1 /* $NetBSD: softfloat-macros,v 1.3 2012/03/21 02:32:26 christos Exp $ */ 2 3 /* 4 =============================================================================== 5 6 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point 7 Arithmetic Package, Release 2a. 8 9 Written by John R. Hauser. This work was made possible in part by the 10 International Computer Science Institute, located at Suite 600, 1947 Center 11 Street, Berkeley, California 94704. Funding was partially provided by the 12 National Science Foundation under grant MIP-9311980. The original version 13 of this code was written as part of a project to build a fixed-point vector 14 processor in collaboration with the University of California at Berkeley, 15 overseen by Profs. Nelson Morgan and John Wawrzynek. More information 16 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ 17 arithmetic/SoftFloat.html'. 18 19 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort 20 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT 21 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO 22 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY 23 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. 24 25 Derivative works are acceptable, even for commercial purposes, so long as 26 (1) they include prominent notice that the work is derivative, and (2) they 27 include prominent notice akin to these four paragraphs for those parts of 28 this code that are retained. 29 30 =============================================================================== 31 */ 32 33 /* 34 ------------------------------------------------------------------------------- 35 Shifts `a' right by the number of bits given in `count'. If any nonzero 36 bits are shifted off, they are ``jammed'' into the least significant bit of 37 the result by setting the least significant bit to 1. The value of `count' 38 can be arbitrarily large; in particular, if `count' is greater than 32, the 39 result will be either 0 or 1, depending on whether `a' is zero or nonzero. 40 The result is stored in the location pointed to by `zPtr'. 41 ------------------------------------------------------------------------------- 42 */ 43 INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) 44 { 45 bits32 z; 46 47 if ( count == 0 ) { 48 z = a; 49 } 50 else if ( count < 32 ) { 51 z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); 52 } 53 else { 54 z = ( a != 0 ); 55 } 56 *zPtr = z; 57 58 } 59 60 /* 61 ------------------------------------------------------------------------------- 62 Shifts `a' right by the number of bits given in `count'. If any nonzero 63 bits are shifted off, they are ``jammed'' into the least significant bit of 64 the result by setting the least significant bit to 1. The value of `count' 65 can be arbitrarily large; in particular, if `count' is greater than 64, the 66 result will be either 0 or 1, depending on whether `a' is zero or nonzero. 67 The result is stored in the location pointed to by `zPtr'. 68 ------------------------------------------------------------------------------- 69 */ 70 INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr ) 71 { 72 bits64 z; 73 74 if ( count == 0 ) { 75 z = a; 76 } 77 else if ( count < 64 ) { 78 z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 ); 79 } 80 else { 81 z = ( a != 0 ); 82 } 83 *zPtr = z; 84 85 } 86 87 /* 88 ------------------------------------------------------------------------------- 89 Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64 90 _plus_ the number of bits given in `count'. The shifted result is at most 91 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The 92 bits shifted off form a second 64-bit result as follows: The _last_ bit 93 shifted off is the most-significant bit of the extra result, and the other 94 63 bits of the extra result are all zero if and only if _all_but_the_last_ 95 bits shifted off were all zero. This extra result is stored in the location 96 pointed to by `z1Ptr'. The value of `count' can be arbitrarily large. 97 (This routine makes more sense if `a0' and `a1' are considered to form a 98 fixed-point value with binary point between `a0' and `a1'. This fixed-point 99 value is shifted right by the number of bits given in `count', and the 100 integer part of the result is returned at the location pointed to by 101 `z0Ptr'. The fractional part of the result may be slightly corrupted as 102 described above, and is returned at the location pointed to by `z1Ptr'.) 103 ------------------------------------------------------------------------------- 104 */ 105 INLINE void 106 shift64ExtraRightJamming( 107 bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) 108 { 109 bits64 z0, z1; 110 int8 negCount = ( - count ) & 63; 111 112 if ( count == 0 ) { 113 z1 = a1; 114 z0 = a0; 115 } 116 else if ( count < 64 ) { 117 z1 = ( a0<<negCount ) | ( a1 != 0 ); 118 z0 = a0>>count; 119 } 120 else { 121 if ( count == 64 ) { 122 z1 = a0 | ( a1 != 0 ); 123 } 124 else { 125 z1 = ( ( a0 | a1 ) != 0 ); 126 } 127 z0 = 0; 128 } 129 *z1Ptr = z1; 130 *z0Ptr = z0; 131 132 } 133 134 /* 135 ------------------------------------------------------------------------------- 136 Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the 137 number of bits given in `count'. Any bits shifted off are lost. The value 138 of `count' can be arbitrarily large; in particular, if `count' is greater 139 than 128, the result will be 0. The result is broken into two 64-bit pieces 140 which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. 141 ------------------------------------------------------------------------------- 142 */ 143 INLINE void 144 shift128Right( 145 bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) 146 { 147 bits64 z0, z1; 148 int8 negCount = ( - count ) & 63; 149 150 if ( count == 0 ) { 151 z1 = a1; 152 z0 = a0; 153 } 154 else if ( count < 64 ) { 155 z1 = ( a0<<negCount ) | ( a1>>count ); 156 z0 = a0>>count; 157 } 158 else { 159 z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0; 160 z0 = 0; 161 } 162 *z1Ptr = z1; 163 *z0Ptr = z0; 164 165 } 166 167 /* 168 ------------------------------------------------------------------------------- 169 Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the 170 number of bits given in `count'. If any nonzero bits are shifted off, they 171 are ``jammed'' into the least significant bit of the result by setting the 172 least significant bit to 1. The value of `count' can be arbitrarily large; 173 in particular, if `count' is greater than 128, the result will be either 174 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or 175 nonzero. The result is broken into two 64-bit pieces which are stored at 176 the locations pointed to by `z0Ptr' and `z1Ptr'. 177 ------------------------------------------------------------------------------- 178 */ 179 INLINE void 180 shift128RightJamming( 181 bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) 182 { 183 bits64 z0, z1; 184 int8 negCount = ( - count ) & 63; 185 186 if ( count == 0 ) { 187 z1 = a1; 188 z0 = a0; 189 } 190 else if ( count < 64 ) { 191 z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 ); 192 z0 = a0>>count; 193 } 194 else { 195 if ( count == 64 ) { 196 z1 = a0 | ( a1 != 0 ); 197 } 198 else if ( count < 128 ) { 199 z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 ); 200 } 201 else { 202 z1 = ( ( a0 | a1 ) != 0 ); 203 } 204 z0 = 0; 205 } 206 *z1Ptr = z1; 207 *z0Ptr = z0; 208 209 } 210 211 /* 212 ------------------------------------------------------------------------------- 213 Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right 214 by 64 _plus_ the number of bits given in `count'. The shifted result is 215 at most 128 nonzero bits; these are broken into two 64-bit pieces which are 216 stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted 217 off form a third 64-bit result as follows: The _last_ bit shifted off is 218 the most-significant bit of the extra result, and the other 63 bits of the 219 extra result are all zero if and only if _all_but_the_last_ bits shifted off 220 were all zero. This extra result is stored in the location pointed to by 221 `z2Ptr'. The value of `count' can be arbitrarily large. 222 (This routine makes more sense if `a0', `a1', and `a2' are considered 223 to form a fixed-point value with binary point between `a1' and `a2'. This 224 fixed-point value is shifted right by the number of bits given in `count', 225 and the integer part of the result is returned at the locations pointed to 226 by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly 227 corrupted as described above, and is returned at the location pointed to by 228 `z2Ptr'.) 229 ------------------------------------------------------------------------------- 230 */ 231 INLINE void 232 shift128ExtraRightJamming( 233 bits64 a0, 234 bits64 a1, 235 bits64 a2, 236 int16 count, 237 bits64 *z0Ptr, 238 bits64 *z1Ptr, 239 bits64 *z2Ptr 240 ) 241 { 242 bits64 z0, z1, z2; 243 int8 negCount = ( - count ) & 63; 244 245 if ( count == 0 ) { 246 z2 = a2; 247 z1 = a1; 248 z0 = a0; 249 } 250 else { 251 if ( count < 64 ) { 252 z2 = a1<<negCount; 253 z1 = ( a0<<negCount ) | ( a1>>count ); 254 z0 = a0>>count; 255 } 256 else { 257 if ( count == 64 ) { 258 z2 = a1; 259 z1 = a0; 260 } 261 else { 262 a2 |= a1; 263 if ( count < 128 ) { 264 z2 = a0<<negCount; 265 z1 = a0>>( count & 63 ); 266 } 267 else { 268 z2 = ( count == 128 ) ? a0 : ( a0 != 0 ); 269 z1 = 0; 270 } 271 } 272 z0 = 0; 273 } 274 z2 |= ( a2 != 0 ); 275 } 276 *z2Ptr = z2; 277 *z1Ptr = z1; 278 *z0Ptr = z0; 279 280 } 281 282 /* 283 ------------------------------------------------------------------------------- 284 Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the 285 number of bits given in `count'. Any bits shifted off are lost. The value 286 of `count' must be less than 64. The result is broken into two 64-bit 287 pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. 288 ------------------------------------------------------------------------------- 289 */ 290 INLINE void 291 shortShift128Left( 292 bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) 293 { 294 295 *z1Ptr = a1<<count; 296 *z0Ptr = 297 ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) ); 298 299 } 300 301 /* 302 ------------------------------------------------------------------------------- 303 Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left 304 by the number of bits given in `count'. Any bits shifted off are lost. 305 The value of `count' must be less than 64. The result is broken into three 306 64-bit pieces which are stored at the locations pointed to by `z0Ptr', 307 `z1Ptr', and `z2Ptr'. 308 ------------------------------------------------------------------------------- 309 */ 310 INLINE void 311 shortShift192Left( 312 bits64 a0, 313 bits64 a1, 314 bits64 a2, 315 int16 count, 316 bits64 *z0Ptr, 317 bits64 *z1Ptr, 318 bits64 *z2Ptr 319 ) 320 { 321 bits64 z0, z1, z2; 322 int8 negCount; 323 324 z2 = a2<<count; 325 z1 = a1<<count; 326 z0 = a0<<count; 327 if ( 0 < count ) { 328 negCount = ( ( - count ) & 63 ); 329 z1 |= a2>>negCount; 330 z0 |= a1>>negCount; 331 } 332 *z2Ptr = z2; 333 *z1Ptr = z1; 334 *z0Ptr = z0; 335 336 } 337 338 /* 339 ------------------------------------------------------------------------------- 340 Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit 341 value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so 342 any carry out is lost. The result is broken into two 64-bit pieces which 343 are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. 344 ------------------------------------------------------------------------------- 345 */ 346 INLINE void 347 add128( 348 bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) 349 { 350 bits64 z1; 351 352 z1 = a1 + b1; 353 *z1Ptr = z1; 354 *z0Ptr = a0 + b0 + ( z1 < a1 ); 355 356 } 357 358 /* 359 ------------------------------------------------------------------------------- 360 Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the 361 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is 362 modulo 2^192, so any carry out is lost. The result is broken into three 363 64-bit pieces which are stored at the locations pointed to by `z0Ptr', 364 `z1Ptr', and `z2Ptr'. 365 ------------------------------------------------------------------------------- 366 */ 367 INLINE void 368 add192( 369 bits64 a0, 370 bits64 a1, 371 bits64 a2, 372 bits64 b0, 373 bits64 b1, 374 bits64 b2, 375 bits64 *z0Ptr, 376 bits64 *z1Ptr, 377 bits64 *z2Ptr 378 ) 379 { 380 bits64 z0, z1, z2; 381 int8 carry0, carry1; 382 383 z2 = a2 + b2; 384 carry1 = ( z2 < a2 ); 385 z1 = a1 + b1; 386 carry0 = ( z1 < a1 ); 387 z0 = a0 + b0; 388 z1 += carry1; 389 z0 += ( z1 < (bits64)carry1 ); 390 z0 += carry0; 391 *z2Ptr = z2; 392 *z1Ptr = z1; 393 *z0Ptr = z0; 394 395 } 396 397 /* 398 ------------------------------------------------------------------------------- 399 Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the 400 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo 401 2^128, so any borrow out (carry out) is lost. The result is broken into two 402 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and 403 `z1Ptr'. 404 ------------------------------------------------------------------------------- 405 */ 406 INLINE void 407 sub128( 408 bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) 409 { 410 411 *z1Ptr = a1 - b1; 412 *z0Ptr = a0 - b0 - ( a1 < b1 ); 413 414 } 415 416 /* 417 ------------------------------------------------------------------------------- 418 Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2' 419 from the 192-bit value formed by concatenating `a0', `a1', and `a2'. 420 Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The 421 result is broken into three 64-bit pieces which are stored at the locations 422 pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. 423 ------------------------------------------------------------------------------- 424 */ 425 INLINE void 426 sub192( 427 bits64 a0, 428 bits64 a1, 429 bits64 a2, 430 bits64 b0, 431 bits64 b1, 432 bits64 b2, 433 bits64 *z0Ptr, 434 bits64 *z1Ptr, 435 bits64 *z2Ptr 436 ) 437 { 438 bits64 z0, z1, z2; 439 int8 borrow0, borrow1; 440 441 z2 = a2 - b2; 442 borrow1 = ( a2 < b2 ); 443 z1 = a1 - b1; 444 borrow0 = ( a1 < b1 ); 445 z0 = a0 - b0; 446 z0 -= ( z1 < (bits64)borrow1 ); 447 z1 -= borrow1; 448 z0 -= borrow0; 449 *z2Ptr = z2; 450 *z1Ptr = z1; 451 *z0Ptr = z0; 452 453 } 454 455 /* 456 ------------------------------------------------------------------------------- 457 Multiplies `a' by `b' to obtain a 128-bit product. The product is broken 458 into two 64-bit pieces which are stored at the locations pointed to by 459 `z0Ptr' and `z1Ptr'. 460 ------------------------------------------------------------------------------- 461 */ 462 INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr ) 463 { 464 bits32 aHigh, aLow, bHigh, bLow; 465 bits64 z0, zMiddleA, zMiddleB, z1; 466 467 aLow = (bits32)a; 468 aHigh = (bits32)(a>>32); 469 bLow = (bits32)b; 470 bHigh = (bits32)(b>>32); 471 z1 = ( (bits64) aLow ) * bLow; 472 zMiddleA = ( (bits64) aLow ) * bHigh; 473 zMiddleB = ( (bits64) aHigh ) * bLow; 474 z0 = ( (bits64) aHigh ) * bHigh; 475 zMiddleA += zMiddleB; 476 z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 ); 477 zMiddleA <<= 32; 478 z1 += zMiddleA; 479 z0 += ( z1 < zMiddleA ); 480 *z1Ptr = z1; 481 *z0Ptr = z0; 482 483 } 484 485 /* 486 ------------------------------------------------------------------------------- 487 Multiplies the 128-bit value formed by concatenating `a0' and `a1' by 488 `b' to obtain a 192-bit product. The product is broken into three 64-bit 489 pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and 490 `z2Ptr'. 491 ------------------------------------------------------------------------------- 492 */ 493 INLINE void 494 mul128By64To192( 495 bits64 a0, 496 bits64 a1, 497 bits64 b, 498 bits64 *z0Ptr, 499 bits64 *z1Ptr, 500 bits64 *z2Ptr 501 ) 502 { 503 bits64 z0, z1, z2, more1; 504 505 mul64To128( a1, b, &z1, &z2 ); 506 mul64To128( a0, b, &z0, &more1 ); 507 add128( z0, more1, 0, z1, &z0, &z1 ); 508 *z2Ptr = z2; 509 *z1Ptr = z1; 510 *z0Ptr = z0; 511 512 } 513 514 /* 515 ------------------------------------------------------------------------------- 516 Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the 517 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit 518 product. The product is broken into four 64-bit pieces which are stored at 519 the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. 520 ------------------------------------------------------------------------------- 521 */ 522 INLINE void 523 mul128To256( 524 bits64 a0, 525 bits64 a1, 526 bits64 b0, 527 bits64 b1, 528 bits64 *z0Ptr, 529 bits64 *z1Ptr, 530 bits64 *z2Ptr, 531 bits64 *z3Ptr 532 ) 533 { 534 bits64 z0, z1, z2, z3; 535 bits64 more1, more2; 536 537 mul64To128( a1, b1, &z2, &z3 ); 538 mul64To128( a1, b0, &z1, &more2 ); 539 add128( z1, more2, 0, z2, &z1, &z2 ); 540 mul64To128( a0, b0, &z0, &more1 ); 541 add128( z0, more1, 0, z1, &z0, &z1 ); 542 mul64To128( a0, b1, &more1, &more2 ); 543 add128( more1, more2, 0, z2, &more1, &z2 ); 544 add128( z0, z1, 0, more1, &z0, &z1 ); 545 *z3Ptr = z3; 546 *z2Ptr = z2; 547 *z1Ptr = z1; 548 *z0Ptr = z0; 549 550 } 551 552 /* 553 ------------------------------------------------------------------------------- 554 Returns an approximation to the 64-bit integer quotient obtained by dividing 555 `b' into the 128-bit value formed by concatenating `a0' and `a1'. The 556 divisor `b' must be at least 2^63. If q is the exact quotient truncated 557 toward zero, the approximation returned lies between q and q + 2 inclusive. 558 If the exact quotient q is larger than 64 bits, the maximum positive 64-bit 559 unsigned integer is returned. 560 ------------------------------------------------------------------------------- 561 */ 562 static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b ) 563 { 564 bits64 b0, b1; 565 bits64 rem0, rem1, term0, term1; 566 bits64 z; 567 568 if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF ); 569 b0 = b>>32; 570 z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32; 571 mul64To128( b, z, &term0, &term1 ); 572 sub128( a0, a1, term0, term1, &rem0, &rem1 ); 573 while ( ( (sbits64) rem0 ) < 0 ) { 574 z -= LIT64( 0x100000000 ); 575 b1 = b<<32; 576 add128( rem0, rem1, b0, b1, &rem0, &rem1 ); 577 } 578 rem0 = ( rem0<<32 ) | ( rem1>>32 ); 579 z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0; 580 return z; 581 582 } 583 584 #if !defined(SOFTFLOAT_FOR_GCC) || defined(FLOATX80) || defined(FLOAT128) 585 /* 586 ------------------------------------------------------------------------------- 587 Returns an approximation to the square root of the 32-bit significand given 588 by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of 589 `aExp' (the least significant bit) is 1, the integer returned approximates 590 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' 591 is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either 592 case, the approximation returned lies strictly within +/-2 of the exact 593 value. 594 ------------------------------------------------------------------------------- 595 */ 596 static bits32 estimateSqrt32( int16 aExp, bits32 a ) 597 { 598 static const bits16 sqrtOddAdjustments[] = { 599 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, 600 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 601 }; 602 static const bits16 sqrtEvenAdjustments[] = { 603 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, 604 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 605 }; 606 int8 idx; 607 bits32 z; 608 609 idx = ( a>>27 ) & 15; 610 if ( aExp & 1 ) { 611 z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ idx ]; 612 z = ( ( a / z )<<14 ) + ( z<<15 ); 613 a >>= 1; 614 } 615 else { 616 z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ idx ]; 617 z = a / z + z; 618 z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); 619 if ( z <= a ) return (bits32) ( ( (bits32) a )>>1 ); 620 } 621 return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 ); 622 623 } 624 #endif 625 626 /* 627 ------------------------------------------------------------------------------- 628 Returns the number of leading 0 bits before the most-significant 1 bit of 629 `a'. If `a' is zero, 32 is returned. 630 ------------------------------------------------------------------------------- 631 */ 632 static int8 countLeadingZeros32( bits32 a ) 633 { 634 static const int8 countLeadingZerosHigh[] = { 635 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 636 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 637 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 638 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 639 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 640 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 641 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 642 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 643 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 644 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 645 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 646 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 647 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 648 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 649 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 650 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 651 }; 652 int8 shiftCount; 653 654 shiftCount = 0; 655 if ( a < 0x10000 ) { 656 shiftCount += 16; 657 a <<= 16; 658 } 659 if ( a < 0x1000000 ) { 660 shiftCount += 8; 661 a <<= 8; 662 } 663 shiftCount += countLeadingZerosHigh[ a>>24 ]; 664 return shiftCount; 665 666 } 667 668 /* 669 ------------------------------------------------------------------------------- 670 Returns the number of leading 0 bits before the most-significant 1 bit of 671 `a'. If `a' is zero, 64 is returned. 672 ------------------------------------------------------------------------------- 673 */ 674 static int8 countLeadingZeros64( bits64 a ) 675 { 676 int8 shiftCount; 677 678 shiftCount = 0; 679 if ( a < ( (bits64) 1 )<<32 ) { 680 shiftCount += 32; 681 } 682 else { 683 a >>= 32; 684 } 685 shiftCount += (int8)countLeadingZeros32( (bits32)a ); 686 return shiftCount; 687 688 } 689 690 /* 691 ------------------------------------------------------------------------------- 692 Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' 693 is equal to the 128-bit value formed by concatenating `b0' and `b1'. 694 Otherwise, returns 0. 695 ------------------------------------------------------------------------------- 696 */ 697 INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) 698 { 699 700 return ( a0 == b0 ) && ( a1 == b1 ); 701 702 } 703 704 /* 705 ------------------------------------------------------------------------------- 706 Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less 707 than or equal to the 128-bit value formed by concatenating `b0' and `b1'. 708 Otherwise, returns 0. 709 ------------------------------------------------------------------------------- 710 */ 711 INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) 712 { 713 714 return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); 715 716 } 717 718 /* 719 ------------------------------------------------------------------------------- 720 Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less 721 than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise, 722 returns 0. 723 ------------------------------------------------------------------------------- 724 */ 725 INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) 726 { 727 728 return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); 729 730 } 731 732 /* 733 ------------------------------------------------------------------------------- 734 Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is 735 not equal to the 128-bit value formed by concatenating `b0' and `b1'. 736 Otherwise, returns 0. 737 ------------------------------------------------------------------------------- 738 */ 739 INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) 740 { 741 742 return ( a0 != b0 ) || ( a1 != b1 ); 743 744 } 745 746