
    278 
    279 /** Compute the shift in the current QR iteration. */
    280 template<typename MatrixType>
    281 typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
    282 {
    283   using std::abs;
    284   if (iter == 10 || iter == 20)
    285   {
    286     // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
    287     return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
    288   }
    289 
    290   // compute the shift as one of the eigenvalues of t, the 2x2
    291   // diagonal block on the bottom of the active submatrix
    292   Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
    293   RealScalar normt = t.cwiseAbs().sum();
    294   t /= normt;     // the normalization by sf is to avoid under/overflow
    295 
    296   ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
    297   ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
    298   ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
    299   ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
    300   ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
    301   ComplexScalar eival1 = (trace + disc) / RealScalar(2);
    302   ComplexScalar eival2 = (trace - disc) / RealScalar(2);
    303 
    304   if(numext::norm1(eival1) > numext::norm1(eival2))
    305     eival2 = det / eival1;
    306   else
    307     eival1 = det / eival2;
    308 
    309   // choose the eigenvalue closest to the bottom entry of the diagonal
    310   if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
    311     return normt * eival1;
    312   else
    313     return normt * eival2;
    314 }
    315 
    316 
    317 template<typename MatrixType>
    318 template<typename InputType>
    319 ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
    320 {
    321   m_matUisUptodate = false;
    322   eigen_assert(matrix.cols() == matrix.rows());
    323 
    324   if(matrix.cols() == 1)
    325   {
    326     m_matT = matrix.derived().template cast<ComplexScalar>();
    327     if(computeU)  m_matU = ComplexMatrixType::Identity(1,1);
    328     m_info = Success;
    329     m_isInitialized = true;
    330     m_matUisUptodate = computeU;
    331     return *this;
    332   }
    333 
    334   internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU);
    335   computeFromHessenberg(m_matT, m_matU, computeU);
    336   return *this;
    337 }
    338 
    339 template<typename MatrixType>
    340 template<typename HessMatrixType, typename OrthMatrixType>
    341 ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
    342 {
    343   m_matT = matrixH;
    344   if(computeU)
    345     m_matU = matrixQ;
    346   reduceToTriangularForm(computeU);
    347   return *this;
    348 }
    349 namespace internal {
    350 
    351 /* Reduce given matrix to Hessenberg form */
    352 template<typename MatrixType, bool IsComplex>
    353 struct complex_schur_reduce_to_hessenberg
    354 {
    355   // this is the implementation for the case IsComplex = true
    356   static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
    357   {
    358     _this.m_hess.compute(matrix);
    359     _this.m_matT = _this.m_hess.matrixH();
    360     if(computeU)  _this.m_matU = _this.m_hess.matrixQ();
    361   }
    362 };
    363 
    364 template<typename MatrixType>
    365 struct complex_schur_reduce_to_hessenberg<MatrixType, false>
    366 {
    367   static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
    368   {
    369     typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
    370 
    371     // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
    372     _this.m_hess.compute(matrix);
    373     _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
    374     if(computeU)
    375     {
    376       // This may cause an allocation which seems to be avoidable
    377       MatrixType Q = _this.m_hess.matrixQ();
    378       _this.m_matU = Q.template cast<ComplexScalar>();
    379     }
    380   }
    381 };
    382 
    383 } // end namespace internal
    384 
    385 // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
    386 template<typename MatrixType>
    387 void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
    388 {
    389   Index maxIters = m_maxIters;
    390   if (maxIters == -1)
    391     maxIters = m_maxIterationsPerRow * m_matT.rows();
    392 
    393   // The matrix m_matT is divided in three parts.
    394   // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
    395   // Rows il,...,iu is the part we are working on (the active submatrix).
    396   // Rows iu+1,...,end are already brought in triangular form.
    397   Index iu = m_matT.cols() - 1;
    398   Index il;
    399   Index iter = 0; // number of iterations we are working on the (iu,iu) element
    400   Index totalIter = 0; // number of iterations for whole matrix
    401 
    402   while(true)
    403   {
    404     // find iu, the bottom row of the active submatrix
    405     while(iu > 0)
    406     {
    407       if(!subdiagonalEntryIsNeglegible(iu-1)) break;
    408       iter = 0;
    409       --iu;
    410     }
    411 
    412     // if iu is zero then we are done; the whole matrix is triangularized
    413     if(iu==0) break;
    414 
    415     // if we spent too many iterations, we give up
    416     iter++;
    417     totalIter++;
    418     if(totalIter > maxIters) break;
    419 
    420     // find il, the top row of the active submatrix
    421     il = iu-1;
    422     while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
    423     {
    424       --il;
    425     }
    426 
    427     /* perform the QR step using Givens rotations. The first rotation
    428        creates a bulge; the (il+2,il) element becomes nonzero. This
    429        bulge is chased down to the bottom of the active submatrix. */
    430 
    431     ComplexScalar shift = computeShift(iu, iter);
    432     JacobiRotation<ComplexScalar> rot;
    433     rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
    434     m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
    435     m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
    436     if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
    437 
    438     for(Index i=il+1 ; i<iu ; i++)
    439     {
    440       rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
    441       m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
    442       m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
    443       m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
    444       if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
    445     }
    446   }
    447 
    448   if(totalIter <= maxIters)
    449     m_info = Success;
    450   else
    451     m_info = NoConvergence;
    452 
    453   m_isInitialized = true;
    454   m_matUisUptodate = computeU;
    455 }
    456 
    457 } // end namespace Eigen
    458 
    459 #endif // EIGEN_COMPLEX_SCHUR_H
    460