Home | History | Annotate | Download | only in Math
      1 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
      2 /*
      3  * ====================================================
      4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5  *
      6  * Developed at SunPro, a Sun Microsystems, Inc. business.
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 #include  <LibConfig.h>
     13 #include  <sys/EfiCdefs.h>
     14 #if defined(LIBM_SCCS) && !defined(lint)
     15 __RCSID("$NetBSD: k_rem_pio2.c,v 1.11 2003/01/04 23:43:03 wiz Exp $");
     16 #endif
     17 
     18 /*
     19  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
     20  * double x[],y[]; int e0,nx,prec; int ipio2[];
     21  *
     22  * __kernel_rem_pio2 return the last three digits of N with
     23  *    y = x - N*pi/2
     24  * so that |y| < pi/2.
     25  *
     26  * The method is to compute the integer (mod 8) and fraction parts of
     27  * (2/pi)*x without doing the full multiplication. In general we
     28  * skip the part of the product that are known to be a huge integer (
     29  * more accurately, = 0 mod 8 ). Thus the number of operations are
     30  * independent of the exponent of the input.
     31  *
     32  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
     33  *
     34  * Input parameters:
     35  *  x[] The input value (must be positive) is broken into nx
     36  *    pieces of 24-bit integers in double precision format.
     37  *    x[i] will be the i-th 24 bit of x. The scaled exponent
     38  *    of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
     39  *    match x's up to 24 bits.
     40  *
     41  *    Example of breaking a double positive z into x[0]+x[1]+x[2]:
     42  *      e0 = ilogb(z)-23
     43  *      z  = scalbn(z,-e0)
     44  *    for i = 0,1,2
     45  *      x[i] = floor(z)
     46  *      z    = (z-x[i])*2**24
     47  *
     48  *
     49  *  y[] output result in an array of double precision numbers.
     50  *    The dimension of y[] is:
     51  *      24-bit  precision 1
     52  *      53-bit  precision 2
     53  *      64-bit  precision 2
     54  *      113-bit precision 3
     55  *    The actual value is the sum of them. Thus for 113-bit
     56  *    precison, one may have to do something like:
     57  *
     58  *    long double t,w,r_head, r_tail;
     59  *    t = (long double)y[2] + (long double)y[1];
     60  *    w = (long double)y[0];
     61  *    r_head = t+w;
     62  *    r_tail = w - (r_head - t);
     63  *
     64  *  e0  The exponent of x[0]
     65  *
     66  *  nx  dimension of x[]
     67  *
     68  *    prec  an integer indicating the precision:
     69  *      0 24  bits (single)
     70  *      1 53  bits (double)
     71  *      2 64  bits (extended)
     72  *      3 113 bits (quad)
     73  *
     74  *  ipio2[]
     75  *    integer array, contains the (24*i)-th to (24*i+23)-th
     76  *    bit of 2/pi after binary point. The corresponding
     77  *    floating value is
     78  *
     79  *      ipio2[i] * 2^(-24(i+1)).
     80  *
     81  * External function:
     82  *  double scalbn(), floor();
     83  *
     84  *
     85  * Here is the description of some local variables:
     86  *
     87  *  jk  jk+1 is the initial number of terms of ipio2[] needed
     88  *    in the computation. The recommended value is 2,3,4,
     89  *    6 for single, double, extended,and quad.
     90  *
     91  *  jz  local integer variable indicating the number of
     92  *    terms of ipio2[] used.
     93  *
     94  *  jx  nx - 1
     95  *
     96  *  jv  index for pointing to the suitable ipio2[] for the
     97  *    computation. In general, we want
     98  *      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
     99  *    is an integer. Thus
    100  *      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
    101  *    Hence jv = max(0,(e0-3)/24).
    102  *
    103  *  jp  jp+1 is the number of terms in PIo2[] needed, jp = jk.
    104  *
    105  *  q[] double array with integral value, representing the
    106  *    24-bits chunk of the product of x and 2/pi.
    107  *
    108  *  q0  the corresponding exponent of q[0]. Note that the
    109  *    exponent for q[i] would be q0-24*i.
    110  *
    111  *  PIo2[]  double precision array, obtained by cutting pi/2
    112  *    into 24 bits chunks.
    113  *
    114  *  f[] ipio2[] in floating point
    115  *
    116  *  iq[]  integer array by breaking up q[] in 24-bits chunk.
    117  *
    118  *  fq[]  final product of x*(2/pi) in fq[0],..,fq[jk]
    119  *
    120  *  ih  integer. If >0 it indicates q[] is >= 0.5, hence
    121  *    it also indicates the *sign* of the result.
    122  *
    123  */
    124 
    125 
    126 /*
    127  * Constants:
    128  * The hexadecimal values are the intended ones for the following
    129  * constants. The decimal values may be used, provided that the
    130  * compiler will convert from decimal to binary accurately enough
    131  * to produce the hexadecimal values shown.
    132  */
    133 
    134 #include "math.h"
    135 #include "math_private.h"
    136 
    137 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
    138 
    139 static const double PIo2[] = {
    140   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
    141   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
    142   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
    143   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
    144   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
    145   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
    146   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
    147   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
    148 };
    149 
    150 static const double
    151 zero   = 0.0,
    152 one    = 1.0,
    153 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
    154 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
    155 
    156 int
    157 __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
    158 {
    159   int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
    160   double z,fw,f[20],fq[20],q[20];
    161 
    162     /* initialize jk*/
    163   jk = init_jk[prec];
    164   jp = jk;
    165 
    166     /* determine jx,jv,q0, note that 3>q0 */
    167   jx =  nx-1;
    168   jv = (e0-3)/24; if(jv<0) jv=0;
    169   q0 =  e0-24*(jv+1);
    170 
    171     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
    172   j = jv-jx; m = jx+jk;
    173   for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
    174 
    175     /* compute q[0],q[1],...q[jk] */
    176   for (i=0;i<=jk;i++) {
    177       for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
    178   }
    179 
    180   jz = jk;
    181 recompute:
    182     /* distill q[] into iq[] reversingly */
    183   for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
    184       fw    =  (double)((int32_t)(twon24* z));
    185       iq[i] =  (int32_t)(z-two24*fw);
    186       z     =  q[j-1]+fw;
    187   }
    188 
    189     /* compute n */
    190   z  = scalbn(z,q0);    /* actual value of z */
    191   z -= 8.0*floor(z*0.125);    /* trim off integer >= 8 */
    192   n  = (int32_t) z;
    193   z -= (double)n;
    194   ih = 0;
    195   if(q0>0) {  /* need iq[jz-1] to determine n */
    196       i  = (iq[jz-1]>>(24-q0)); n += i;
    197       iq[jz-1] -= i<<(24-q0);
    198       ih = iq[jz-1]>>(23-q0);
    199   }
    200   else if(q0==0) ih = iq[jz-1]>>23;
    201   else if(z>=0.5) ih=2;
    202 
    203   if(ih>0) {  /* q > 0.5 */
    204       n += 1; carry = 0;
    205       for(i=0;i<jz ;i++) {  /* compute 1-q */
    206     j = iq[i];
    207     if(carry==0) {
    208         if(j!=0) {
    209       carry = 1; iq[i] = 0x1000000- j;
    210         }
    211     } else  iq[i] = 0xffffff - j;
    212       }
    213       if(q0>0) {    /* rare case: chance is 1 in 12 */
    214           switch(q0) {
    215           case 1:
    216            iq[jz-1] &= 0x7fffff; break;
    217         case 2:
    218            iq[jz-1] &= 0x3fffff; break;
    219           }
    220       }
    221       if(ih==2) {
    222     z = one - z;
    223     if(carry!=0) z -= scalbn(one,q0);
    224       }
    225   }
    226 
    227     /* check if recomputation is needed */
    228   if(z==zero) {
    229       j = 0;
    230       for (i=jz-1;i>=jk;i--) j |= iq[i];
    231       if(j==0) { /* need recomputation */
    232     for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
    233 
    234     for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
    235         f[jx+i] = (double) ipio2[jv+i];
    236         for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
    237         q[i] = fw;
    238     }
    239     jz += k;
    240     goto recompute;
    241       }
    242   }
    243 
    244     /* chop off zero terms */
    245   if(z==0.0) {
    246       jz -= 1; q0 -= 24;
    247       while(iq[jz]==0) { jz--; q0-=24;}
    248   } else { /* break z into 24-bit if necessary */
    249       z = scalbn(z,-q0);
    250       if(z>=two24) {
    251     fw = (double)((int32_t)(twon24*z));
    252     iq[jz] = (int32_t)(z-two24*fw);
    253     jz += 1; q0 += 24;
    254     iq[jz] = (int32_t) fw;
    255       } else iq[jz] = (int32_t) z ;
    256   }
    257 
    258     /* convert integer "bit" chunk to floating-point value */
    259   fw = scalbn(one,q0);
    260   for(i=jz;i>=0;i--) {
    261       q[i] = fw*(double)iq[i]; fw*=twon24;
    262   }
    263 
    264     /* compute PIo2[0,...,jp]*q[jz,...,0] */
    265   for(i=jz;i>=0;i--) {
    266       for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
    267       fq[jz-i] = fw;
    268   }
    269 
    270     /* compress fq[] into y[] */
    271   switch(prec) {
    272       case 0:
    273     fw = 0.0;
    274     for (i=jz;i>=0;i--) fw += fq[i];
    275     y[0] = (ih==0)? fw: -fw;
    276     break;
    277       case 1:
    278       case 2:
    279     fw = 0.0;
    280     for (i=jz;i>=0;i--) fw += fq[i];
    281     y[0] = (ih==0)? fw: -fw;
    282     fw = fq[0]-fw;
    283     for (i=1;i<=jz;i++) fw += fq[i];
    284     y[1] = (ih==0)? fw: -fw;
    285     break;
    286       case 3: /* painful */
    287     for (i=jz;i>0;i--) {
    288         fw      = fq[i-1]+fq[i];
    289         fq[i]  += fq[i-1]-fw;
    290         fq[i-1] = fw;
    291     }
    292     for (i=jz;i>1;i--) {
    293         fw      = fq[i-1]+fq[i];
    294         fq[i]  += fq[i-1]-fw;
    295         fq[i-1] = fw;
    296     }
    297     for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
    298     if(ih==0) {
    299         y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
    300     } else {
    301         y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
    302     }
    303   }
    304   return n&7;
    305 }
    306