Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "inliner.h"
     18 
     19 #include "art_method-inl.h"
     20 #include "base/enums.h"
     21 #include "builder.h"
     22 #include "class_linker.h"
     23 #include "constant_folding.h"
     24 #include "dead_code_elimination.h"
     25 #include "dex/inline_method_analyser.h"
     26 #include "dex/verified_method.h"
     27 #include "dex/verification_results.h"
     28 #include "driver/compiler_driver-inl.h"
     29 #include "driver/compiler_options.h"
     30 #include "driver/dex_compilation_unit.h"
     31 #include "instruction_simplifier.h"
     32 #include "intrinsics.h"
     33 #include "jit/jit.h"
     34 #include "jit/jit_code_cache.h"
     35 #include "mirror/class_loader.h"
     36 #include "mirror/dex_cache.h"
     37 #include "nodes.h"
     38 #include "optimizing_compiler.h"
     39 #include "reference_type_propagation.h"
     40 #include "register_allocator_linear_scan.h"
     41 #include "sharpening.h"
     42 #include "ssa_builder.h"
     43 #include "ssa_phi_elimination.h"
     44 #include "scoped_thread_state_change-inl.h"
     45 #include "thread.h"
     46 
     47 namespace art {
     48 
     49 // Instruction limit to control memory.
     50 static constexpr size_t kMaximumNumberOfTotalInstructions = 1024;
     51 
     52 // Maximum number of instructions for considering a method small,
     53 // which we will always try to inline if the other non-instruction limits
     54 // are not reached.
     55 static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3;
     56 
     57 // Limit the number of dex registers that we accumulate while inlining
     58 // to avoid creating large amount of nested environments.
     59 static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32;
     60 
     61 // Limit recursive call inlining, which do not benefit from too
     62 // much inlining compared to code locality.
     63 static constexpr size_t kMaximumNumberOfRecursiveCalls = 4;
     64 
     65 // Controls the use of inline caches in AOT mode.
     66 static constexpr bool kUseAOTInlineCaches = true;
     67 
     68 // We check for line numbers to make sure the DepthString implementation
     69 // aligns the output nicely.
     70 #define LOG_INTERNAL(msg) \
     71   static_assert(__LINE__ > 10, "Unhandled line number"); \
     72   static_assert(__LINE__ < 10000, "Unhandled line number"); \
     73   VLOG(compiler) << DepthString(__LINE__) << msg
     74 
     75 #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ")
     76 #define LOG_NOTE() LOG_INTERNAL("Note: ")
     77 #define LOG_SUCCESS() LOG_INTERNAL("Success: ")
     78 #define LOG_FAIL(stat) MaybeRecordStat(stat); LOG_INTERNAL("Fail: ")
     79 #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ")
     80 
     81 std::string HInliner::DepthString(int line) const {
     82   std::string value;
     83   // Indent according to the inlining depth.
     84   size_t count = depth_;
     85   // Line numbers get printed in the log, so add a space if the log's line is less
     86   // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright.
     87   if (!kIsTargetBuild) {
     88     if (line < 100) {
     89       value += " ";
     90     }
     91     if (line < 1000) {
     92       value += " ";
     93     }
     94     // Safeguard if this file reaches more than 10000 lines.
     95     DCHECK_LT(line, 10000);
     96   }
     97   for (size_t i = 0; i < count; ++i) {
     98     value += "  ";
     99   }
    100   return value;
    101 }
    102 
    103 static size_t CountNumberOfInstructions(HGraph* graph) {
    104   size_t number_of_instructions = 0;
    105   for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) {
    106     for (HInstructionIterator instr_it(block->GetInstructions());
    107          !instr_it.Done();
    108          instr_it.Advance()) {
    109       ++number_of_instructions;
    110     }
    111   }
    112   return number_of_instructions;
    113 }
    114 
    115 void HInliner::UpdateInliningBudget() {
    116   if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) {
    117     // Always try to inline small methods.
    118     inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod;
    119   } else {
    120     inlining_budget_ = std::max(
    121         kMaximumNumberOfInstructionsForSmallMethod,
    122         kMaximumNumberOfTotalInstructions - total_number_of_instructions_);
    123   }
    124 }
    125 
    126 void HInliner::Run() {
    127   if (graph_->IsDebuggable()) {
    128     // For simplicity, we currently never inline when the graph is debuggable. This avoids
    129     // doing some logic in the runtime to discover if a method could have been inlined.
    130     return;
    131   }
    132 
    133   // Initialize the number of instructions for the method being compiled. Recursive calls
    134   // to HInliner::Run have already updated the instruction count.
    135   if (outermost_graph_ == graph_) {
    136     total_number_of_instructions_ = CountNumberOfInstructions(graph_);
    137   }
    138 
    139   UpdateInliningBudget();
    140   DCHECK_NE(total_number_of_instructions_, 0u);
    141   DCHECK_NE(inlining_budget_, 0u);
    142 
    143   // If we're compiling with a core image (which is only used for
    144   // test purposes), honor inlining directives in method names:
    145   // - if a method's name contains the substring "$inline$", ensure
    146   //   that this method is actually inlined;
    147   // - if a method's name contains the substring "$noinline$", do not
    148   //   inline that method.
    149   // We limit this to AOT compilation, as the JIT may or may not inline
    150   // depending on the state of classes at runtime.
    151   const bool honor_inlining_directives =
    152       IsCompilingWithCoreImage() && Runtime::Current()->IsAotCompiler();
    153 
    154   // Keep a copy of all blocks when starting the visit.
    155   ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder();
    156   DCHECK(!blocks.empty());
    157   // Because we are changing the graph when inlining,
    158   // we just iterate over the blocks of the outer method.
    159   // This avoids doing the inlining work again on the inlined blocks.
    160   for (HBasicBlock* block : blocks) {
    161     for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
    162       HInstruction* next = instruction->GetNext();
    163       HInvoke* call = instruction->AsInvoke();
    164       // As long as the call is not intrinsified, it is worth trying to inline.
    165       if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) {
    166         if (honor_inlining_directives) {
    167           // Debugging case: directives in method names control or assert on inlining.
    168           std::string callee_name = outer_compilation_unit_.GetDexFile()->PrettyMethod(
    169               call->GetDexMethodIndex(), /* with_signature */ false);
    170           // Tests prevent inlining by having $noinline$ in their method names.
    171           if (callee_name.find("$noinline$") == std::string::npos) {
    172             if (!TryInline(call)) {
    173               bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos);
    174               CHECK(!should_have_inlined) << "Could not inline " << callee_name;
    175             }
    176           }
    177         } else {
    178           // Normal case: try to inline.
    179           TryInline(call);
    180         }
    181       }
    182       instruction = next;
    183     }
    184   }
    185 }
    186 
    187 static bool IsMethodOrDeclaringClassFinal(ArtMethod* method)
    188     REQUIRES_SHARED(Locks::mutator_lock_) {
    189   return method->IsFinal() || method->GetDeclaringClass()->IsFinal();
    190 }
    191 
    192 /**
    193  * Given the `resolved_method` looked up in the dex cache, try to find
    194  * the actual runtime target of an interface or virtual call.
    195  * Return nullptr if the runtime target cannot be proven.
    196  */
    197 static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ArtMethod* resolved_method)
    198     REQUIRES_SHARED(Locks::mutator_lock_) {
    199   if (IsMethodOrDeclaringClassFinal(resolved_method)) {
    200     // No need to lookup further, the resolved method will be the target.
    201     return resolved_method;
    202   }
    203 
    204   HInstruction* receiver = invoke->InputAt(0);
    205   if (receiver->IsNullCheck()) {
    206     // Due to multiple levels of inlining within the same pass, it might be that
    207     // null check does not have the reference type of the actual receiver.
    208     receiver = receiver->InputAt(0);
    209   }
    210   ReferenceTypeInfo info = receiver->GetReferenceTypeInfo();
    211   DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName();
    212   if (!info.IsExact()) {
    213     // We currently only support inlining with known receivers.
    214     // TODO: Remove this check, we should be able to inline final methods
    215     // on unknown receivers.
    216     return nullptr;
    217   } else if (info.GetTypeHandle()->IsInterface()) {
    218     // Statically knowing that the receiver has an interface type cannot
    219     // help us find what is the target method.
    220     return nullptr;
    221   } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) {
    222     // The method that we're trying to call is not in the receiver's class or super classes.
    223     return nullptr;
    224   } else if (info.GetTypeHandle()->IsErroneous()) {
    225     // If the type is erroneous, do not go further, as we are going to query the vtable or
    226     // imt table, that we can only safely do on non-erroneous classes.
    227     return nullptr;
    228   }
    229 
    230   ClassLinker* cl = Runtime::Current()->GetClassLinker();
    231   PointerSize pointer_size = cl->GetImagePointerSize();
    232   if (invoke->IsInvokeInterface()) {
    233     resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface(
    234         resolved_method, pointer_size);
    235   } else {
    236     DCHECK(invoke->IsInvokeVirtual());
    237     resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual(
    238         resolved_method, pointer_size);
    239   }
    240 
    241   if (resolved_method == nullptr) {
    242     // The information we had on the receiver was not enough to find
    243     // the target method. Since we check above the exact type of the receiver,
    244     // the only reason this can happen is an IncompatibleClassChangeError.
    245     return nullptr;
    246   } else if (!resolved_method->IsInvokable()) {
    247     // The information we had on the receiver was not enough to find
    248     // the target method. Since we check above the exact type of the receiver,
    249     // the only reason this can happen is an IncompatibleClassChangeError.
    250     return nullptr;
    251   } else if (IsMethodOrDeclaringClassFinal(resolved_method)) {
    252     // A final method has to be the target method.
    253     return resolved_method;
    254   } else if (info.IsExact()) {
    255     // If we found a method and the receiver's concrete type is statically
    256     // known, we know for sure the target.
    257     return resolved_method;
    258   } else {
    259     // Even if we did find a method, the receiver type was not enough to
    260     // statically find the runtime target.
    261     return nullptr;
    262   }
    263 }
    264 
    265 static uint32_t FindMethodIndexIn(ArtMethod* method,
    266                                   const DexFile& dex_file,
    267                                   uint32_t name_and_signature_index)
    268     REQUIRES_SHARED(Locks::mutator_lock_) {
    269   if (IsSameDexFile(*method->GetDexFile(), dex_file)) {
    270     return method->GetDexMethodIndex();
    271   } else {
    272     return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index);
    273   }
    274 }
    275 
    276 static dex::TypeIndex FindClassIndexIn(mirror::Class* cls,
    277                                        const DexCompilationUnit& compilation_unit)
    278     REQUIRES_SHARED(Locks::mutator_lock_) {
    279   const DexFile& dex_file = *compilation_unit.GetDexFile();
    280   dex::TypeIndex index;
    281   if (cls->GetDexCache() == nullptr) {
    282     DCHECK(cls->IsArrayClass()) << cls->PrettyClass();
    283     index = cls->FindTypeIndexInOtherDexFile(dex_file);
    284   } else if (!cls->GetDexTypeIndex().IsValid()) {
    285     DCHECK(cls->IsProxyClass()) << cls->PrettyClass();
    286     // TODO: deal with proxy classes.
    287   } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) {
    288     DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get());
    289     index = cls->GetDexTypeIndex();
    290   } else {
    291     index = cls->FindTypeIndexInOtherDexFile(dex_file);
    292     // We cannot guarantee the entry will resolve to the same class,
    293     // as there may be different class loaders. So only return the index if it's
    294     // the right class already resolved with the class loader.
    295     if (index.IsValid()) {
    296       ObjPtr<mirror::Class> resolved = ClassLinker::LookupResolvedType(
    297           index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
    298       if (resolved != cls) {
    299         index = dex::TypeIndex::Invalid();
    300       }
    301     }
    302   }
    303 
    304   return index;
    305 }
    306 
    307 class ScopedProfilingInfoInlineUse {
    308  public:
    309   explicit ScopedProfilingInfoInlineUse(ArtMethod* method, Thread* self)
    310       : method_(method),
    311         self_(self),
    312         // Fetch the profiling info ahead of using it. If it's null when fetching,
    313         // we should not call JitCodeCache::DoneInlining.
    314         profiling_info_(
    315             Runtime::Current()->GetJit()->GetCodeCache()->NotifyCompilerUse(method, self)) {
    316   }
    317 
    318   ~ScopedProfilingInfoInlineUse() {
    319     if (profiling_info_ != nullptr) {
    320       PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
    321       DCHECK_EQ(profiling_info_, method_->GetProfilingInfo(pointer_size));
    322       Runtime::Current()->GetJit()->GetCodeCache()->DoneCompilerUse(method_, self_);
    323     }
    324   }
    325 
    326   ProfilingInfo* GetProfilingInfo() const { return profiling_info_; }
    327 
    328  private:
    329   ArtMethod* const method_;
    330   Thread* const self_;
    331   ProfilingInfo* const profiling_info_;
    332 };
    333 
    334 HInliner::InlineCacheType HInliner::GetInlineCacheType(
    335     const Handle<mirror::ObjectArray<mirror::Class>>& classes)
    336   REQUIRES_SHARED(Locks::mutator_lock_) {
    337   uint8_t number_of_types = 0;
    338   for (; number_of_types < InlineCache::kIndividualCacheSize; ++number_of_types) {
    339     if (classes->Get(number_of_types) == nullptr) {
    340       break;
    341     }
    342   }
    343 
    344   if (number_of_types == 0) {
    345     return kInlineCacheUninitialized;
    346   } else if (number_of_types == 1) {
    347     return kInlineCacheMonomorphic;
    348   } else if (number_of_types == InlineCache::kIndividualCacheSize) {
    349     return kInlineCacheMegamorphic;
    350   } else {
    351     return kInlineCachePolymorphic;
    352   }
    353 }
    354 
    355 static mirror::Class* GetMonomorphicType(Handle<mirror::ObjectArray<mirror::Class>> classes)
    356     REQUIRES_SHARED(Locks::mutator_lock_) {
    357   DCHECK(classes->Get(0) != nullptr);
    358   return classes->Get(0);
    359 }
    360 
    361 ArtMethod* HInliner::TryCHADevirtualization(ArtMethod* resolved_method) {
    362   if (!resolved_method->HasSingleImplementation()) {
    363     return nullptr;
    364   }
    365   if (Runtime::Current()->IsAotCompiler()) {
    366     // No CHA-based devirtulization for AOT compiler (yet).
    367     return nullptr;
    368   }
    369   if (outermost_graph_->IsCompilingOsr()) {
    370     // We do not support HDeoptimize in OSR methods.
    371     return nullptr;
    372   }
    373   PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize();
    374   ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size);
    375   if (single_impl == nullptr) {
    376     return nullptr;
    377   }
    378   if (single_impl->IsProxyMethod()) {
    379     // Proxy method is a generic invoker that's not worth
    380     // devirtualizing/inlining. It also causes issues when the proxy
    381     // method is in another dex file if we try to rewrite invoke-interface to
    382     // invoke-virtual because a proxy method doesn't have a real dex file.
    383     return nullptr;
    384   }
    385   if (!single_impl->GetDeclaringClass()->IsResolved()) {
    386     // There's a race with the class loading, which updates the CHA info
    387     // before setting the class to resolved. So we just bail for this
    388     // rare occurence.
    389     return nullptr;
    390   }
    391   return single_impl;
    392 }
    393 
    394 bool HInliner::TryInline(HInvoke* invoke_instruction) {
    395   if (invoke_instruction->IsInvokeUnresolved() ||
    396       invoke_instruction->IsInvokePolymorphic()) {
    397     return false;  // Don't bother to move further if we know the method is unresolved or an
    398                    // invoke-polymorphic.
    399   }
    400 
    401   ScopedObjectAccess soa(Thread::Current());
    402   uint32_t method_index = invoke_instruction->GetDexMethodIndex();
    403   const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
    404   LOG_TRY() << caller_dex_file.PrettyMethod(method_index);
    405 
    406   ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod();
    407   if (resolved_method == nullptr) {
    408     DCHECK(invoke_instruction->IsInvokeStaticOrDirect());
    409     DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit());
    410     LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method";
    411     return false;
    412   }
    413   ArtMethod* actual_method = nullptr;
    414 
    415   if (invoke_instruction->IsInvokeStaticOrDirect()) {
    416     actual_method = resolved_method;
    417   } else {
    418     // Check if we can statically find the method.
    419     actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, resolved_method);
    420   }
    421 
    422   bool cha_devirtualize = false;
    423   if (actual_method == nullptr) {
    424     ArtMethod* method = TryCHADevirtualization(resolved_method);
    425     if (method != nullptr) {
    426       cha_devirtualize = true;
    427       actual_method = method;
    428       LOG_NOTE() << "Try CHA-based inlining of " << actual_method->PrettyMethod();
    429     }
    430   }
    431 
    432   if (actual_method != nullptr) {
    433     bool result = TryInlineAndReplace(invoke_instruction,
    434                                       actual_method,
    435                                       ReferenceTypeInfo::CreateInvalid(),
    436                                       /* do_rtp */ true,
    437                                       cha_devirtualize);
    438     if (result && !invoke_instruction->IsInvokeStaticOrDirect()) {
    439       if (cha_devirtualize) {
    440         // Add dependency due to devirtulization. We've assumed resolved_method
    441         // has single implementation.
    442         outermost_graph_->AddCHASingleImplementationDependency(resolved_method);
    443         MaybeRecordStat(kCHAInline);
    444       } else {
    445         MaybeRecordStat(kInlinedInvokeVirtualOrInterface);
    446       }
    447     }
    448     return result;
    449   }
    450   DCHECK(!invoke_instruction->IsInvokeStaticOrDirect());
    451 
    452   // Try using inline caches.
    453   return TryInlineFromInlineCache(caller_dex_file, invoke_instruction, resolved_method);
    454 }
    455 
    456 static Handle<mirror::ObjectArray<mirror::Class>> AllocateInlineCacheHolder(
    457     const DexCompilationUnit& compilation_unit,
    458     StackHandleScope<1>* hs)
    459     REQUIRES_SHARED(Locks::mutator_lock_) {
    460   Thread* self = Thread::Current();
    461   ClassLinker* class_linker = compilation_unit.GetClassLinker();
    462   Handle<mirror::ObjectArray<mirror::Class>> inline_cache = hs->NewHandle(
    463       mirror::ObjectArray<mirror::Class>::Alloc(
    464           self,
    465           class_linker->GetClassRoot(ClassLinker::kClassArrayClass),
    466           InlineCache::kIndividualCacheSize));
    467   if (inline_cache == nullptr) {
    468     // We got an OOME. Just clear the exception, and don't inline.
    469     DCHECK(self->IsExceptionPending());
    470     self->ClearException();
    471     VLOG(compiler) << "Out of memory in the compiler when trying to inline";
    472   }
    473   return inline_cache;
    474 }
    475 
    476 bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() {
    477   // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and
    478   // do not generate a deopt.
    479   //
    480   // For AOT:
    481   //    Generating a deopt does not ensure that we will actually capture the new types;
    482   //    and the danger is that we could be stuck in a loop with "forever" deoptimizations.
    483   //    Take for example the following scenario:
    484   //      - we capture the inline cache in one run
    485   //      - the next run, we deoptimize because we miss a type check, but the method
    486   //        never becomes hot again
    487   //    In this case, the inline cache will not be updated in the profile and the AOT code
    488   //    will keep deoptimizing.
    489   //    Another scenario is if we use profile compilation for a process which is not allowed
    490   //    to JIT (e.g. system server). If we deoptimize we will run interpreted code for the
    491   //    rest of the lifetime.
    492   // TODO(calin):
    493   //    This is a compromise because we will most likely never update the inline cache
    494   //    in the profile (unless there's another reason to deopt). So we might be stuck with
    495   //    a sub-optimal inline cache.
    496   //    We could be smarter when capturing inline caches to mitigate this.
    497   //    (e.g. by having different thresholds for new and old methods).
    498   //
    499   // For OSR:
    500   //     We may come from the interpreter and it may have seen different receiver types.
    501   return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr();
    502 }
    503 bool HInliner::TryInlineFromInlineCache(const DexFile& caller_dex_file,
    504                                         HInvoke* invoke_instruction,
    505                                         ArtMethod* resolved_method)
    506     REQUIRES_SHARED(Locks::mutator_lock_) {
    507   if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) {
    508     return false;
    509   }
    510 
    511   StackHandleScope<1> hs(Thread::Current());
    512   Handle<mirror::ObjectArray<mirror::Class>> inline_cache;
    513   InlineCacheType inline_cache_type = Runtime::Current()->IsAotCompiler()
    514       ? GetInlineCacheAOT(caller_dex_file, invoke_instruction, &hs, &inline_cache)
    515       : GetInlineCacheJIT(invoke_instruction, &hs, &inline_cache);
    516 
    517   switch (inline_cache_type) {
    518     case kInlineCacheNoData: {
    519       LOG_FAIL_NO_STAT()
    520           << "Interface or virtual call to "
    521           << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
    522           << " could not be statically determined";
    523       return false;
    524     }
    525 
    526     case kInlineCacheUninitialized: {
    527       LOG_FAIL_NO_STAT()
    528           << "Interface or virtual call to "
    529           << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
    530           << " is not hit and not inlined";
    531       return false;
    532     }
    533 
    534     case kInlineCacheMonomorphic: {
    535       MaybeRecordStat(kMonomorphicCall);
    536       if (UseOnlyPolymorphicInliningWithNoDeopt()) {
    537         return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache);
    538       } else {
    539         return TryInlineMonomorphicCall(invoke_instruction, resolved_method, inline_cache);
    540       }
    541     }
    542 
    543     case kInlineCachePolymorphic: {
    544       MaybeRecordStat(kPolymorphicCall);
    545       return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache);
    546     }
    547 
    548     case kInlineCacheMegamorphic: {
    549       LOG_FAIL_NO_STAT()
    550           << "Interface or virtual call to "
    551           << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
    552           << " is megamorphic and not inlined";
    553       MaybeRecordStat(kMegamorphicCall);
    554       return false;
    555     }
    556 
    557     case kInlineCacheMissingTypes: {
    558       LOG_FAIL_NO_STAT()
    559           << "Interface or virtual call to "
    560           << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
    561           << " is missing types and not inlined";
    562       return false;
    563     }
    564   }
    565   UNREACHABLE();
    566 }
    567 
    568 HInliner::InlineCacheType HInliner::GetInlineCacheJIT(
    569     HInvoke* invoke_instruction,
    570     StackHandleScope<1>* hs,
    571     /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache)
    572     REQUIRES_SHARED(Locks::mutator_lock_) {
    573   DCHECK(Runtime::Current()->UseJitCompilation());
    574 
    575   ArtMethod* caller = graph_->GetArtMethod();
    576   // Under JIT, we should always know the caller.
    577   DCHECK(caller != nullptr);
    578   ScopedProfilingInfoInlineUse spiis(caller, Thread::Current());
    579   ProfilingInfo* profiling_info = spiis.GetProfilingInfo();
    580 
    581   if (profiling_info == nullptr) {
    582     return kInlineCacheNoData;
    583   }
    584 
    585   *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs);
    586   if (inline_cache->Get() == nullptr) {
    587     // We can't extract any data if we failed to allocate;
    588     return kInlineCacheNoData;
    589   } else {
    590     Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto(
    591         *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()),
    592         *inline_cache);
    593     return GetInlineCacheType(*inline_cache);
    594   }
    595 }
    596 
    597 HInliner::InlineCacheType HInliner::GetInlineCacheAOT(
    598     const DexFile& caller_dex_file,
    599     HInvoke* invoke_instruction,
    600     StackHandleScope<1>* hs,
    601     /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache)
    602     REQUIRES_SHARED(Locks::mutator_lock_) {
    603   DCHECK(Runtime::Current()->IsAotCompiler());
    604   const ProfileCompilationInfo* pci = compiler_driver_->GetProfileCompilationInfo();
    605   if (pci == nullptr) {
    606     return kInlineCacheNoData;
    607   }
    608 
    609   std::unique_ptr<ProfileCompilationInfo::OfflineProfileMethodInfo> offline_profile =
    610       pci->GetMethod(caller_dex_file.GetLocation(),
    611                      caller_dex_file.GetLocationChecksum(),
    612                      caller_compilation_unit_.GetDexMethodIndex());
    613   if (offline_profile == nullptr) {
    614     return kInlineCacheNoData;  // no profile information for this invocation.
    615   }
    616 
    617   *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs);
    618   if (inline_cache == nullptr) {
    619     // We can't extract any data if we failed to allocate;
    620     return kInlineCacheNoData;
    621   } else {
    622     return ExtractClassesFromOfflineProfile(invoke_instruction,
    623                                             *(offline_profile.get()),
    624                                             *inline_cache);
    625   }
    626 }
    627 
    628 HInliner::InlineCacheType HInliner::ExtractClassesFromOfflineProfile(
    629     const HInvoke* invoke_instruction,
    630     const ProfileCompilationInfo::OfflineProfileMethodInfo& offline_profile,
    631     /*out*/Handle<mirror::ObjectArray<mirror::Class>> inline_cache)
    632     REQUIRES_SHARED(Locks::mutator_lock_) {
    633   const auto it = offline_profile.inline_caches->find(invoke_instruction->GetDexPc());
    634   if (it == offline_profile.inline_caches->end()) {
    635     return kInlineCacheUninitialized;
    636   }
    637 
    638   const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second;
    639 
    640   if (dex_pc_data.is_missing_types) {
    641     return kInlineCacheMissingTypes;
    642   }
    643   if (dex_pc_data.is_megamorphic) {
    644     return kInlineCacheMegamorphic;
    645   }
    646 
    647   DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize);
    648   Thread* self = Thread::Current();
    649   // We need to resolve the class relative to the containing dex file.
    650   // So first, build a mapping from the index of dex file in the profile to
    651   // its dex cache. This will avoid repeating the lookup when walking over
    652   // the inline cache types.
    653   std::vector<ObjPtr<mirror::DexCache>> dex_profile_index_to_dex_cache(
    654         offline_profile.dex_references.size());
    655   for (size_t i = 0; i < offline_profile.dex_references.size(); i++) {
    656     bool found = false;
    657     for (const DexFile* dex_file : compiler_driver_->GetDexFilesForOatFile()) {
    658       if (offline_profile.dex_references[i].MatchesDex(dex_file)) {
    659         dex_profile_index_to_dex_cache[i] =
    660             caller_compilation_unit_.GetClassLinker()->FindDexCache(self, *dex_file);
    661         found = true;
    662       }
    663     }
    664     if (!found) {
    665       VLOG(compiler) << "Could not find profiled dex file: "
    666           << offline_profile.dex_references[i].dex_location;
    667       return kInlineCacheMissingTypes;
    668     }
    669   }
    670 
    671   // Walk over the classes and resolve them. If we cannot find a type we return
    672   // kInlineCacheMissingTypes.
    673   int ic_index = 0;
    674   for (const ProfileCompilationInfo::ClassReference& class_ref : dex_pc_data.classes) {
    675     ObjPtr<mirror::DexCache> dex_cache =
    676         dex_profile_index_to_dex_cache[class_ref.dex_profile_index];
    677     DCHECK(dex_cache != nullptr);
    678 
    679     if (!dex_cache->GetDexFile()->IsTypeIndexValid(class_ref.type_index)) {
    680       VLOG(compiler) << "Profile data corrupt: type index " << class_ref.type_index
    681             << "is invalid in location" << dex_cache->GetDexFile()->GetLocation();
    682       return kInlineCacheNoData;
    683     }
    684     ObjPtr<mirror::Class> clazz = ClassLinker::LookupResolvedType(
    685           class_ref.type_index,
    686           dex_cache,
    687           caller_compilation_unit_.GetClassLoader().Get());
    688     if (clazz != nullptr) {
    689       inline_cache->Set(ic_index++, clazz);
    690     } else {
    691       VLOG(compiler) << "Could not resolve class from inline cache in AOT mode "
    692           << caller_compilation_unit_.GetDexFile()->PrettyMethod(
    693               invoke_instruction->GetDexMethodIndex()) << " : "
    694           << caller_compilation_unit_
    695               .GetDexFile()->StringByTypeIdx(class_ref.type_index);
    696       return kInlineCacheMissingTypes;
    697     }
    698   }
    699   return GetInlineCacheType(inline_cache);
    700 }
    701 
    702 HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker,
    703                                                    HInstruction* receiver,
    704                                                    uint32_t dex_pc) const {
    705   ArtField* field = class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0);
    706   DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
    707   HInstanceFieldGet* result = new (graph_->GetArena()) HInstanceFieldGet(
    708       receiver,
    709       field,
    710       Primitive::kPrimNot,
    711       field->GetOffset(),
    712       field->IsVolatile(),
    713       field->GetDexFieldIndex(),
    714       field->GetDeclaringClass()->GetDexClassDefIndex(),
    715       *field->GetDexFile(),
    716       dex_pc);
    717   // The class of a field is effectively final, and does not have any memory dependencies.
    718   result->SetSideEffects(SideEffects::None());
    719   return result;
    720 }
    721 
    722 static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass,
    723                                                ArtMethod* resolved_method,
    724                                                HInstruction* invoke_instruction,
    725                                                PointerSize pointer_size)
    726     REQUIRES_SHARED(Locks::mutator_lock_) {
    727   if (Runtime::Current()->IsAotCompiler()) {
    728     // We can get unrelated types when working with profiles (corruption,
    729     // systme updates, or anyone can write to it). So first check if the class
    730     // actually implements the declaring class of the method that is being
    731     // called in bytecode.
    732     // Note: the lookup methods used below require to have assignable types.
    733     if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) {
    734       return nullptr;
    735     }
    736   }
    737 
    738   if (invoke_instruction->IsInvokeInterface()) {
    739     resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size);
    740   } else {
    741     DCHECK(invoke_instruction->IsInvokeVirtual());
    742     resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size);
    743   }
    744   DCHECK(resolved_method != nullptr);
    745   return resolved_method;
    746 }
    747 
    748 bool HInliner::TryInlineMonomorphicCall(HInvoke* invoke_instruction,
    749                                         ArtMethod* resolved_method,
    750                                         Handle<mirror::ObjectArray<mirror::Class>> classes) {
    751   DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
    752       << invoke_instruction->DebugName();
    753 
    754   dex::TypeIndex class_index = FindClassIndexIn(
    755       GetMonomorphicType(classes), caller_compilation_unit_);
    756   if (!class_index.IsValid()) {
    757     LOG_FAIL(kNotInlinedDexCache)
    758         << "Call to " << ArtMethod::PrettyMethod(resolved_method)
    759         << " from inline cache is not inlined because its class is not"
    760         << " accessible to the caller";
    761     return false;
    762   }
    763 
    764   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
    765   PointerSize pointer_size = class_linker->GetImagePointerSize();
    766   Handle<mirror::Class> monomorphic_type = handles_->NewHandle(GetMonomorphicType(classes));
    767   resolved_method = ResolveMethodFromInlineCache(
    768       monomorphic_type, resolved_method, invoke_instruction, pointer_size);
    769 
    770   LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod();
    771   if (resolved_method == nullptr) {
    772     // Bogus AOT profile, bail.
    773     DCHECK(Runtime::Current()->IsAotCompiler());
    774     return false;
    775   }
    776 
    777   HInstruction* receiver = invoke_instruction->InputAt(0);
    778   HInstruction* cursor = invoke_instruction->GetPrevious();
    779   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
    780   if (!TryInlineAndReplace(invoke_instruction,
    781                            resolved_method,
    782                            ReferenceTypeInfo::Create(monomorphic_type, /* is_exact */ true),
    783                            /* do_rtp */ false,
    784                            /* cha_devirtualize */ false)) {
    785     return false;
    786   }
    787 
    788   // We successfully inlined, now add a guard.
    789   AddTypeGuard(receiver,
    790                cursor,
    791                bb_cursor,
    792                class_index,
    793                monomorphic_type,
    794                invoke_instruction,
    795                /* with_deoptimization */ true);
    796 
    797   // Run type propagation to get the guard typed, and eventually propagate the
    798   // type of the receiver.
    799   ReferenceTypePropagation rtp_fixup(graph_,
    800                                      outer_compilation_unit_.GetClassLoader(),
    801                                      outer_compilation_unit_.GetDexCache(),
    802                                      handles_,
    803                                      /* is_first_run */ false);
    804   rtp_fixup.Run();
    805 
    806   MaybeRecordStat(kInlinedMonomorphicCall);
    807   return true;
    808 }
    809 
    810 void HInliner::AddCHAGuard(HInstruction* invoke_instruction,
    811                            uint32_t dex_pc,
    812                            HInstruction* cursor,
    813                            HBasicBlock* bb_cursor) {
    814   HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetArena())
    815       HShouldDeoptimizeFlag(graph_->GetArena(), dex_pc);
    816   HInstruction* compare = new (graph_->GetArena()) HNotEqual(
    817       deopt_flag, graph_->GetIntConstant(0, dex_pc));
    818   HInstruction* deopt = new (graph_->GetArena()) HDeoptimize(
    819       graph_->GetArena(), compare, DeoptimizationKind::kCHA, dex_pc);
    820 
    821   if (cursor != nullptr) {
    822     bb_cursor->InsertInstructionAfter(deopt_flag, cursor);
    823   } else {
    824     bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction());
    825   }
    826   bb_cursor->InsertInstructionAfter(compare, deopt_flag);
    827   bb_cursor->InsertInstructionAfter(deopt, compare);
    828 
    829   // Add receiver as input to aid CHA guard optimization later.
    830   deopt_flag->AddInput(invoke_instruction->InputAt(0));
    831   DCHECK_EQ(deopt_flag->InputCount(), 1u);
    832   deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
    833   outermost_graph_->IncrementNumberOfCHAGuards();
    834 }
    835 
    836 HInstruction* HInliner::AddTypeGuard(HInstruction* receiver,
    837                                      HInstruction* cursor,
    838                                      HBasicBlock* bb_cursor,
    839                                      dex::TypeIndex class_index,
    840                                      Handle<mirror::Class> klass,
    841                                      HInstruction* invoke_instruction,
    842                                      bool with_deoptimization) {
    843   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
    844   HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
    845       class_linker, receiver, invoke_instruction->GetDexPc());
    846   if (cursor != nullptr) {
    847     bb_cursor->InsertInstructionAfter(receiver_class, cursor);
    848   } else {
    849     bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
    850   }
    851 
    852   const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
    853   bool is_referrer;
    854   ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod();
    855   if (outermost_art_method == nullptr) {
    856     DCHECK(Runtime::Current()->IsAotCompiler());
    857     // We are in AOT mode and we don't have an ART method to determine
    858     // if the inlined method belongs to the referrer. Assume it doesn't.
    859     is_referrer = false;
    860   } else {
    861     is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass();
    862   }
    863 
    864   // Note that we will just compare the classes, so we don't need Java semantics access checks.
    865   // Note that the type index and the dex file are relative to the method this type guard is
    866   // inlined into.
    867   HLoadClass* load_class = new (graph_->GetArena()) HLoadClass(graph_->GetCurrentMethod(),
    868                                                                class_index,
    869                                                                caller_dex_file,
    870                                                                klass,
    871                                                                is_referrer,
    872                                                                invoke_instruction->GetDexPc(),
    873                                                                /* needs_access_check */ false);
    874   HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind(
    875       load_class, codegen_, compiler_driver_, caller_compilation_unit_);
    876   DCHECK(kind != HLoadClass::LoadKind::kInvalid)
    877       << "We should always be able to reference a class for inline caches";
    878   // Insert before setting the kind, as setting the kind affects the inputs.
    879   bb_cursor->InsertInstructionAfter(load_class, receiver_class);
    880   load_class->SetLoadKind(kind);
    881   // In AOT mode, we will most likely load the class from BSS, which will involve a call
    882   // to the runtime. In this case, the load instruction will need an environment so copy
    883   // it from the invoke instruction.
    884   if (load_class->NeedsEnvironment()) {
    885     DCHECK(Runtime::Current()->IsAotCompiler());
    886     load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
    887   }
    888 
    889   HNotEqual* compare = new (graph_->GetArena()) HNotEqual(load_class, receiver_class);
    890   bb_cursor->InsertInstructionAfter(compare, load_class);
    891   if (with_deoptimization) {
    892     HDeoptimize* deoptimize = new (graph_->GetArena()) HDeoptimize(
    893         graph_->GetArena(),
    894         compare,
    895         receiver,
    896         Runtime::Current()->IsAotCompiler()
    897             ? DeoptimizationKind::kAotInlineCache
    898             : DeoptimizationKind::kJitInlineCache,
    899         invoke_instruction->GetDexPc());
    900     bb_cursor->InsertInstructionAfter(deoptimize, compare);
    901     deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
    902     DCHECK_EQ(invoke_instruction->InputAt(0), receiver);
    903     receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
    904     deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
    905   }
    906   return compare;
    907 }
    908 
    909 bool HInliner::TryInlinePolymorphicCall(HInvoke* invoke_instruction,
    910                                         ArtMethod* resolved_method,
    911                                         Handle<mirror::ObjectArray<mirror::Class>> classes) {
    912   DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
    913       << invoke_instruction->DebugName();
    914 
    915   if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, resolved_method, classes)) {
    916     return true;
    917   }
    918 
    919   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
    920   PointerSize pointer_size = class_linker->GetImagePointerSize();
    921 
    922   bool all_targets_inlined = true;
    923   bool one_target_inlined = false;
    924   for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
    925     if (classes->Get(i) == nullptr) {
    926       break;
    927     }
    928     ArtMethod* method = nullptr;
    929 
    930     Handle<mirror::Class> handle = handles_->NewHandle(classes->Get(i));
    931     method = ResolveMethodFromInlineCache(
    932         handle, resolved_method, invoke_instruction, pointer_size);
    933     if (method == nullptr) {
    934       DCHECK(Runtime::Current()->IsAotCompiler());
    935       // AOT profile is bogus. This loop expects to iterate over all entries,
    936       // so just just continue.
    937       all_targets_inlined = false;
    938       continue;
    939     }
    940 
    941     HInstruction* receiver = invoke_instruction->InputAt(0);
    942     HInstruction* cursor = invoke_instruction->GetPrevious();
    943     HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
    944 
    945     dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_);
    946     HInstruction* return_replacement = nullptr;
    947     LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod();
    948     if (!class_index.IsValid() ||
    949         !TryBuildAndInline(invoke_instruction,
    950                            method,
    951                            ReferenceTypeInfo::Create(handle, /* is_exact */ true),
    952                            &return_replacement)) {
    953       all_targets_inlined = false;
    954     } else {
    955       one_target_inlined = true;
    956 
    957       LOG_SUCCESS() << "Polymorphic call to " << ArtMethod::PrettyMethod(resolved_method)
    958                     << " has inlined " << ArtMethod::PrettyMethod(method);
    959 
    960       // If we have inlined all targets before, and this receiver is the last seen,
    961       // we deoptimize instead of keeping the original invoke instruction.
    962       bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() &&
    963           all_targets_inlined &&
    964           (i != InlineCache::kIndividualCacheSize - 1) &&
    965           (classes->Get(i + 1) == nullptr);
    966 
    967       HInstruction* compare = AddTypeGuard(receiver,
    968                                            cursor,
    969                                            bb_cursor,
    970                                            class_index,
    971                                            handle,
    972                                            invoke_instruction,
    973                                            deoptimize);
    974       if (deoptimize) {
    975         if (return_replacement != nullptr) {
    976           invoke_instruction->ReplaceWith(return_replacement);
    977         }
    978         invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
    979         // Because the inline cache data can be populated concurrently, we force the end of the
    980         // iteration. Otherwise, we could see a new receiver type.
    981         break;
    982       } else {
    983         CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
    984       }
    985     }
    986   }
    987 
    988   if (!one_target_inlined) {
    989     LOG_FAIL_NO_STAT()
    990         << "Call to " << ArtMethod::PrettyMethod(resolved_method)
    991         << " from inline cache is not inlined because none"
    992         << " of its targets could be inlined";
    993     return false;
    994   }
    995 
    996   MaybeRecordStat(kInlinedPolymorphicCall);
    997 
    998   // Run type propagation to get the guards typed.
    999   ReferenceTypePropagation rtp_fixup(graph_,
   1000                                      outer_compilation_unit_.GetClassLoader(),
   1001                                      outer_compilation_unit_.GetDexCache(),
   1002                                      handles_,
   1003                                      /* is_first_run */ false);
   1004   rtp_fixup.Run();
   1005   return true;
   1006 }
   1007 
   1008 void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare,
   1009                                                         HInstruction* return_replacement,
   1010                                                         HInstruction* invoke_instruction) {
   1011   uint32_t dex_pc = invoke_instruction->GetDexPc();
   1012   HBasicBlock* cursor_block = compare->GetBlock();
   1013   HBasicBlock* original_invoke_block = invoke_instruction->GetBlock();
   1014   ArenaAllocator* allocator = graph_->GetArena();
   1015 
   1016   // Spit the block after the compare: `cursor_block` will now be the start of the diamond,
   1017   // and the returned block is the start of the then branch (that could contain multiple blocks).
   1018   HBasicBlock* then = cursor_block->SplitAfterForInlining(compare);
   1019 
   1020   // Split the block containing the invoke before and after the invoke. The returned block
   1021   // of the split before will contain the invoke and will be the otherwise branch of
   1022   // the diamond. The returned block of the split after will be the merge block
   1023   // of the diamond.
   1024   HBasicBlock* end_then = invoke_instruction->GetBlock();
   1025   HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction);
   1026   HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction);
   1027 
   1028   // If the methods we are inlining return a value, we create a phi in the merge block
   1029   // that will have the `invoke_instruction and the `return_replacement` as inputs.
   1030   if (return_replacement != nullptr) {
   1031     HPhi* phi = new (allocator) HPhi(
   1032         allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc);
   1033     merge->AddPhi(phi);
   1034     invoke_instruction->ReplaceWith(phi);
   1035     phi->AddInput(return_replacement);
   1036     phi->AddInput(invoke_instruction);
   1037   }
   1038 
   1039   // Add the control flow instructions.
   1040   otherwise->AddInstruction(new (allocator) HGoto(dex_pc));
   1041   end_then->AddInstruction(new (allocator) HGoto(dex_pc));
   1042   cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc));
   1043 
   1044   // Add the newly created blocks to the graph.
   1045   graph_->AddBlock(then);
   1046   graph_->AddBlock(otherwise);
   1047   graph_->AddBlock(merge);
   1048 
   1049   // Set up successor (and implictly predecessor) relations.
   1050   cursor_block->AddSuccessor(otherwise);
   1051   cursor_block->AddSuccessor(then);
   1052   end_then->AddSuccessor(merge);
   1053   otherwise->AddSuccessor(merge);
   1054 
   1055   // Set up dominance information.
   1056   then->SetDominator(cursor_block);
   1057   cursor_block->AddDominatedBlock(then);
   1058   otherwise->SetDominator(cursor_block);
   1059   cursor_block->AddDominatedBlock(otherwise);
   1060   merge->SetDominator(cursor_block);
   1061   cursor_block->AddDominatedBlock(merge);
   1062 
   1063   // Update the revert post order.
   1064   size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block);
   1065   MakeRoomFor(&graph_->reverse_post_order_, 1, index);
   1066   graph_->reverse_post_order_[++index] = then;
   1067   index = IndexOfElement(graph_->reverse_post_order_, end_then);
   1068   MakeRoomFor(&graph_->reverse_post_order_, 2, index);
   1069   graph_->reverse_post_order_[++index] = otherwise;
   1070   graph_->reverse_post_order_[++index] = merge;
   1071 
   1072 
   1073   graph_->UpdateLoopAndTryInformationOfNewBlock(
   1074       then, original_invoke_block, /* replace_if_back_edge */ false);
   1075   graph_->UpdateLoopAndTryInformationOfNewBlock(
   1076       otherwise, original_invoke_block, /* replace_if_back_edge */ false);
   1077 
   1078   // In case the original invoke location was a back edge, we need to update
   1079   // the loop to now have the merge block as a back edge.
   1080   graph_->UpdateLoopAndTryInformationOfNewBlock(
   1081       merge, original_invoke_block, /* replace_if_back_edge */ true);
   1082 }
   1083 
   1084 bool HInliner::TryInlinePolymorphicCallToSameTarget(
   1085     HInvoke* invoke_instruction,
   1086     ArtMethod* resolved_method,
   1087     Handle<mirror::ObjectArray<mirror::Class>> classes) {
   1088   // This optimization only works under JIT for now.
   1089   if (!Runtime::Current()->UseJitCompilation()) {
   1090     return false;
   1091   }
   1092 
   1093   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
   1094   PointerSize pointer_size = class_linker->GetImagePointerSize();
   1095 
   1096   DCHECK(resolved_method != nullptr);
   1097   ArtMethod* actual_method = nullptr;
   1098   size_t method_index = invoke_instruction->IsInvokeVirtual()
   1099       ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex()
   1100       : invoke_instruction->AsInvokeInterface()->GetImtIndex();
   1101 
   1102   // Check whether we are actually calling the same method among
   1103   // the different types seen.
   1104   for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
   1105     if (classes->Get(i) == nullptr) {
   1106       break;
   1107     }
   1108     ArtMethod* new_method = nullptr;
   1109     if (invoke_instruction->IsInvokeInterface()) {
   1110       new_method = classes->Get(i)->GetImt(pointer_size)->Get(
   1111           method_index, pointer_size);
   1112       if (new_method->IsRuntimeMethod()) {
   1113         // Bail out as soon as we see a conflict trampoline in one of the target's
   1114         // interface table.
   1115         return false;
   1116       }
   1117     } else {
   1118       DCHECK(invoke_instruction->IsInvokeVirtual());
   1119       new_method = classes->Get(i)->GetEmbeddedVTableEntry(method_index, pointer_size);
   1120     }
   1121     DCHECK(new_method != nullptr);
   1122     if (actual_method == nullptr) {
   1123       actual_method = new_method;
   1124     } else if (actual_method != new_method) {
   1125       // Different methods, bailout.
   1126       return false;
   1127     }
   1128   }
   1129 
   1130   HInstruction* receiver = invoke_instruction->InputAt(0);
   1131   HInstruction* cursor = invoke_instruction->GetPrevious();
   1132   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
   1133 
   1134   HInstruction* return_replacement = nullptr;
   1135   if (!TryBuildAndInline(invoke_instruction,
   1136                          actual_method,
   1137                          ReferenceTypeInfo::CreateInvalid(),
   1138                          &return_replacement)) {
   1139     return false;
   1140   }
   1141 
   1142   // We successfully inlined, now add a guard.
   1143   HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
   1144       class_linker, receiver, invoke_instruction->GetDexPc());
   1145 
   1146   Primitive::Type type = Is64BitInstructionSet(graph_->GetInstructionSet())
   1147       ? Primitive::kPrimLong
   1148       : Primitive::kPrimInt;
   1149   HClassTableGet* class_table_get = new (graph_->GetArena()) HClassTableGet(
   1150       receiver_class,
   1151       type,
   1152       invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable
   1153                                             : HClassTableGet::TableKind::kIMTable,
   1154       method_index,
   1155       invoke_instruction->GetDexPc());
   1156 
   1157   HConstant* constant;
   1158   if (type == Primitive::kPrimLong) {
   1159     constant = graph_->GetLongConstant(
   1160         reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
   1161   } else {
   1162     constant = graph_->GetIntConstant(
   1163         reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
   1164   }
   1165 
   1166   HNotEqual* compare = new (graph_->GetArena()) HNotEqual(class_table_get, constant);
   1167   if (cursor != nullptr) {
   1168     bb_cursor->InsertInstructionAfter(receiver_class, cursor);
   1169   } else {
   1170     bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
   1171   }
   1172   bb_cursor->InsertInstructionAfter(class_table_get, receiver_class);
   1173   bb_cursor->InsertInstructionAfter(compare, class_table_get);
   1174 
   1175   if (outermost_graph_->IsCompilingOsr()) {
   1176     CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
   1177   } else {
   1178     HDeoptimize* deoptimize = new (graph_->GetArena()) HDeoptimize(
   1179         graph_->GetArena(),
   1180         compare,
   1181         receiver,
   1182         DeoptimizationKind::kJitSameTarget,
   1183         invoke_instruction->GetDexPc());
   1184     bb_cursor->InsertInstructionAfter(deoptimize, compare);
   1185     deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
   1186     if (return_replacement != nullptr) {
   1187       invoke_instruction->ReplaceWith(return_replacement);
   1188     }
   1189     receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
   1190     invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
   1191     deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
   1192   }
   1193 
   1194   // Run type propagation to get the guard typed.
   1195   ReferenceTypePropagation rtp_fixup(graph_,
   1196                                      outer_compilation_unit_.GetClassLoader(),
   1197                                      outer_compilation_unit_.GetDexCache(),
   1198                                      handles_,
   1199                                      /* is_first_run */ false);
   1200   rtp_fixup.Run();
   1201 
   1202   MaybeRecordStat(kInlinedPolymorphicCall);
   1203 
   1204   LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod();
   1205   return true;
   1206 }
   1207 
   1208 bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction,
   1209                                    ArtMethod* method,
   1210                                    ReferenceTypeInfo receiver_type,
   1211                                    bool do_rtp,
   1212                                    bool cha_devirtualize) {
   1213   HInstruction* return_replacement = nullptr;
   1214   uint32_t dex_pc = invoke_instruction->GetDexPc();
   1215   HInstruction* cursor = invoke_instruction->GetPrevious();
   1216   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
   1217   if (!TryBuildAndInline(invoke_instruction, method, receiver_type, &return_replacement)) {
   1218     if (invoke_instruction->IsInvokeInterface()) {
   1219       DCHECK(!method->IsProxyMethod());
   1220       // Turn an invoke-interface into an invoke-virtual. An invoke-virtual is always
   1221       // better than an invoke-interface because:
   1222       // 1) In the best case, the interface call has one more indirection (to fetch the IMT).
   1223       // 2) We will not go to the conflict trampoline with an invoke-virtual.
   1224       // TODO: Consider sharpening once it is not dependent on the compiler driver.
   1225 
   1226       if (method->IsDefault() && !method->IsCopied()) {
   1227         // Changing to invoke-virtual cannot be done on an original default method
   1228         // since it's not in any vtable. Devirtualization by exact type/inline-cache
   1229         // always uses a method in the iftable which is never an original default
   1230         // method.
   1231         // On the other hand, inlining an original default method by CHA is fine.
   1232         DCHECK(cha_devirtualize);
   1233         return false;
   1234       }
   1235 
   1236       const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
   1237       uint32_t dex_method_index = FindMethodIndexIn(
   1238           method, caller_dex_file, invoke_instruction->GetDexMethodIndex());
   1239       if (dex_method_index == DexFile::kDexNoIndex) {
   1240         return false;
   1241       }
   1242       HInvokeVirtual* new_invoke = new (graph_->GetArena()) HInvokeVirtual(
   1243           graph_->GetArena(),
   1244           invoke_instruction->GetNumberOfArguments(),
   1245           invoke_instruction->GetType(),
   1246           invoke_instruction->GetDexPc(),
   1247           dex_method_index,
   1248           method,
   1249           method->GetMethodIndex());
   1250       HInputsRef inputs = invoke_instruction->GetInputs();
   1251       for (size_t index = 0; index != inputs.size(); ++index) {
   1252         new_invoke->SetArgumentAt(index, inputs[index]);
   1253       }
   1254       invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
   1255       new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
   1256       if (invoke_instruction->GetType() == Primitive::kPrimNot) {
   1257         new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo());
   1258       }
   1259       return_replacement = new_invoke;
   1260     } else {
   1261       // TODO: Consider sharpening an invoke virtual once it is not dependent on the
   1262       // compiler driver.
   1263       return false;
   1264     }
   1265   }
   1266   if (cha_devirtualize) {
   1267     AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor);
   1268   }
   1269   if (return_replacement != nullptr) {
   1270     invoke_instruction->ReplaceWith(return_replacement);
   1271   }
   1272   invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
   1273   FixUpReturnReferenceType(method, return_replacement);
   1274   if (do_rtp && ReturnTypeMoreSpecific(invoke_instruction, return_replacement)) {
   1275     // Actual return value has a more specific type than the method's declared
   1276     // return type. Run RTP again on the outer graph to propagate it.
   1277     ReferenceTypePropagation(graph_,
   1278                              outer_compilation_unit_.GetClassLoader(),
   1279                              outer_compilation_unit_.GetDexCache(),
   1280                              handles_,
   1281                              /* is_first_run */ false).Run();
   1282   }
   1283   return true;
   1284 }
   1285 
   1286 size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const {
   1287   const HInliner* current = this;
   1288   size_t count = 0;
   1289   do {
   1290     if (current->graph_->GetArtMethod() == method) {
   1291       ++count;
   1292     }
   1293     current = current->parent_;
   1294   } while (current != nullptr);
   1295   return count;
   1296 }
   1297 
   1298 bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction,
   1299                                  ArtMethod* method,
   1300                                  ReferenceTypeInfo receiver_type,
   1301                                  HInstruction** return_replacement) {
   1302   if (method->IsProxyMethod()) {
   1303     LOG_FAIL(kNotInlinedProxy)
   1304         << "Method " << method->PrettyMethod()
   1305         << " is not inlined because of unimplemented inline support for proxy methods.";
   1306     return false;
   1307   }
   1308 
   1309   if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) {
   1310     LOG_FAIL(kNotInlinedRecursiveBudget)
   1311         << "Method "
   1312         << method->PrettyMethod()
   1313         << " is not inlined because it has reached its recursive call budget.";
   1314     return false;
   1315   }
   1316 
   1317   // Check whether we're allowed to inline. The outermost compilation unit is the relevant
   1318   // dex file here (though the transitivity of an inline chain would allow checking the calller).
   1319   if (!compiler_driver_->MayInline(method->GetDexFile(),
   1320                                    outer_compilation_unit_.GetDexFile())) {
   1321     if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) {
   1322       LOG_SUCCESS() << "Successfully replaced pattern of invoke "
   1323                     << method->PrettyMethod();
   1324       MaybeRecordStat(kReplacedInvokeWithSimplePattern);
   1325       return true;
   1326     }
   1327     LOG_FAIL(kNotInlinedWont)
   1328         << "Won't inline " << method->PrettyMethod() << " in "
   1329         << outer_compilation_unit_.GetDexFile()->GetLocation() << " ("
   1330         << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from "
   1331         << method->GetDexFile()->GetLocation();
   1332     return false;
   1333   }
   1334 
   1335   bool same_dex_file = IsSameDexFile(*outer_compilation_unit_.GetDexFile(), *method->GetDexFile());
   1336 
   1337   const DexFile::CodeItem* code_item = method->GetCodeItem();
   1338 
   1339   if (code_item == nullptr) {
   1340     LOG_FAIL_NO_STAT()
   1341         << "Method " << method->PrettyMethod() << " is not inlined because it is native";
   1342     return false;
   1343   }
   1344 
   1345   size_t inline_max_code_units = compiler_driver_->GetCompilerOptions().GetInlineMaxCodeUnits();
   1346   if (code_item->insns_size_in_code_units_ > inline_max_code_units) {
   1347     LOG_FAIL(kNotInlinedCodeItem)
   1348         << "Method " << method->PrettyMethod()
   1349         << " is not inlined because its code item is too big: "
   1350         << code_item->insns_size_in_code_units_
   1351         << " > "
   1352         << inline_max_code_units;
   1353     return false;
   1354   }
   1355 
   1356   if (code_item->tries_size_ != 0) {
   1357     LOG_FAIL(kNotInlinedTryCatch)
   1358         << "Method " << method->PrettyMethod() << " is not inlined because of try block";
   1359     return false;
   1360   }
   1361 
   1362   if (!method->IsCompilable()) {
   1363     LOG_FAIL(kNotInlinedNotVerified)
   1364         << "Method " << method->PrettyMethod()
   1365         << " has soft failures un-handled by the compiler, so it cannot be inlined";
   1366   }
   1367 
   1368   if (!method->GetDeclaringClass()->IsVerified()) {
   1369     uint16_t class_def_idx = method->GetDeclaringClass()->GetDexClassDefIndex();
   1370     if (Runtime::Current()->UseJitCompilation() ||
   1371         !compiler_driver_->IsMethodVerifiedWithoutFailures(
   1372             method->GetDexMethodIndex(), class_def_idx, *method->GetDexFile())) {
   1373       LOG_FAIL(kNotInlinedNotVerified)
   1374           << "Method " << method->PrettyMethod()
   1375           << " couldn't be verified, so it cannot be inlined";
   1376       return false;
   1377     }
   1378   }
   1379 
   1380   if (invoke_instruction->IsInvokeStaticOrDirect() &&
   1381       invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) {
   1382     // Case of a static method that cannot be inlined because it implicitly
   1383     // requires an initialization check of its declaring class.
   1384     LOG_FAIL(kNotInlinedDexCache) << "Method " << method->PrettyMethod()
   1385              << " is not inlined because it is static and requires a clinit"
   1386              << " check that cannot be emitted due to Dex cache limitations";
   1387     return false;
   1388   }
   1389 
   1390   if (!TryBuildAndInlineHelper(
   1391           invoke_instruction, method, receiver_type, same_dex_file, return_replacement)) {
   1392     return false;
   1393   }
   1394 
   1395   LOG_SUCCESS() << method->PrettyMethod();
   1396   MaybeRecordStat(kInlinedInvoke);
   1397   return true;
   1398 }
   1399 
   1400 static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction,
   1401                                                    size_t arg_vreg_index)
   1402     REQUIRES_SHARED(Locks::mutator_lock_) {
   1403   size_t input_index = 0;
   1404   for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) {
   1405     DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
   1406     if (Primitive::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) {
   1407       ++i;
   1408       DCHECK_NE(i, arg_vreg_index);
   1409     }
   1410   }
   1411   DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
   1412   return invoke_instruction->InputAt(input_index);
   1413 }
   1414 
   1415 // Try to recognize known simple patterns and replace invoke call with appropriate instructions.
   1416 bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction,
   1417                                       ArtMethod* resolved_method,
   1418                                       HInstruction** return_replacement) {
   1419   InlineMethod inline_method;
   1420   if (!InlineMethodAnalyser::AnalyseMethodCode(resolved_method, &inline_method)) {
   1421     return false;
   1422   }
   1423 
   1424   switch (inline_method.opcode) {
   1425     case kInlineOpNop:
   1426       DCHECK_EQ(invoke_instruction->GetType(), Primitive::kPrimVoid);
   1427       *return_replacement = nullptr;
   1428       break;
   1429     case kInlineOpReturnArg:
   1430       *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction,
   1431                                                           inline_method.d.return_data.arg);
   1432       break;
   1433     case kInlineOpNonWideConst:
   1434       if (resolved_method->GetShorty()[0] == 'L') {
   1435         DCHECK_EQ(inline_method.d.data, 0u);
   1436         *return_replacement = graph_->GetNullConstant();
   1437       } else {
   1438         *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data));
   1439       }
   1440       break;
   1441     case kInlineOpIGet: {
   1442       const InlineIGetIPutData& data = inline_method.d.ifield_data;
   1443       if (data.method_is_static || data.object_arg != 0u) {
   1444         // TODO: Needs null check.
   1445         return false;
   1446       }
   1447       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
   1448       HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, resolved_method, obj);
   1449       DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset);
   1450       DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile);
   1451       invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction);
   1452       *return_replacement = iget;
   1453       break;
   1454     }
   1455     case kInlineOpIPut: {
   1456       const InlineIGetIPutData& data = inline_method.d.ifield_data;
   1457       if (data.method_is_static || data.object_arg != 0u) {
   1458         // TODO: Needs null check.
   1459         return false;
   1460       }
   1461       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
   1462       HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg);
   1463       HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, resolved_method, obj, value);
   1464       DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset);
   1465       DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile);
   1466       invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
   1467       if (data.return_arg_plus1 != 0u) {
   1468         size_t return_arg = data.return_arg_plus1 - 1u;
   1469         *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg);
   1470       }
   1471       break;
   1472     }
   1473     case kInlineOpConstructor: {
   1474       const InlineConstructorData& data = inline_method.d.constructor_data;
   1475       // Get the indexes to arrays for easier processing.
   1476       uint16_t iput_field_indexes[] = {
   1477           data.iput0_field_index, data.iput1_field_index, data.iput2_field_index
   1478       };
   1479       uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg };
   1480       static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch");
   1481       // Count valid field indexes.
   1482       size_t number_of_iputs = 0u;
   1483       while (number_of_iputs != arraysize(iput_field_indexes) &&
   1484           iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) {
   1485         // Check that there are no duplicate valid field indexes.
   1486         DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1,
   1487                                 iput_field_indexes + arraysize(iput_field_indexes),
   1488                                 iput_field_indexes[number_of_iputs]));
   1489         ++number_of_iputs;
   1490       }
   1491       // Check that there are no valid field indexes in the rest of the array.
   1492       DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs,
   1493                                  iput_field_indexes + arraysize(iput_field_indexes),
   1494                                  [](uint16_t index) { return index != DexFile::kDexNoIndex16; }));
   1495 
   1496       // Create HInstanceFieldSet for each IPUT that stores non-zero data.
   1497       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, /* this */ 0u);
   1498       bool needs_constructor_barrier = false;
   1499       for (size_t i = 0; i != number_of_iputs; ++i) {
   1500         HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]);
   1501         if (!value->IsConstant() || !value->AsConstant()->IsZeroBitPattern()) {
   1502           uint16_t field_index = iput_field_indexes[i];
   1503           bool is_final;
   1504           HInstanceFieldSet* iput =
   1505               CreateInstanceFieldSet(field_index, resolved_method, obj, value, &is_final);
   1506           invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
   1507 
   1508           // Check whether the field is final. If it is, we need to add a barrier.
   1509           if (is_final) {
   1510             needs_constructor_barrier = true;
   1511           }
   1512         }
   1513       }
   1514       if (needs_constructor_barrier) {
   1515         // See CompilerDriver::RequiresConstructorBarrier for more details.
   1516         DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence";
   1517 
   1518         HConstructorFence* constructor_fence =
   1519             new (graph_->GetArena()) HConstructorFence(obj, kNoDexPc, graph_->GetArena());
   1520         invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence,
   1521                                                                 invoke_instruction);
   1522       }
   1523       *return_replacement = nullptr;
   1524       break;
   1525     }
   1526     default:
   1527       LOG(FATAL) << "UNREACHABLE";
   1528       UNREACHABLE();
   1529   }
   1530   return true;
   1531 }
   1532 
   1533 HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index,
   1534                                                     ArtMethod* referrer,
   1535                                                     HInstruction* obj)
   1536     REQUIRES_SHARED(Locks::mutator_lock_) {
   1537   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1538   ArtField* resolved_field =
   1539       class_linker->LookupResolvedField(field_index, referrer, /* is_static */ false);
   1540   DCHECK(resolved_field != nullptr);
   1541   HInstanceFieldGet* iget = new (graph_->GetArena()) HInstanceFieldGet(
   1542       obj,
   1543       resolved_field,
   1544       resolved_field->GetTypeAsPrimitiveType(),
   1545       resolved_field->GetOffset(),
   1546       resolved_field->IsVolatile(),
   1547       field_index,
   1548       resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
   1549       *referrer->GetDexFile(),
   1550       // Read barrier generates a runtime call in slow path and we need a valid
   1551       // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
   1552       /* dex_pc */ 0);
   1553   if (iget->GetType() == Primitive::kPrimNot) {
   1554     // Use the same dex_cache that we used for field lookup as the hint_dex_cache.
   1555     Handle<mirror::DexCache> dex_cache = handles_->NewHandle(referrer->GetDexCache());
   1556     ReferenceTypePropagation rtp(graph_,
   1557                                  outer_compilation_unit_.GetClassLoader(),
   1558                                  dex_cache,
   1559                                  handles_,
   1560                                  /* is_first_run */ false);
   1561     rtp.Visit(iget);
   1562   }
   1563   return iget;
   1564 }
   1565 
   1566 HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index,
   1567                                                     ArtMethod* referrer,
   1568                                                     HInstruction* obj,
   1569                                                     HInstruction* value,
   1570                                                     bool* is_final)
   1571     REQUIRES_SHARED(Locks::mutator_lock_) {
   1572   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1573   ArtField* resolved_field =
   1574       class_linker->LookupResolvedField(field_index, referrer, /* is_static */ false);
   1575   DCHECK(resolved_field != nullptr);
   1576   if (is_final != nullptr) {
   1577     // This information is needed only for constructors.
   1578     DCHECK(referrer->IsConstructor());
   1579     *is_final = resolved_field->IsFinal();
   1580   }
   1581   HInstanceFieldSet* iput = new (graph_->GetArena()) HInstanceFieldSet(
   1582       obj,
   1583       value,
   1584       resolved_field,
   1585       resolved_field->GetTypeAsPrimitiveType(),
   1586       resolved_field->GetOffset(),
   1587       resolved_field->IsVolatile(),
   1588       field_index,
   1589       resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
   1590       *referrer->GetDexFile(),
   1591       // Read barrier generates a runtime call in slow path and we need a valid
   1592       // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
   1593       /* dex_pc */ 0);
   1594   return iput;
   1595 }
   1596 
   1597 template <typename T>
   1598 static inline Handle<T> NewHandleIfDifferent(T* object,
   1599                                              Handle<T> hint,
   1600                                              VariableSizedHandleScope* handles)
   1601     REQUIRES_SHARED(Locks::mutator_lock_) {
   1602   return (object != hint.Get()) ? handles->NewHandle(object) : hint;
   1603 }
   1604 
   1605 bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction,
   1606                                        ArtMethod* resolved_method,
   1607                                        ReferenceTypeInfo receiver_type,
   1608                                        bool same_dex_file,
   1609                                        HInstruction** return_replacement) {
   1610   DCHECK(!(resolved_method->IsStatic() && receiver_type.IsValid()));
   1611   ScopedObjectAccess soa(Thread::Current());
   1612   const DexFile::CodeItem* code_item = resolved_method->GetCodeItem();
   1613   const DexFile& callee_dex_file = *resolved_method->GetDexFile();
   1614   uint32_t method_index = resolved_method->GetDexMethodIndex();
   1615   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
   1616   Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(),
   1617                                                             caller_compilation_unit_.GetDexCache(),
   1618                                                             handles_);
   1619   Handle<mirror::ClassLoader> class_loader =
   1620       NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(),
   1621                            caller_compilation_unit_.GetClassLoader(),
   1622                            handles_);
   1623 
   1624   DexCompilationUnit dex_compilation_unit(
   1625       class_loader,
   1626       class_linker,
   1627       callee_dex_file,
   1628       code_item,
   1629       resolved_method->GetDeclaringClass()->GetDexClassDefIndex(),
   1630       method_index,
   1631       resolved_method->GetAccessFlags(),
   1632       /* verified_method */ nullptr,
   1633       dex_cache);
   1634 
   1635   InvokeType invoke_type = invoke_instruction->GetInvokeType();
   1636   if (invoke_type == kInterface) {
   1637     // We have statically resolved the dispatch. To please the class linker
   1638     // at runtime, we change this call as if it was a virtual call.
   1639     invoke_type = kVirtual;
   1640   }
   1641 
   1642   const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId();
   1643   HGraph* callee_graph = new (graph_->GetArena()) HGraph(
   1644       graph_->GetArena(),
   1645       callee_dex_file,
   1646       method_index,
   1647       compiler_driver_->GetInstructionSet(),
   1648       invoke_type,
   1649       graph_->IsDebuggable(),
   1650       /* osr */ false,
   1651       caller_instruction_counter);
   1652   callee_graph->SetArtMethod(resolved_method);
   1653 
   1654   // When they are needed, allocate `inline_stats_` on the Arena instead
   1655   // of on the stack, as Clang might produce a stack frame too large
   1656   // for this function, that would not fit the requirements of the
   1657   // `-Wframe-larger-than` option.
   1658   if (stats_ != nullptr) {
   1659     // Reuse one object for all inline attempts from this caller to keep Arena memory usage low.
   1660     if (inline_stats_ == nullptr) {
   1661       void* storage = graph_->GetArena()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc);
   1662       inline_stats_ = new (storage) OptimizingCompilerStats;
   1663     } else {
   1664       inline_stats_->Reset();
   1665     }
   1666   }
   1667   HGraphBuilder builder(callee_graph,
   1668                         &dex_compilation_unit,
   1669                         &outer_compilation_unit_,
   1670                         resolved_method->GetDexFile(),
   1671                         *code_item,
   1672                         compiler_driver_,
   1673                         codegen_,
   1674                         inline_stats_,
   1675                         resolved_method->GetQuickenedInfo(class_linker->GetImagePointerSize()),
   1676                         dex_cache,
   1677                         handles_);
   1678 
   1679   if (builder.BuildGraph() != kAnalysisSuccess) {
   1680     LOG_FAIL(kNotInlinedCannotBuild)
   1681         << "Method " << callee_dex_file.PrettyMethod(method_index)
   1682         << " could not be built, so cannot be inlined";
   1683     return false;
   1684   }
   1685 
   1686   if (!RegisterAllocator::CanAllocateRegistersFor(*callee_graph,
   1687                                                   compiler_driver_->GetInstructionSet())) {
   1688     LOG_FAIL(kNotInlinedRegisterAllocator)
   1689         << "Method " << callee_dex_file.PrettyMethod(method_index)
   1690         << " cannot be inlined because of the register allocator";
   1691     return false;
   1692   }
   1693 
   1694   size_t parameter_index = 0;
   1695   bool run_rtp = false;
   1696   for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions());
   1697        !instructions.Done();
   1698        instructions.Advance()) {
   1699     HInstruction* current = instructions.Current();
   1700     if (current->IsParameterValue()) {
   1701       HInstruction* argument = invoke_instruction->InputAt(parameter_index);
   1702       if (argument->IsNullConstant()) {
   1703         current->ReplaceWith(callee_graph->GetNullConstant());
   1704       } else if (argument->IsIntConstant()) {
   1705         current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue()));
   1706       } else if (argument->IsLongConstant()) {
   1707         current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue()));
   1708       } else if (argument->IsFloatConstant()) {
   1709         current->ReplaceWith(
   1710             callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue()));
   1711       } else if (argument->IsDoubleConstant()) {
   1712         current->ReplaceWith(
   1713             callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue()));
   1714       } else if (argument->GetType() == Primitive::kPrimNot) {
   1715         if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) {
   1716           run_rtp = true;
   1717           current->SetReferenceTypeInfo(receiver_type);
   1718         } else {
   1719           current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo());
   1720         }
   1721         current->AsParameterValue()->SetCanBeNull(argument->CanBeNull());
   1722       }
   1723       ++parameter_index;
   1724     }
   1725   }
   1726 
   1727   // We have replaced formal arguments with actual arguments. If actual types
   1728   // are more specific than the declared ones, run RTP again on the inner graph.
   1729   if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) {
   1730     ReferenceTypePropagation(callee_graph,
   1731                              outer_compilation_unit_.GetClassLoader(),
   1732                              dex_compilation_unit.GetDexCache(),
   1733                              handles_,
   1734                              /* is_first_run */ false).Run();
   1735   }
   1736 
   1737   RunOptimizations(callee_graph, code_item, dex_compilation_unit);
   1738 
   1739   HBasicBlock* exit_block = callee_graph->GetExitBlock();
   1740   if (exit_block == nullptr) {
   1741     LOG_FAIL(kNotInlinedInfiniteLoop)
   1742         << "Method " << callee_dex_file.PrettyMethod(method_index)
   1743         << " could not be inlined because it has an infinite loop";
   1744     return false;
   1745   }
   1746 
   1747   bool has_one_return = false;
   1748   for (HBasicBlock* predecessor : exit_block->GetPredecessors()) {
   1749     if (predecessor->GetLastInstruction()->IsThrow()) {
   1750       if (invoke_instruction->GetBlock()->IsTryBlock()) {
   1751         // TODO(ngeoffray): Support adding HTryBoundary in Hgraph::InlineInto.
   1752         LOG_FAIL(kNotInlinedTryCatch)
   1753             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1754             << " could not be inlined because one branch always throws and"
   1755             << " caller is in a try/catch block";
   1756         return false;
   1757       } else if (graph_->GetExitBlock() == nullptr) {
   1758         // TODO(ngeoffray): Support adding HExit in the caller graph.
   1759         LOG_FAIL(kNotInlinedInfiniteLoop)
   1760             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1761             << " could not be inlined because one branch always throws and"
   1762             << " caller does not have an exit block";
   1763         return false;
   1764       } else if (graph_->HasIrreducibleLoops()) {
   1765         // TODO(ngeoffray): Support re-computing loop information to graphs with
   1766         // irreducible loops?
   1767         VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index)
   1768                        << " could not be inlined because one branch always throws and"
   1769                        << " caller has irreducible loops";
   1770         return false;
   1771       }
   1772     } else {
   1773       has_one_return = true;
   1774     }
   1775   }
   1776 
   1777   if (!has_one_return) {
   1778     LOG_FAIL(kNotInlinedAlwaysThrows)
   1779         << "Method " << callee_dex_file.PrettyMethod(method_index)
   1780         << " could not be inlined because it always throws";
   1781     return false;
   1782   }
   1783 
   1784   size_t number_of_instructions = 0;
   1785   // Skip the entry block, it does not contain instructions that prevent inlining.
   1786   for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) {
   1787     if (block->IsLoopHeader()) {
   1788       if (block->GetLoopInformation()->IsIrreducible()) {
   1789         // Don't inline methods with irreducible loops, they could prevent some
   1790         // optimizations to run.
   1791         LOG_FAIL(kNotInlinedIrreducibleLoop)
   1792             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1793             << " could not be inlined because it contains an irreducible loop";
   1794         return false;
   1795       }
   1796       if (!block->GetLoopInformation()->HasExitEdge()) {
   1797         // Don't inline methods with loops without exit, since they cause the
   1798         // loop information to be computed incorrectly when updating after
   1799         // inlining.
   1800         LOG_FAIL(kNotInlinedLoopWithoutExit)
   1801             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1802             << " could not be inlined because it contains a loop with no exit";
   1803         return false;
   1804       }
   1805     }
   1806 
   1807     for (HInstructionIterator instr_it(block->GetInstructions());
   1808          !instr_it.Done();
   1809          instr_it.Advance()) {
   1810       if (++number_of_instructions >= inlining_budget_) {
   1811         LOG_FAIL(kNotInlinedInstructionBudget)
   1812             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1813             << " is not inlined because the outer method has reached"
   1814             << " its instruction budget limit.";
   1815         return false;
   1816       }
   1817       HInstruction* current = instr_it.Current();
   1818       if (current->NeedsEnvironment() &&
   1819           (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters)) {
   1820         LOG_FAIL(kNotInlinedEnvironmentBudget)
   1821             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1822             << " is not inlined because its caller has reached"
   1823             << " its environment budget limit.";
   1824         return false;
   1825       }
   1826 
   1827       if (current->NeedsEnvironment() &&
   1828           !CanEncodeInlinedMethodInStackMap(*caller_compilation_unit_.GetDexFile(),
   1829                                             resolved_method)) {
   1830         LOG_FAIL(kNotInlinedStackMaps)
   1831             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1832             << " could not be inlined because " << current->DebugName()
   1833             << " needs an environment, is in a different dex file"
   1834             << ", and cannot be encoded in the stack maps.";
   1835         return false;
   1836       }
   1837 
   1838       if (!same_dex_file && current->NeedsDexCacheOfDeclaringClass()) {
   1839         LOG_FAIL(kNotInlinedDexCache)
   1840             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1841             << " could not be inlined because " << current->DebugName()
   1842             << " it is in a different dex file and requires access to the dex cache";
   1843         return false;
   1844       }
   1845 
   1846       if (current->IsUnresolvedStaticFieldGet() ||
   1847           current->IsUnresolvedInstanceFieldGet() ||
   1848           current->IsUnresolvedStaticFieldSet() ||
   1849           current->IsUnresolvedInstanceFieldSet()) {
   1850         // Entrypoint for unresolved fields does not handle inlined frames.
   1851         LOG_FAIL(kNotInlinedUnresolvedEntrypoint)
   1852             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1853             << " could not be inlined because it is using an unresolved"
   1854             << " entrypoint";
   1855         return false;
   1856       }
   1857     }
   1858   }
   1859   DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId())
   1860       << "No instructions can be added to the outer graph while inner graph is being built";
   1861 
   1862   // Inline the callee graph inside the caller graph.
   1863   const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId();
   1864   graph_->SetCurrentInstructionId(callee_instruction_counter);
   1865   *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction);
   1866   // Update our budget for other inlining attempts in `caller_graph`.
   1867   total_number_of_instructions_ += number_of_instructions;
   1868   UpdateInliningBudget();
   1869 
   1870   DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId())
   1871       << "No instructions can be added to the inner graph during inlining into the outer graph";
   1872 
   1873   if (stats_ != nullptr) {
   1874     DCHECK(inline_stats_ != nullptr);
   1875     inline_stats_->AddTo(stats_);
   1876   }
   1877 
   1878   return true;
   1879 }
   1880 
   1881 void HInliner::RunOptimizations(HGraph* callee_graph,
   1882                                 const DexFile::CodeItem* code_item,
   1883                                 const DexCompilationUnit& dex_compilation_unit) {
   1884   // Note: if the outermost_graph_ is being compiled OSR, we should not run any
   1885   // optimization that could lead to a HDeoptimize. The following optimizations do not.
   1886   HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner");
   1887   HConstantFolding fold(callee_graph, "constant_folding$inliner");
   1888   HSharpening sharpening(callee_graph, codegen_, dex_compilation_unit, compiler_driver_, handles_);
   1889   InstructionSimplifier simplify(callee_graph, codegen_, compiler_driver_, inline_stats_);
   1890   IntrinsicsRecognizer intrinsics(callee_graph, inline_stats_);
   1891 
   1892   HOptimization* optimizations[] = {
   1893     &intrinsics,
   1894     &sharpening,
   1895     &simplify,
   1896     &fold,
   1897     &dce,
   1898   };
   1899 
   1900   for (size_t i = 0; i < arraysize(optimizations); ++i) {
   1901     HOptimization* optimization = optimizations[i];
   1902     optimization->Run();
   1903   }
   1904 
   1905   // Bail early for pathological cases on the environment (for example recursive calls,
   1906   // or too large environment).
   1907   if (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters) {
   1908     LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
   1909              << " will not be inlined because the outer method has reached"
   1910              << " its environment budget limit.";
   1911     return;
   1912   }
   1913 
   1914   // Bail early if we know we already are over the limit.
   1915   size_t number_of_instructions = CountNumberOfInstructions(callee_graph);
   1916   if (number_of_instructions > inlining_budget_) {
   1917     LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
   1918              << " will not be inlined because the outer method has reached"
   1919              << " its instruction budget limit. " << number_of_instructions;
   1920     return;
   1921   }
   1922 
   1923   HInliner inliner(callee_graph,
   1924                    outermost_graph_,
   1925                    codegen_,
   1926                    outer_compilation_unit_,
   1927                    dex_compilation_unit,
   1928                    compiler_driver_,
   1929                    handles_,
   1930                    inline_stats_,
   1931                    total_number_of_dex_registers_ + code_item->registers_size_,
   1932                    total_number_of_instructions_ + number_of_instructions,
   1933                    this,
   1934                    depth_ + 1);
   1935   inliner.Run();
   1936 }
   1937 
   1938 static bool IsReferenceTypeRefinement(ReferenceTypeInfo declared_rti,
   1939                                       bool declared_can_be_null,
   1940                                       HInstruction* actual_obj)
   1941     REQUIRES_SHARED(Locks::mutator_lock_) {
   1942   if (declared_can_be_null && !actual_obj->CanBeNull()) {
   1943     return true;
   1944   }
   1945 
   1946   ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo();
   1947   return (actual_rti.IsExact() && !declared_rti.IsExact()) ||
   1948           declared_rti.IsStrictSupertypeOf(actual_rti);
   1949 }
   1950 
   1951 ReferenceTypeInfo HInliner::GetClassRTI(mirror::Class* klass) {
   1952   return ReferenceTypePropagation::IsAdmissible(klass)
   1953       ? ReferenceTypeInfo::Create(handles_->NewHandle(klass))
   1954       : graph_->GetInexactObjectRti();
   1955 }
   1956 
   1957 bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) {
   1958   // If this is an instance call, test whether the type of the `this` argument
   1959   // is more specific than the class which declares the method.
   1960   if (!resolved_method->IsStatic()) {
   1961     if (IsReferenceTypeRefinement(GetClassRTI(resolved_method->GetDeclaringClass()),
   1962                                   /* declared_can_be_null */ false,
   1963                                   invoke_instruction->InputAt(0u))) {
   1964       return true;
   1965     }
   1966   }
   1967 
   1968   // Iterate over the list of parameter types and test whether any of the
   1969   // actual inputs has a more specific reference type than the type declared in
   1970   // the signature.
   1971   const DexFile::TypeList* param_list = resolved_method->GetParameterTypeList();
   1972   for (size_t param_idx = 0,
   1973               input_idx = resolved_method->IsStatic() ? 0 : 1,
   1974               e = (param_list == nullptr ? 0 : param_list->Size());
   1975        param_idx < e;
   1976        ++param_idx, ++input_idx) {
   1977     HInstruction* input = invoke_instruction->InputAt(input_idx);
   1978     if (input->GetType() == Primitive::kPrimNot) {
   1979       mirror::Class* param_cls = resolved_method->GetClassFromTypeIndex(
   1980           param_list->GetTypeItem(param_idx).type_idx_,
   1981           /* resolve */ false);
   1982       if (IsReferenceTypeRefinement(GetClassRTI(param_cls),
   1983                                     /* declared_can_be_null */ true,
   1984                                     input)) {
   1985         return true;
   1986       }
   1987     }
   1988   }
   1989 
   1990   return false;
   1991 }
   1992 
   1993 bool HInliner::ReturnTypeMoreSpecific(HInvoke* invoke_instruction,
   1994                                       HInstruction* return_replacement) {
   1995   // Check the integrity of reference types and run another type propagation if needed.
   1996   if (return_replacement != nullptr) {
   1997     if (return_replacement->GetType() == Primitive::kPrimNot) {
   1998       // Test if the return type is a refinement of the declared return type.
   1999       if (IsReferenceTypeRefinement(invoke_instruction->GetReferenceTypeInfo(),
   2000                                     /* declared_can_be_null */ true,
   2001                                     return_replacement)) {
   2002         return true;
   2003       } else if (return_replacement->IsInstanceFieldGet()) {
   2004         HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet();
   2005         ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   2006         if (field_get->GetFieldInfo().GetField() ==
   2007               class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0)) {
   2008           return true;
   2009         }
   2010       }
   2011     } else if (return_replacement->IsInstanceOf()) {
   2012       // Inlining InstanceOf into an If may put a tighter bound on reference types.
   2013       return true;
   2014     }
   2015   }
   2016 
   2017   return false;
   2018 }
   2019 
   2020 void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method,
   2021                                         HInstruction* return_replacement) {
   2022   if (return_replacement != nullptr) {
   2023     if (return_replacement->GetType() == Primitive::kPrimNot) {
   2024       if (!return_replacement->GetReferenceTypeInfo().IsValid()) {
   2025         // Make sure that we have a valid type for the return. We may get an invalid one when
   2026         // we inline invokes with multiple branches and create a Phi for the result.
   2027         // TODO: we could be more precise by merging the phi inputs but that requires
   2028         // some functionality from the reference type propagation.
   2029         DCHECK(return_replacement->IsPhi());
   2030         mirror::Class* cls = resolved_method->GetReturnType(false /* resolve */);
   2031         return_replacement->SetReferenceTypeInfo(GetClassRTI(cls));
   2032       }
   2033     }
   2034   }
   2035 }
   2036 
   2037 }  // namespace art
   2038