Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "floatRt.h"
     18 #include <stdbool.h>
     19 
     20 
     21 #include <stdio.h>
     22 
     23 /*
     24  * FLOAT:
     25  *  seeeeeee emmmmmmm mmmmmmmm mmmmmmmm
     26  *
     27  *  s = negative
     28  *  e = exponent
     29  *  m = mantissa (with one bit removed)
     30  *
     31  *   if (e == 0xFF)
     32  *      if (f)  val = inf
     33  *      else    val = nan
     34  *      goto valDone
     35  *   else if (e == 0x00)
     36  *      useLeadingOne = 0
     37  *      e = -126
     38  *   else
     39  *      e = e - 127
     40  *      useLeadingOne = 1
     41  *
     42  *   val = ((useLeadingOne << 24) + m) / (2 ^ 23)
     43  *   val *= 2 ^ e
     44  *
     45  * valDone:
     46  *
     47  *   if (s)
     48  *      val = -val;
     49  */
     50 
     51 #define BIT_SIGN        0x80000000UL
     52 #define MANTISSA_BITS   23
     53 #define EXP_SHIFT       MANTISSA_BITS
     54 #define EXP_ADJUST      127
     55 
     56 
     57 #ifdef USE_NANOHUB_FLOAT_RUNTIME
     58 
     59 uint64_t floatToUint64(float f)
     60 {
     61     uint32_t e, word = *(const uint32_t*)&f;
     62     uint64_t ret;
     63 
     64 
     65     //all negatives become zero
     66     if (word & BIT_SIGN)
     67         return 0;
     68 
     69     //all values with exponent < 0 are less than one and thus become zero
     70     if (word < (EXP_ADJUST << EXP_SHIFT))
     71         return 0;
     72 
     73     //standard does not say what happens to NaNs, infs & other too-large values, we return a large value as an approximation (though a zero would be equally valid)
     74     if (word >= (EXP_ADJUST + 64) << EXP_SHIFT)
     75         return 0xFFFFFFFFFFFFFFFFULL;
     76 
     77     //get mantissa and the implied leading one
     78     ret = (word & ((1 << MANTISSA_BITS) - 1)) | (1 << MANTISSA_BITS);
     79     e = ((word >> EXP_SHIFT) - EXP_ADJUST);
     80 
     81     //shift it by the exp
     82     if (e < MANTISSA_BITS)
     83         ret >>= MANTISSA_BITS - e;
     84     else
     85         ret <<= e - MANTISSA_BITS;
     86 
     87     return ret;
     88 }
     89 
     90 int64_t floatToInt64(float f)
     91 {
     92     uint32_t e, word = *(const uint32_t*)&f;
     93     bool neg = (word & BIT_SIGN);
     94     uint64_t ret;
     95 
     96 
     97     //all negatives become positive for now
     98     word &=~ BIT_SIGN;
     99 
    100     //all values with exponent < 0 are less than one and thus become zero
    101     if (word < (EXP_ADJUST << EXP_SHIFT))
    102         return 0;
    103 
    104     //standard does not say what happens to NaNs, infs & other too-large values, we return a large value as an approximation (though a zero would be equally valid)
    105     if (word >= (EXP_ADJUST + 63) << EXP_SHIFT)
    106         ret = 0x7FFFFFFFFFFFFFFFULL;
    107 
    108     else {
    109         //get mantissa and the implied leading one
    110         ret = (word & ((1 << MANTISSA_BITS) - 1)) | (1 << MANTISSA_BITS);
    111         e = ((word >> EXP_SHIFT) - EXP_ADJUST);
    112 
    113         //shift it by the exp
    114         if (e < MANTISSA_BITS)
    115             ret >>= MANTISSA_BITS - e;
    116         else
    117             ret <<= e - MANTISSA_BITS;
    118     }
    119 
    120     if (neg)
    121         ret = -ret;
    122 
    123     return ret;
    124 }
    125 
    126 float floatFromUint64(uint64_t v)
    127 {
    128     uint32_t hi = v >> 32, lo = v;
    129 
    130     if (!hi) //this is very fast for cases where we fit into a uint32_t
    131         return(float)lo;
    132     else {
    133         return ((float)hi) * 4294967296.0f + (float)lo;
    134     }
    135 }
    136 
    137 float floatFromInt64(int64_t v)
    138 {
    139     uint32_t hi = ((uint64_t)v) >> 32, lo = v;
    140 
    141     if ((hi == 0x00000000 && !(lo >> 31)) || (hi == 0xffffffff && (lo >> 31))) //this complex test is a lot faster then the simpler ((v >> 33) == -1 || (v >> 33) == 0)
    142         return (float)(int32_t)lo;
    143     else if (hi >> 31)  //the case of 0x8000000000000000 is handled here, as negated it remains the same
    144         return -floatFromUint64(-v);
    145     else
    146         return floatFromUint64(v);
    147 }
    148 
    149 
    150 
    151 
    152 
    153 #endif // USE_NANOHUB_FLOAT_RUNTIME
    154