Home | History | Annotate | Download | only in ld128
      1 /*-
      2  * Copyright (c) 2009-2013 Steven G. Kargl
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice unmodified, this list of conditions, and the following
     10  *    disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  *
     26  * Optimized by Bruce D. Evans.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __FBSDID("$FreeBSD$");
     31 
     32 /*
     33  * ld128 version of s_expl.c.  See ../ld80/s_expl.c for most comments.
     34  */
     35 
     36 #include <float.h>
     37 
     38 #include "fpmath.h"
     39 #include "math.h"
     40 #include "math_private.h"
     41 #include "k_expl.h"
     42 
     43 /* XXX Prevent compilers from erroneously constant folding these: */
     44 static const volatile long double
     45 huge = 0x1p10000L,
     46 tiny = 0x1p-10000L;
     47 
     48 static const long double
     49 twom10000 = 0x1p-10000L;
     50 
     51 static const long double
     52 /* log(2**16384 - 0.5) rounded towards zero: */
     53 /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
     54 o_threshold =  11356.523406294143949491931077970763428L,
     55 /* log(2**(-16381-64-1)) rounded towards zero: */
     56 u_threshold = -11433.462743336297878837243843452621503L;
     57 
     58 long double
     59 expl(long double x)
     60 {
     61 	union IEEEl2bits u;
     62 	long double hi, lo, t, twopk;
     63 	int k;
     64 	uint16_t hx, ix;
     65 
     66 	DOPRINT_START(&x);
     67 
     68 	/* Filter out exceptional cases. */
     69 	u.e = x;
     70 	hx = u.xbits.expsign;
     71 	ix = hx & 0x7fff;
     72 	if (ix >= BIAS + 13) {		/* |x| >= 8192 or x is NaN */
     73 		if (ix == BIAS + LDBL_MAX_EXP) {
     74 			if (hx & 0x8000)  /* x is -Inf or -NaN */
     75 				RETURNP(-1 / x);
     76 			RETURNP(x + x);	/* x is +Inf or +NaN */
     77 		}
     78 		if (x > o_threshold)
     79 			RETURNP(huge * huge);
     80 		if (x < u_threshold)
     81 			RETURNP(tiny * tiny);
     82 	} else if (ix < BIAS - 114) {	/* |x| < 0x1p-114 */
     83 		RETURN2P(1, x);		/* 1 with inexact iff x != 0 */
     84 	}
     85 
     86 	ENTERI();
     87 
     88 	twopk = 1;
     89 	__k_expl(x, &hi, &lo, &k);
     90 	t = SUM2P(hi, lo);
     91 
     92 	/* Scale by 2**k. */
     93 	/* XXX sparc64 multiplication is so slow that scalbnl() is faster. */
     94 	if (k >= LDBL_MIN_EXP) {
     95 		if (k == LDBL_MAX_EXP)
     96 			RETURNI(t * 2 * 0x1p16383L);
     97 		SET_LDBL_EXPSIGN(twopk, BIAS + k);
     98 		RETURNI(t * twopk);
     99 	} else {
    100 		SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
    101 		RETURNI(t * twopk * twom10000);
    102 	}
    103 }
    104 
    105 /*
    106  * Our T1 and T2 are chosen to be approximately the points where method
    107  * A and method B have the same accuracy.  Tang's T1 and T2 are the
    108  * points where method A's accuracy changes by a full bit.  For Tang,
    109  * this drop in accuracy makes method A immediately less accurate than
    110  * method B, but our larger INTERVALS makes method A 2 bits more
    111  * accurate so it remains the most accurate method significantly
    112  * closer to the origin despite losing the full bit in our extended
    113  * range for it.
    114  *
    115  * Split the interval [T1, T2] into two intervals [T1, T3] and [T3, T2].
    116  * Setting T3 to 0 would require the |x| < 0x1p-113 condition to appear
    117  * in both subintervals, so set T3 = 2**-5, which places the condition
    118  * into the [T1, T3] interval.
    119  *
    120  * XXX we now do this more to (partially) balance the number of terms
    121  * in the C and D polys than to avoid checking the condition in both
    122  * intervals.
    123  *
    124  * XXX these micro-optimizations are excessive.
    125  */
    126 static const double
    127 T1 = -0.1659,				/* ~-30.625/128 * log(2) */
    128 T2 =  0.1659,				/* ~30.625/128 * log(2) */
    129 T3 =  0.03125;
    130 
    131 /*
    132  * Domain [-0.1659, 0.03125], range ~[2.9134e-44, 1.8404e-37]:
    133  * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-122.03
    134  *
    135  * XXX none of the long double C or D coeffs except C10 is correctly printed.
    136  * If you re-print their values in %.35Le format, the result is always
    137  * different.  For example, the last 2 digits in C3 should be 59, not 67.
    138  * 67 is apparently from rounding an extra-precision value to 36 decimal
    139  * places.
    140  */
    141 static const long double
    142 C3  =  1.66666666666666666666666666666666667e-1L,
    143 C4  =  4.16666666666666666666666666666666645e-2L,
    144 C5  =  8.33333333333333333333333333333371638e-3L,
    145 C6  =  1.38888888888888888888888888891188658e-3L,
    146 C7  =  1.98412698412698412698412697235950394e-4L,
    147 C8  =  2.48015873015873015873015112487849040e-5L,
    148 C9  =  2.75573192239858906525606685484412005e-6L,
    149 C10 =  2.75573192239858906612966093057020362e-7L,
    150 C11 =  2.50521083854417203619031960151253944e-8L,
    151 C12 =  2.08767569878679576457272282566520649e-9L,
    152 C13 =  1.60590438367252471783548748824255707e-10L;
    153 
    154 /*
    155  * XXX this has 1 more coeff than needed.
    156  * XXX can start the double coeffs but not the double mults at C10.
    157  * With my coeffs (C10-C17 double; s = best_s):
    158  * Domain [-0.1659, 0.03125], range ~[-1.1976e-37, 1.1976e-37]:
    159  * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
    160  */
    161 static const double
    162 C14 =  1.1470745580491932e-11,		/*  0x1.93974a81dae30p-37 */
    163 C15 =  7.6471620181090468e-13,		/*  0x1.ae7f3820adab1p-41 */
    164 C16 =  4.7793721460260450e-14,		/*  0x1.ae7cd18a18eacp-45 */
    165 C17 =  2.8074757356658877e-15,		/*  0x1.949992a1937d9p-49 */
    166 C18 =  1.4760610323699476e-16;		/*  0x1.545b43aabfbcdp-53 */
    167 
    168 /*
    169  * Domain [0.03125, 0.1659], range ~[-2.7676e-37, -1.0367e-38]:
    170  * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-121.44
    171  */
    172 static const long double
    173 D3  =  1.66666666666666666666666666666682245e-1L,
    174 D4  =  4.16666666666666666666666666634228324e-2L,
    175 D5  =  8.33333333333333333333333364022244481e-3L,
    176 D6  =  1.38888888888888888888887138722762072e-3L,
    177 D7  =  1.98412698412698412699085805424661471e-4L,
    178 D8  =  2.48015873015873015687993712101479612e-5L,
    179 D9  =  2.75573192239858944101036288338208042e-6L,
    180 D10 =  2.75573192239853161148064676533754048e-7L,
    181 D11 =  2.50521083855084570046480450935267433e-8L,
    182 D12 =  2.08767569819738524488686318024854942e-9L,
    183 D13 =  1.60590442297008495301927448122499313e-10L;
    184 
    185 /*
    186  * XXX this has 1 more coeff than needed.
    187  * XXX can start the double coeffs but not the double mults at D11.
    188  * With my coeffs (D11-D16 double):
    189  * Domain [0.03125, 0.1659], range ~[-1.1980e-37, 1.1980e-37]:
    190  * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
    191  */
    192 static const double
    193 D14 =  1.1470726176204336e-11,		/*  0x1.93971dc395d9ep-37 */
    194 D15 =  7.6478532249581686e-13,		/*  0x1.ae892e3D16fcep-41 */
    195 D16 =  4.7628892832607741e-14,		/*  0x1.ad00Dfe41feccp-45 */
    196 D17 =  3.0524857220358650e-15;		/*  0x1.D7e8d886Df921p-49 */
    197 
    198 long double
    199 expm1l(long double x)
    200 {
    201 	union IEEEl2bits u, v;
    202 	long double hx2_hi, hx2_lo, q, r, r1, t, twomk, twopk, x_hi;
    203 	long double x_lo, x2;
    204 	double dr, dx, fn, r2;
    205 	int k, n, n2;
    206 	uint16_t hx, ix;
    207 
    208 	DOPRINT_START(&x);
    209 
    210 	/* Filter out exceptional cases. */
    211 	u.e = x;
    212 	hx = u.xbits.expsign;
    213 	ix = hx & 0x7fff;
    214 	if (ix >= BIAS + 7) {		/* |x| >= 128 or x is NaN */
    215 		if (ix == BIAS + LDBL_MAX_EXP) {
    216 			if (hx & 0x8000)  /* x is -Inf or -NaN */
    217 				RETURNP(-1 / x - 1);
    218 			RETURNP(x + x);	/* x is +Inf or +NaN */
    219 		}
    220 		if (x > o_threshold)
    221 			RETURNP(huge * huge);
    222 		/*
    223 		 * expm1l() never underflows, but it must avoid
    224 		 * unrepresentable large negative exponents.  We used a
    225 		 * much smaller threshold for large |x| above than in
    226 		 * expl() so as to handle not so large negative exponents
    227 		 * in the same way as large ones here.
    228 		 */
    229 		if (hx & 0x8000)	/* x <= -128 */
    230 			RETURN2P(tiny, -1);	/* good for x < -114ln2 - eps */
    231 	}
    232 
    233 	ENTERI();
    234 
    235 	if (T1 < x && x < T2) {
    236 		x2 = x * x;
    237 		dx = x;
    238 
    239 		if (x < T3) {
    240 			if (ix < BIAS - 113) {	/* |x| < 0x1p-113 */
    241 				/* x (rounded) with inexact if x != 0: */
    242 				RETURNPI(x == 0 ? x :
    243 				    (0x1p200 * x + fabsl(x)) * 0x1p-200);
    244 			}
    245 			q = x * x2 * C3 + x2 * x2 * (C4 + x * (C5 + x * (C6 +
    246 			    x * (C7 + x * (C8 + x * (C9 + x * (C10 +
    247 			    x * (C11 + x * (C12 + x * (C13 +
    248 			    dx * (C14 + dx * (C15 + dx * (C16 +
    249 			    dx * (C17 + dx * C18))))))))))))));
    250 		} else {
    251 			q = x * x2 * D3 + x2 * x2 * (D4 + x * (D5 + x * (D6 +
    252 			    x * (D7 + x * (D8 + x * (D9 + x * (D10 +
    253 			    x * (D11 + x * (D12 + x * (D13 +
    254 			    dx * (D14 + dx * (D15 + dx * (D16 +
    255 			    dx * D17)))))))))))));
    256 		}
    257 
    258 		x_hi = (float)x;
    259 		x_lo = x - x_hi;
    260 		hx2_hi = x_hi * x_hi / 2;
    261 		hx2_lo = x_lo * (x + x_hi) / 2;
    262 		if (ix >= BIAS - 7)
    263 			RETURN2PI(hx2_hi + x_hi, hx2_lo + x_lo + q);
    264 		else
    265 			RETURN2PI(x, hx2_lo + q + hx2_hi);
    266 	}
    267 
    268 	/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
    269 	/* Use a specialized rint() to get fn.  Assume round-to-nearest. */
    270 	fn = (double)x * INV_L + 0x1.8p52 - 0x1.8p52;
    271 #if defined(HAVE_EFFICIENT_IRINT)
    272 	n = irint(fn);
    273 #else
    274 	n = (int)fn;
    275 #endif
    276 	n2 = (unsigned)n % INTERVALS;
    277 	k = n >> LOG2_INTERVALS;
    278 	r1 = x - fn * L1;
    279 	r2 = fn * -L2;
    280 	r = r1 + r2;
    281 
    282 	/* Prepare scale factor. */
    283 	v.e = 1;
    284 	v.xbits.expsign = BIAS + k;
    285 	twopk = v.e;
    286 
    287 	/*
    288 	 * Evaluate lower terms of
    289 	 * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
    290 	 */
    291 	dr = r;
    292 	q = r2 + r * r * (A2 + r * (A3 + r * (A4 + r * (A5 + r * (A6 +
    293 	    dr * (A7 + dr * (A8 + dr * (A9 + dr * A10))))))));
    294 
    295 	t = tbl[n2].lo + tbl[n2].hi;
    296 
    297 	if (k == 0) {
    298 		t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
    299 		    tbl[n2].hi * r1);
    300 		RETURNI(t);
    301 	}
    302 	if (k == -1) {
    303 		t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
    304 		    tbl[n2].hi * r1);
    305 		RETURNI(t / 2);
    306 	}
    307 	if (k < -7) {
    308 		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
    309 		RETURNI(t * twopk - 1);
    310 	}
    311 	if (k > 2 * LDBL_MANT_DIG - 1) {
    312 		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
    313 		if (k == LDBL_MAX_EXP)
    314 			RETURNI(t * 2 * 0x1p16383L - 1);
    315 		RETURNI(t * twopk - 1);
    316 	}
    317 
    318 	v.xbits.expsign = BIAS - k;
    319 	twomk = v.e;
    320 
    321 	if (k > LDBL_MANT_DIG - 1)
    322 		t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
    323 	else
    324 		t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
    325 	RETURNI(t * twopk);
    326 }
    327