/external/eigen/test/ |
diagonal.cpp | 12 template<typename MatrixType> void diagonal(const MatrixType& m) function 25 //check diagonal() 26 VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal()); 27 m2.diagonal() = 2 * m1.diagonal(); 28 m2.diagonal()[0] *= 3; 37 // check sub/super diagonal 40 VERIFY(m1.template diagonal<N1>().RowsAtCompileTime == m1.diagonal(N1).size()) [all...] |
diagonalmatrices.cpp | 47 VERIFY_IS_APPROX(ldm1.diagonal(), ldm3.diagonal()); 49 VERIFY_IS_APPROX(ldm1.diagonal(), ldm4.diagonal()); 59 VERIFY_IS_APPROX( ((ldm1 * m1)(i,j)) , ldm1.diagonal()(i) * m1(i,j) ); 60 VERIFY_IS_APPROX( ((ldm1 * (m1+m2))(i,j)) , ldm1.diagonal()(i) * (m1+m2)(i,j) ); 61 VERIFY_IS_APPROX( ((m1 * rdm1)(i,j)) , rdm1.diagonal()(j) * m1(i,j) ); 90 VERIFY_IS_APPROX(LeftDiagonalMatrix(ldm1*s1).diagonal(), ldm1.diagonal() * s1); 91 VERIFY_IS_APPROX(LeftDiagonalMatrix(s1*ldm1).diagonal(), s1 * ldm1.diagonal()) [all...] |
bandmatrix.cpp | 28 m.diagonal().setConstant(123); 29 dm1.diagonal().setConstant(123); 32 m.diagonal(i).setConstant(static_cast<RealScalar>(i)); 33 dm1.diagonal(i).setConstant(static_cast<RealScalar>(i)); 37 m.diagonal(-i).setConstant(-static_cast<RealScalar>(i)); 38 dm1.diagonal(-i).setConstant(-static_cast<RealScalar>(i));
|
/external/eigen/doc/snippets/ |
MatrixBase_diagonal_int.cpp | 3 cout << "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:" << endl 4 << m.diagonal(1).transpose() << endl 5 << m.diagonal(-2).transpose() << endl;
|
MatrixBase_diagonal_template_int.cpp | 3 cout << "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:" << endl 4 << m.diagonal<1>().transpose() << endl 5 << m.diagonal<-2>().transpose() << endl;
|
MatrixBase_diagonal.cpp | 3 cout << "Here are the coefficients on the main diagonal of m:" << endl 4 << m.diagonal() << endl;
|
Tridiagonalization_diagonal.cpp | 10 VectorXd diag = triOfA.diagonal(); 11 cout << "The diagonal is:" << endl << diag << endl;
|
Tridiagonalization_decomposeInPlace.cpp | 9 cout << "The diagonal of the tridiagonal matrix T is:" << endl << diag << endl;
|
Tridiagonalization_packedMatrix.cpp | 7 cout << "The diagonal and subdiagonal corresponds to the matrix T, which is:"
|
/external/eigen/failtest/ |
const_qualified_diagonal_method_retval.cpp | 12 Diagonal<Matrix3d> b(m.diagonal());
|
diagonal_nonconst_ctor_on_const_xpr.cpp | 12 Diagonal<Matrix3d> d(m);
|
diagonal_on_const_type_actually_const.cpp | 13 Diagonal<CV_QUALIFIER MatrixXf>(m).coeffRef(0) = 1.0f;
|
/external/eigen/Eigen/src/Core/ |
Diagonal.h | 16 /** \class Diagonal 19 * \brief Expression of a diagonal/subdiagonal/superdiagonal in a matrix 21 * \param MatrixType the type of the object in which we are taking a sub/main/super diagonal 22 * \param DiagIndex the index of the sub/super diagonal. The default is 0 and it means the main diagonal. 28 * This class represents an expression of the main diagonal, or any sub/super diagonal 29 * of a square matrix. It is the return type of MatrixBase::diagonal() and MatrixBase::diagonal(Index) and most of the 32 * \sa MatrixBase::diagonal(), MatrixBase::diagonal(Index 188 MatrixBase<Derived>::diagonal() function in class:Eigen::MatrixBase 196 MatrixBase<Derived>::diagonal() const function in class:Eigen::MatrixBase 214 MatrixBase<Derived>::diagonal(Index index) function in class:Eigen::MatrixBase 222 MatrixBase<Derived>::diagonal(Index index) const function in class:Eigen::MatrixBase 241 MatrixBase<Derived>::diagonal() function in class:Eigen::MatrixBase 250 MatrixBase<Derived>::diagonal() const function in class:Eigen::MatrixBase [all...] |
DiagonalMatrix.h | 49 inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); } function in class:Eigen::DiagonalBase 51 inline DiagonalVectorType& diagonal() { return derived().diagonal(); } function in class:Eigen::DiagonalBase 54 inline Index rows() const { return diagonal().size(); } 56 inline Index cols() const { return diagonal().size(); } 71 return InverseReturnType(diagonal().cwiseInverse()); 78 return DiagonalWrapper<const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DiagonalVectorType,Scalar,product) >(diagonal() * scalar); 84 return DiagonalWrapper<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,DiagonalVectorType,product) >(scalar * other.diagonal()); 93 * \brief Represents a diagonal matrix with its storag 136 inline const DiagonalVectorType& diagonal() const { return m_diagonal; } function in class:Eigen::DiagonalMatrix 139 inline DiagonalVectorType& diagonal() { return m_diagonal; } function in class:Eigen::DiagonalMatrix 260 const DiagonalVectorType& diagonal() const { return m_diagonal; } function in class:Eigen::DiagonalWrapper [all...] |
DiagonalProduct.h | 16 /** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal.
|
BandMatrix.h | 83 /** \returns a vector expression of the main diagonal */ 84 inline Block<CoefficientsType,1,SizeAtCompileTime> diagonal() function in class:Eigen::internal::BandMatrixBase 87 /** \returns a vector expression of the main diagonal (const version) */ 88 inline const Block<const CoefficientsType,1,SizeAtCompileTime> diagonal() const function in class:Eigen::internal::BandMatrixBase 108 /** \returns a vector expression of the \a N -th sub or super diagonal */ 109 template<int N> inline typename DiagonalIntReturnType<N>::Type diagonal() function in class:Eigen::internal::BandMatrixBase 114 /** \returns a vector expression of the \a N -th sub or super diagonal */ 115 template<int N> inline const typename DiagonalIntReturnType<N>::Type diagonal() const function in class:Eigen::internal::BandMatrixBase 120 /** \returns a vector expression of the \a i -th sub or super diagonal */ 121 inline Block<CoefficientsType,1,Dynamic> diagonal(Index i function in class:Eigen::internal::BandMatrixBase 128 inline const Block<const CoefficientsType,1,Dynamic> diagonal(Index i) const function in class:Eigen::internal::BandMatrixBase [all...] |
/external/eigen/doc/examples/ |
function_taking_eigenbase.cpp | 16 // v.asDiagonal() returns a 3x3 diagonal matrix pseudo-expression
|
/external/vulkan-validation-layers/libs/glm/gtx/ |
matrix_operation.hpp | 33 /// @brief Build diagonal matrices from vectors. 53 //! Build a diagonal matrix. 59 //! Build a diagonal matrix. 65 //! Build a diagonal matrix. 71 //! Build a diagonal matrix. 77 //! Build a diagonal matrix. 83 //! Build a diagonal matrix. 89 //! Build a diagonal matrix. 95 //! Build a diagonal matrix. 101 //! Build a diagonal matrix [all...] |
/external/eigen/unsupported/Eigen/src/NonLinearOptimization/ |
qrsolv.h | 28 // the diagonal, though the diagonal is restored afterward 31 /* in particular, save the diagonal elements of r in x. */ 32 x = s.diagonal(); 37 /* eliminate the diagonal matrix d using a givens rotation. */ 41 /* diagonal element using p from the qr factorization. */ 57 /* compute the modified diagonal element of r and */ 82 sdiag = s.diagonal(); 83 s.diagonal() = x;
|
/external/eigen/unsupported/Eigen/src/LevenbergMarquardt/ |
LMqrsolv.h | 40 // the diagonal, though the diagonal is restored afterward 43 /* in particular, save the diagonal elements of r in x. */ 44 x = s.diagonal(); 49 /* eliminate the diagonal matrix d using a givens rotation. */ 53 /* diagonal element using p from the qr factorization. */ 69 /* compute the modified diagonal element of r and */ 94 sdiag = s.diagonal(); 95 s.diagonal() = x; 120 // the diagonal, though the diagonal is restored afterwar [all...] |
/external/eigen/doc/ |
tutorial.cpp | 15 m3.diagonal().setOnes(); 33 m4.diagonal().block(1,2).setOnes(); 34 std::cout << "*** Step 5 ***\nm4.diagonal():\n" << m4.diagonal() << std::endl; 35 std::cout << "m4.diagonal().start(3)\n" << m4.diagonal().start(3) << std::endl;
|
QuickReference.dox | 596 <a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices 599 \subsection QuickRef_Diagonal Diagonal matrices 604 view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code 608 Declare a diagonal matrix</td><td>\code 610 diag1.diagonal() = vector;\endcode 612 <tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td> 614 vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagona [all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/linear/ |
BiDiagonalTransformer.java | 24 * Class transforming any matrix to bi-diagonal shape. 27 * B an m × n bi-diagonal matrix (lower diagonal if m < n, upper diagonal 29 * <p>Transformation to bi-diagonal shape is often not a goal by itself, but it is 43 /** Main diagonal. */ 46 /** Secondary diagonal. */ 59 * Build the transformation to bi-diagonal shape of a matrix. 96 final double[] diagonal = (m >= n) ? main : secondary; local 114 alpha /= diagonal[k - diagOffset] * hK[k - diagOffset] 177 final double[] diagonal = (m >= n) ? secondary : main; local [all...] |
/external/eigen/Eigen/src/IterativeLinearSolvers/ |
BasicPreconditioners.h | 18 * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix. 19 * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: 21 A.diagonal().asDiagonal() . x = b 29 * The diagonal entries are pre-inverted and stored into a dense vector. 113 * This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix. 114 * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: 116 (A.adjoint() * A).diagonal().asDiagonal() * x = b 123 * The diagonal entries are pre-inverted and stored into a dense vector.
|
/external/eigen/Eigen/src/Eigenvalues/ |
Tridiagonalization.h | 46 * main diagonal and the first diagonal below and above it. The Hessenberg 89 typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type, 90 const Diagonal<const MatrixType> 94 typename internal::add_const_on_value_type<typename Diagonal<const MatrixType, -1>::RealReturnType>::type, 95 const Diagonal<const MatrixType, -1> 199 * - the diagonal and lower sub-diagonal represent the real tridiagonal 259 * returned by diagonal() and subDiagonal() instead of creating a new 263 * matrixQ(), packedMatrix(), diagonal(), subDiagonal( 307 Tridiagonalization<MatrixType>::diagonal() const function in class:Eigen::Tridiagonalization [all...] |