Home | History | Annotate | Download | only in Math
      1 /* @(#)s_expm1.c 5.1 93/09/24 */
      2 /*
      3  * ====================================================
      4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5  *
      6  * Developed at SunPro, a Sun Microsystems, Inc. business.
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 #include  <LibConfig.h>
     13 #include  <sys/EfiCdefs.h>
     14 #if defined(LIBM_SCCS) && !defined(lint)
     15 __RCSID("$NetBSD: s_expm1.c,v 1.12 2002/05/26 22:01:55 wiz Exp $");
     16 #endif
     17 
     18 #if defined(_MSC_VER)           /* Handle Microsoft VC++ compiler specifics. */
     19   // C4756: overflow in constant arithmetic
     20   #pragma warning ( disable : 4756 )
     21 #endif
     22 
     23 /* expm1(x)
     24  * Returns exp(x)-1, the exponential of x minus 1.
     25  *
     26  * Method
     27  *   1. Argument reduction:
     28  *  Given x, find r and integer k such that
     29  *
     30  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
     31  *
     32  *      Here a correction term c will be computed to compensate
     33  *  the error in r when rounded to a floating-point number.
     34  *
     35  *   2. Approximating expm1(r) by a special rational function on
     36  *  the interval [0,0.34658]:
     37  *  Since
     38  *      r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
     39  *  we define R1(r*r) by
     40  *      r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
     41  *  That is,
     42  *      R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
     43  *         = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
     44  *         = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
     45  *      We use a special Reme algorithm on [0,0.347] to generate
     46  *  a polynomial of degree 5 in r*r to approximate R1. The
     47  *  maximum error of this polynomial approximation is bounded
     48  *  by 2**-61. In other words,
     49  *      R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
     50  *  where   Q1  =  -1.6666666666666567384E-2,
     51  *    Q2  =   3.9682539681370365873E-4,
     52  *    Q3  =  -9.9206344733435987357E-6,
     53  *    Q4  =   2.5051361420808517002E-7,
     54  *    Q5  =  -6.2843505682382617102E-9;
     55  *    (where z=r*r, and the values of Q1 to Q5 are listed below)
     56  *  with error bounded by
     57  *      |                  5           |     -61
     58  *      | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
     59  *      |                              |
     60  *
     61  *  expm1(r) = exp(r)-1 is then computed by the following
     62  *  specific way which minimize the accumulation rounding error:
     63  *             2     3
     64  *            r     r    [ 3 - (R1 + R1*r/2)  ]
     65  *        expm1(r) = r + --- + --- * [--------------------]
     66  *                  2     2    [ 6 - r*(3 - R1*r/2) ]
     67  *
     68  *  To compensate the error in the argument reduction, we use
     69  *    expm1(r+c) = expm1(r) + c + expm1(r)*c
     70  *         ~ expm1(r) + c + r*c
     71  *  Thus c+r*c will be added in as the correction terms for
     72  *  expm1(r+c). Now rearrange the term to avoid optimization
     73  *  screw up:
     74  *            (      2                                    2 )
     75  *            ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
     76  *   expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
     77  *                  ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
     78  *                      (                                             )
     79  *
     80  *       = r - E
     81  *   3. Scale back to obtain expm1(x):
     82  *  From step 1, we have
     83  *     expm1(x) = either 2^k*[expm1(r)+1] - 1
     84  *        = or     2^k*[expm1(r) + (1-2^-k)]
     85  *   4. Implementation notes:
     86  *  (A). To save one multiplication, we scale the coefficient Qi
     87  *       to Qi*2^i, and replace z by (x^2)/2.
     88  *  (B). To achieve maximum accuracy, we compute expm1(x) by
     89  *    (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
     90  *    (ii)  if k=0, return r-E
     91  *    (iii) if k=-1, return 0.5*(r-E)-0.5
     92  *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
     93  *                 else      return  1.0+2.0*(r-E);
     94  *    (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
     95  *    (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
     96  *    (vii) return 2^k(1-((E+2^-k)-r))
     97  *
     98  * Special cases:
     99  *  expm1(INF) is INF, expm1(NaN) is NaN;
    100  *  expm1(-INF) is -1, and
    101  *  for finite argument, only expm1(0)=0 is exact.
    102  *
    103  * Accuracy:
    104  *  according to an error analysis, the error is always less than
    105  *  1 ulp (unit in the last place).
    106  *
    107  * Misc. info.
    108  *  For IEEE double
    109  *      if x >  7.09782712893383973096e+02 then expm1(x) overflow
    110  *
    111  * Constants:
    112  * The hexadecimal values are the intended ones for the following
    113  * constants. The decimal values may be used, provided that the
    114  * compiler will convert from decimal to binary accurately enough
    115  * to produce the hexadecimal values shown.
    116  */
    117 
    118 #include "math.h"
    119 #include "math_private.h"
    120 
    121 static const double
    122 one   = 1.0,
    123 huge    = 1.0e+300,
    124 tiny    = 1.0e-300,
    125 o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
    126 ln2_hi    = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
    127 ln2_lo    = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
    128 invln2    = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
    129   /* scaled coefficients related to expm1 */
    130 Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
    131 Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
    132 Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
    133 Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
    134 Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
    135 
    136 double
    137 expm1(double x)
    138 {
    139   double y,hi,lo,c,t,e,hxs,hfx,r1;
    140   int32_t k,xsb;
    141   u_int32_t hx;
    142 
    143   c = 0;
    144   GET_HIGH_WORD(hx,x);
    145   xsb = hx&0x80000000;    /* sign bit of x */
    146   if(xsb==0) y=x; else y= -x; /* y = |x| */
    147   hx &= 0x7fffffff;   /* high word of |x| */
    148 
    149     /* filter out huge and non-finite argument */
    150   if(hx >= 0x4043687A) {      /* if |x|>=56*ln2 */
    151       if(hx >= 0x40862E42) {    /* if |x|>=709.78... */
    152                 if(hx>=0x7ff00000) {
    153         u_int32_t low;
    154         GET_LOW_WORD(low,x);
    155         if(((hx&0xfffff)|low)!=0)
    156              return x+x;   /* NaN */
    157         else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
    158           }
    159           if(x > o_threshold) return huge*huge; /* overflow */
    160       }
    161       if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
    162     if(x+tiny<0.0)    /* raise inexact */
    163     return tiny-one;  /* return -1 */
    164       }
    165   }
    166 
    167     /* argument reduction */
    168   if(hx > 0x3fd62e42) {   /* if  |x| > 0.5 ln2 */
    169       if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
    170     if(xsb==0)
    171         {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
    172     else
    173         {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
    174       } else {
    175     k  = (int32_t)(invln2*x+((xsb==0)?0.5:-0.5));
    176     t  = k;
    177     hi = x - t*ln2_hi;  /* t*ln2_hi is exact here */
    178     lo = t*ln2_lo;
    179       }
    180       x  = hi - lo;
    181       c  = (hi-x)-lo;
    182   }
    183   else if(hx < 0x3c900000) {    /* when |x|<2**-54, return x */
    184       t = huge+x; /* return x with inexact flags when x!=0 */
    185       return x - (t-(huge+x));
    186   }
    187   else k = 0;
    188 
    189     /* x is now in primary range */
    190   hfx = 0.5*x;
    191   hxs = x*hfx;
    192   r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
    193   t  = 3.0-r1*hfx;
    194   e  = hxs*((r1-t)/(6.0 - x*t));
    195   if(k==0) return x - (x*e-hxs);    /* c is 0 */
    196   else {
    197       e  = (x*(e-c)-c);
    198       e -= hxs;
    199       if(k== -1) return 0.5*(x-e)-0.5;
    200       if(k==1)  {
    201           if(x < -0.25) return -2.0*(e-(x+0.5));
    202           else        return  one+2.0*(x-e);
    203       }
    204       if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
    205           u_int32_t high;
    206           y = one-(e-x);
    207     GET_HIGH_WORD(high,y);
    208     SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
    209           return y-one;
    210       }
    211       t = one;
    212       if(k<20) {
    213           u_int32_t high;
    214           SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
    215           y = t-(e-x);
    216     GET_HIGH_WORD(high,y);
    217     SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
    218      } else {
    219           u_int32_t high;
    220     SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
    221           y = x-(e+t);
    222           y += one;
    223     GET_HIGH_WORD(high,y);
    224     SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
    225       }
    226   }
    227   return y;
    228 }
    229