Home | History | Annotate | Download | only in builtins
      1 //=-lib/fp_extend_impl.inc - low precision -> high precision conversion -*-- -//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a fairly generic conversion from a narrower to a wider
     11 // IEEE-754 floating-point type.  The constants and types defined following the
     12 // includes below parameterize the conversion.
     13 //
     14 // It does not support types that don't use the usual IEEE-754 interchange
     15 // formats; specifically, some work would be needed to adapt it to
     16 // (for example) the Intel 80-bit format or PowerPC double-double format.
     17 //
     18 // Note please, however, that this implementation is only intended to support
     19 // *widening* operations; if you need to convert to a *narrower* floating-point
     20 // type (e.g. double -> float), then this routine will not do what you want it
     21 // to.
     22 //
     23 // It also requires that integer types at least as large as both formats
     24 // are available on the target platform; this may pose a problem when trying
     25 // to add support for quad on some 32-bit systems, for example.  You also may
     26 // run into trouble finding an appropriate CLZ function for wide source types;
     27 // you will likely need to roll your own on some platforms.
     28 //
     29 // Finally, the following assumptions are made:
     30 //
     31 // 1. floating-point types and integer types have the same endianness on the
     32 //    target platform
     33 //
     34 // 2. quiet NaNs, if supported, are indicated by the leading bit of the
     35 //    significand field being set
     36 //
     37 //===----------------------------------------------------------------------===//
     38 
     39 #include "fp_extend.h"
     40 
     41 static __inline dst_t __extendXfYf2__(src_t a) {
     42     // Various constants whose values follow from the type parameters.
     43     // Any reasonable optimizer will fold and propagate all of these.
     44     const int srcBits = sizeof(src_t)*CHAR_BIT;
     45     const int srcExpBits = srcBits - srcSigBits - 1;
     46     const int srcInfExp = (1 << srcExpBits) - 1;
     47     const int srcExpBias = srcInfExp >> 1;
     48 
     49     const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
     50     const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
     51     const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
     52     const src_rep_t srcAbsMask = srcSignMask - 1;
     53     const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
     54     const src_rep_t srcNaNCode = srcQNaN - 1;
     55 
     56     const int dstBits = sizeof(dst_t)*CHAR_BIT;
     57     const int dstExpBits = dstBits - dstSigBits - 1;
     58     const int dstInfExp = (1 << dstExpBits) - 1;
     59     const int dstExpBias = dstInfExp >> 1;
     60 
     61     const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits;
     62 
     63     // Break a into a sign and representation of the absolute value
     64     const src_rep_t aRep = srcToRep(a);
     65     const src_rep_t aAbs = aRep & srcAbsMask;
     66     const src_rep_t sign = aRep & srcSignMask;
     67     dst_rep_t absResult;
     68 
     69     // If sizeof(src_rep_t) < sizeof(int), the subtraction result is promoted
     70     // to (signed) int.  To avoid that, explicitly cast to src_rep_t.
     71     if ((src_rep_t)(aAbs - srcMinNormal) < srcInfinity - srcMinNormal) {
     72         // a is a normal number.
     73         // Extend to the destination type by shifting the significand and
     74         // exponent into the proper position and rebiasing the exponent.
     75         absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits);
     76         absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits;
     77     }
     78 
     79     else if (aAbs >= srcInfinity) {
     80         // a is NaN or infinity.
     81         // Conjure the result by beginning with infinity, then setting the qNaN
     82         // bit (if needed) and right-aligning the rest of the trailing NaN
     83         // payload field.
     84         absResult = (dst_rep_t)dstInfExp << dstSigBits;
     85         absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits);
     86         absResult |= (dst_rep_t)(aAbs & srcNaNCode) << (dstSigBits - srcSigBits);
     87     }
     88 
     89     else if (aAbs) {
     90         // a is denormal.
     91         // renormalize the significand and clear the leading bit, then insert
     92         // the correct adjusted exponent in the destination type.
     93         const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal);
     94         absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale);
     95         absResult ^= dstMinNormal;
     96         const int resultExponent = dstExpBias - srcExpBias - scale + 1;
     97         absResult |= (dst_rep_t)resultExponent << dstSigBits;
     98     }
     99 
    100     else {
    101         // a is zero.
    102         absResult = 0;
    103     }
    104 
    105     // Apply the signbit to (dst_t)abs(a).
    106     const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
    107     return dstFromRep(result);
    108 }
    109