Home | History | Annotate | Download | only in dalvik
      1 <html devsite>
      2   <head>
      3     <title>Dalvik bytecode</title>
      4     <meta name="project_path" value="/_project.yaml" />
      5     <meta name="book_path" value="/_book.yaml" />
      6   </head>
      7   <body>
      8   <!--
      9       Copyright 2017 The Android Open Source Project
     10 
     11       Licensed under the Apache License, Version 2.0 (the "License");
     12       you may not use this file except in compliance with the License.
     13       You may obtain a copy of the License at
     14 
     15           http://www.apache.org/licenses/LICENSE-2.0
     16 
     17       Unless required by applicable law or agreed to in writing, software
     18       distributed under the License is distributed on an "AS IS" BASIS,
     19       WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     20       See the License for the specific language governing permissions and
     21       limitations under the License.
     22   -->
     23 
     24 
     25 
     26 <h2 id="design">General design</h2>
     27 
     28 <ul>
     29 <li>The machine model and calling conventions are meant to approximately
     30   imitate common real architectures and C-style calling conventions:
     31   <ul>
     32   <li>The machine is register-based, and frames are fixed in size upon creation.
     33     Each frame consists of a particular number of registers (specified by
     34     the method) as well as any adjunct data needed to execute the method,
     35     such as (but not limited to) the program counter and a reference to the
     36     <code>.dex</code> file that contains the method.
     37   </li>
     38   <li>When used for bit values (such as integers and floating point
     39     numbers), registers are considered 32 bits wide. Adjacent register
     40     pairs are used for 64-bit values. There is no alignment requirement
     41     for register pairs.
     42   </li>
     43   <li>When used for object references, registers are considered wide enough
     44     to hold exactly one such reference.
     45   </li>
     46   <li>In terms of bitwise representation, <code>(Object) null == (int)
     47     0</code>.
     48   </li>
     49   <li>The <i>N</i> arguments to a method land in the last <i>N</i> registers
     50     of the method's invocation frame, in order. Wide arguments consume
     51     two registers. Instance methods are passed a <code>this</code> reference
     52     as their first argument.
     53   </li>
     54   </ul>
     55 <li>The storage unit in the instruction stream is a 16-bit unsigned quantity.
     56   Some bits in some instructions are ignored / must-be-zero.
     57 </li>
     58 <li>Instructions aren't gratuitously limited to a particular type. For
     59   example, instructions that move 32-bit register values without interpretation
     60   don't have to specify whether they are moving ints or floats.
     61 </li>
     62 <li>There are separately enumerated and indexed constant pools for
     63   references to strings, types, fields, and methods.
     64 </li>
     65 <li>Bitwise literal data is represented in-line in the instruction stream.</li>
     66 <li>Because, in practice, it is uncommon for a method to need more than
     67   16 registers, and because needing more than eight registers <i>is</i>
     68   reasonably common, many instructions are limited to only addressing
     69   the first 16
     70   registers. When reasonably possible, instructions allow references to
     71   up to the first 256 registers. In addition, some instructions have variants
     72   that allow for much larger register counts, including a pair of catch-all
     73   <code>move</code> instructions that can address registers in the range
     74   <code>v0</code> &ndash; <code>v65535</code>.
     75   In cases where an instruction variant isn't
     76   available to address a desired register, it is expected that the register
     77   contents get moved from the original register to a low register (before the
     78   operation) and/or moved from a low result register to a high register
     79   (after the operation).
     80 </li>
     81 <li>There are several "pseudo-instructions" that are used to hold
     82   variable-length data payloads, which are referred to by regular
     83   instructions (for example,
     84   <code>fill-array-data</code>). Such instructions must never be
     85   encountered during the normal flow of execution. In addition, the
     86   instructions must be located on even-numbered bytecode offsets (that is,
     87   4-byte aligned). In order to meet this requirement, dex generation tools
     88   must emit an extra <code>nop</code> instruction as a spacer if such an
     89   instruction would otherwise be unaligned. Finally, though not required,
     90   it is expected that most tools will choose to emit these instructions at
     91   the ends of methods, since otherwise it would likely be the case that
     92   additional instructions would be needed to branch around them.
     93 </li>
     94 <li>When installed on a running system, some instructions may be altered,
     95   changing their format, as an install-time static linking optimization.
     96   This is to allow for faster execution once linkage is known.
     97   See the associated
     98   <a href="instruction-formats.html">instruction formats document</a>
     99   for the suggested variants. The word "suggested" is used advisedly;
    100   it is not mandatory to implement these.
    101 </li>
    102 <li>Human-syntax and mnemonics:
    103   <ul>
    104   <li>Dest-then-source ordering for arguments.</li>
    105   <li>Some opcodes have a disambiguating name suffix to indicate the type(s)
    106     they operate on:
    107     <ul>
    108     <li>Type-general 32-bit opcodes are unmarked.</li>
    109     <li>Type-general 64-bit opcodes are suffixed with <code>-wide</code>.</li>
    110     <li>Type-specific opcodes are suffixed with their type (or a
    111     straightforward abbreviation), one of: <code>-boolean</code>
    112     <code>-byte</code> <code>-char</code> <code>-short</code>
    113     <code>-int</code> <code>-long</code> <code>-float</code>
    114     <code>-double</code> <code>-object</code> <code>-string</code>
    115     <code>-class</code> <code>-void</code>.</li>
    116     </ul>
    117   </li>
    118   <li>Some opcodes have a disambiguating suffix to distinguish
    119     otherwise-identical operations that have different instruction layouts
    120     or options. These suffixes are separated from the main names with a slash
    121     ("<code>/</code>") and mainly exist at all to make there be a one-to-one
    122     mapping with static constants in the code that generates and interprets
    123     executables (that is, to reduce ambiguity for humans).
    124   </li>
    125   <li>In the descriptions here, the width of a value (indicating, e.g., the
    126     range of a constant or the number of registers possibly addressed) is
    127     emphasized by the use of a character per four bits of width.
    128   </li>
    129   <li>For example, in the instruction
    130     "<code>move-wide/from16 vAA, vBBBB</code>":
    131     <ul>
    132     <li>"<code>move</code>" is the base opcode, indicating the base operation
    133     (move a register's value).</li>
    134     <li>"<code>wide</code>" is the name suffix, indicating that it operates
    135     on wide (64 bit) data.</li>
    136     <li>"<code>from16</code>" is the opcode suffix, indicating a variant
    137     that has a 16-bit register reference as a source.</li>
    138     <li>"<code>vAA</code>" is the destination register (implied by the
    139     operation; again, the rule is that destination arguments always come
    140     first), which must be in the range <code>v0</code> &ndash;
    141     <code>v255</code>.</li>
    142     <li>"<code>vBBBB</code>" is the source register, which must be in the
    143     range <code>v0</code> &ndash; <code>v65535</code>.</li>
    144     </ul>
    145   </li>
    146   </ul>
    147 </li>
    148 <li>See the <a href="instruction-formats.html">instruction formats
    149   document</a> for more details about the various instruction formats
    150   (listed under "Op &amp; Format") as well as details about the opcode
    151   syntax.
    152 </li>
    153 <li>See the <a href="dex-format.html"><code>.dex</code> file format
    154   document</a> for more details about where the bytecode fits into
    155   the bigger picture.
    156 </li>
    157 </ul>
    158 
    159 <h2 id="instructions">Summary of bytecode set</h2>
    160 
    161 <table class="instruc">
    162 <thead>
    163 <tr>
    164   <th>Op &amp; Format</th>
    165   <th>Mnemonic / Syntax</th>
    166   <th>Arguments</th>
    167   <th>Description</th>
    168 </tr>
    169 </thead>
    170 <tbody>
    171 <tr>
    172   <td>00 10x</td>
    173   <td>nop</td>
    174   <td>&nbsp;</td>
    175   <td>Waste cycles.
    176     <p class="note"><strong>Note:</strong>
    177     Data-bearing pseudo-instructions are tagged with this opcode, in which
    178     case the high-order byte of the opcode unit indicates the nature of
    179     the data. See "<code>packed-switch-payload</code> Format",
    180     "<code>sparse-switch-payload</code> Format", and
    181     "<code>fill-array-data-payload</code> Format" below.</p>
    182   </td>
    183 </tr>
    184 <tr>
    185   <td>01 12x</td>
    186   <td>move vA, vB</td>
    187   <td><code>A:</code> destination register (4 bits)<br/>
    188     <code>B:</code> source register (4 bits)</td>
    189   <td>Move the contents of one non-object register to another.</td>
    190 </tr>
    191 <tr>
    192   <td>02 22x</td>
    193   <td>move/from16 vAA, vBBBB</td>
    194   <td><code>A:</code> destination register (8 bits)<br/>
    195     <code>B:</code> source register (16 bits)</td>
    196   <td>Move the contents of one non-object register to another.</td>
    197 </tr>
    198 <tr>
    199   <td>03 32x</td>
    200   <td>move/16 vAAAA, vBBBB</td>
    201   <td><code>A:</code> destination register (16 bits)<br/>
    202     <code>B:</code> source register (16 bits)</td>
    203   <td>Move the contents of one non-object register to another.</td>
    204 </tr>
    205 <tr>
    206   <td>04 12x</td>
    207   <td>move-wide vA, vB</td>
    208   <td><code>A:</code> destination register pair (4 bits)<br/>
    209     <code>B:</code> source register pair (4 bits)</td>
    210   <td>Move the contents of one register-pair to another.
    211     <p class="note"><strong>Note:</strong>
    212     It is legal to move from <code>v<i>N</i></code> to either
    213     <code>v<i>N-1</i></code> or <code>v<i>N+1</i></code>, so implementations
    214     must arrange for both halves of a register pair to be read before
    215     anything is written.</p>
    216   </td>
    217 </tr>
    218 <tr>
    219   <td>05 22x</td>
    220   <td>move-wide/from16 vAA, vBBBB</td>
    221   <td><code>A:</code> destination register pair (8 bits)<br/>
    222     <code>B:</code> source register pair (16 bits)</td>
    223   <td>Move the contents of one register-pair to another.
    224     <p class="note"><strong>Note:</strong>
    225     Implementation considerations are the same as <code>move-wide</code>,
    226     above.</p>
    227   </td>
    228 </tr>
    229 <tr>
    230   <td>06 32x</td>
    231   <td>move-wide/16 vAAAA, vBBBB</td>
    232   <td><code>A:</code> destination register pair (16 bits)<br/>
    233     <code>B:</code> source register pair (16 bits)</td>
    234   <td>Move the contents of one register-pair to another.
    235     <p class="note"><strong>Note:</strong>
    236     Implementation considerations are the same as <code>move-wide</code>,
    237     above.</p>
    238   </td>
    239 </tr>
    240 <tr>
    241   <td>07 12x</td>
    242   <td>move-object vA, vB</td>
    243   <td><code>A:</code> destination register (4 bits)<br/>
    244     <code>B:</code> source register (4 bits)</td>
    245   <td>Move the contents of one object-bearing register to another.</td>
    246 </tr>
    247 <tr>
    248   <td>08 22x</td>
    249   <td>move-object/from16 vAA, vBBBB</td>
    250   <td><code>A:</code> destination register (8 bits)<br/>
    251     <code>B:</code> source register (16 bits)</td>
    252   <td>Move the contents of one object-bearing register to another.</td>
    253 </tr>
    254 <tr>
    255   <td>09 32x</td>
    256   <td>move-object/16 vAAAA, vBBBB</td>
    257   <td><code>A:</code> destination register (16 bits)<br/>
    258     <code>B:</code> source register (16 bits)</td>
    259   <td>Move the contents of one object-bearing register to another.</td>
    260 </tr>
    261 <tr>
    262   <td>0a 11x</td>
    263   <td>move-result vAA</td>
    264   <td><code>A:</code> destination register (8 bits)</td>
    265   <td>Move the single-word non-object result of the most recent
    266     <code>invoke-<i>kind</i></code> into the indicated register.
    267     This must be done as the instruction immediately after an
    268     <code>invoke-<i>kind</i></code> whose (single-word, non-object) result
    269     is not to be ignored; anywhere else is invalid.</td>
    270 </tr>
    271 <tr>
    272   <td>0b 11x</td>
    273   <td>move-result-wide vAA</td>
    274   <td><code>A:</code> destination register pair (8 bits)</td>
    275   <td>Move the double-word result of the most recent
    276     <code>invoke-<i>kind</i></code> into the indicated register pair.
    277     This must be done as the instruction immediately after an
    278     <code>invoke-<i>kind</i></code> whose (double-word) result
    279     is not to be ignored; anywhere else is invalid.</td>
    280 </tr>
    281 <tr>
    282   <td>0c 11x</td>
    283   <td>move-result-object vAA</td>
    284   <td><code>A:</code> destination register (8 bits)</td>
    285   <td>Move the object result of the most recent <code>invoke-<i>kind</i></code>
    286     into the indicated register. This must be done as the instruction
    287     immediately after an <code>invoke-<i>kind</i></code> or
    288     <code>filled-new-array</code>
    289     whose (object) result is not to be ignored; anywhere else is invalid.</td>
    290 </tr>
    291 <tr>
    292   <td>0d 11x</td>
    293   <td>move-exception vAA</td>
    294   <td><code>A:</code> destination register (8 bits)</td>
    295   <td>Save a just-caught exception into the given register. This must
    296     be the first instruction of any exception handler whose caught
    297     exception is not to be ignored, and this instruction must <i>only</i>
    298     ever occur as the first instruction of an exception handler; anywhere
    299     else is invalid.</td>
    300 </tr>
    301 <tr>
    302   <td>0e 10x</td>
    303   <td>return-void</td>
    304   <td>&nbsp;</td>
    305   <td>Return from a <code>void</code> method.</td>
    306 </tr>
    307 <tr>
    308   <td>0f 11x</td>
    309   <td>return vAA</td>
    310   <td><code>A:</code> return value register (8 bits)</td>
    311   <td>Return from a single-width (32-bit) non-object value-returning
    312     method.
    313   </td>
    314 </tr>
    315 <tr>
    316   <td>10 11x</td>
    317   <td>return-wide vAA</td>
    318   <td><code>A:</code> return value register-pair (8 bits)</td>
    319   <td>Return from a double-width (64-bit) value-returning method.</td>
    320 </tr>
    321 <tr>
    322   <td>11 11x</td>
    323   <td>return-object vAA</td>
    324   <td><code>A:</code> return value register (8 bits)</td>
    325   <td>Return from an object-returning method.</td>
    326 </tr>
    327 <tr>
    328   <td>12 11n</td>
    329   <td>const/4 vA, #+B</td>
    330   <td><code>A:</code> destination register (4 bits)<br/>
    331     <code>B:</code> signed int (4 bits)</td>
    332   <td>Move the given literal value (sign-extended to 32 bits) into
    333     the specified register.</td>
    334 </tr>
    335 <tr>
    336   <td>13 21s</td>
    337   <td>const/16 vAA, #+BBBB</td>
    338   <td><code>A:</code> destination register (8 bits)<br/>
    339     <code>B:</code> signed int (16 bits)</td>
    340   <td>Move the given literal value (sign-extended to 32 bits) into
    341     the specified register.</td>
    342 </tr>
    343 <tr>
    344   <td>14 31i</td>
    345   <td>const vAA, #+BBBBBBBB</td>
    346   <td><code>A:</code> destination register (8 bits)<br/>
    347     <code>B:</code> arbitrary 32-bit constant</td>
    348   <td>Move the given literal value into the specified register.</td>
    349 </tr>
    350 <tr>
    351   <td>15 21h</td>
    352   <td>const/high16 vAA, #+BBBB0000</td>
    353   <td><code>A:</code> destination register (8 bits)<br/>
    354     <code>B:</code> signed int (16 bits)</td>
    355   <td>Move the given literal value (right-zero-extended to 32 bits) into
    356     the specified register.</td>
    357 </tr>
    358 <tr>
    359   <td>16 21s</td>
    360   <td>const-wide/16 vAA, #+BBBB</td>
    361   <td><code>A:</code> destination register (8 bits)<br/>
    362     <code>B:</code> signed int (16 bits)</td>
    363   <td>Move the given literal value (sign-extended to 64 bits) into
    364     the specified register-pair.</td>
    365 </tr>
    366 <tr>
    367   <td>17 31i</td>
    368   <td>const-wide/32 vAA, #+BBBBBBBB</td>
    369   <td><code>A:</code> destination register (8 bits)<br/>
    370     <code>B:</code> signed int (32 bits)</td>
    371   <td>Move the given literal value (sign-extended to 64 bits) into
    372     the specified register-pair.</td>
    373 </tr>
    374 <tr>
    375   <td>18 51l</td>
    376   <td>const-wide vAA, #+BBBBBBBBBBBBBBBB</td>
    377   <td><code>A:</code> destination register (8 bits)<br/>
    378     <code>B:</code> arbitrary double-width (64-bit) constant</td>
    379   <td>Move the given literal value into
    380     the specified register-pair.</td>
    381 </tr>
    382 <tr>
    383   <td>19 21h</td>
    384   <td>const-wide/high16 vAA, #+BBBB000000000000</td>
    385   <td><code>A:</code> destination register (8 bits)<br/>
    386     <code>B:</code> signed int (16 bits)</td>
    387   <td>Move the given literal value (right-zero-extended to 64 bits) into
    388     the specified register-pair.</td>
    389 </tr>
    390 <tr>
    391   <td>1a 21c</td>
    392   <td>const-string vAA, string@BBBB</td>
    393   <td><code>A:</code> destination register (8 bits)<br/>
    394     <code>B:</code> string index</td>
    395   <td>Move a reference to the string specified by the given index into the
    396     specified register.</td>
    397 </tr>
    398 <tr>
    399   <td>1b 31c</td>
    400   <td>const-string/jumbo vAA, string@BBBBBBBB</td>
    401   <td><code>A:</code> destination register (8 bits)<br/>
    402     <code>B:</code> string index</td>
    403   <td>Move a reference to the string specified by the given index into the
    404     specified register.</td>
    405 </tr>
    406 <tr>
    407   <td>1c 21c</td>
    408   <td>const-class vAA, type@BBBB</td>
    409   <td><code>A:</code> destination register (8 bits)<br/>
    410     <code>B:</code> type index</td>
    411   <td>Move a reference to the class specified by the given index into the
    412     specified register. In the case where the indicated type is primitive,
    413     this will store a reference to the primitive type's degenerate
    414     class.</td>
    415 </tr>
    416 <tr>
    417   <td>1d 11x</td>
    418   <td>monitor-enter vAA</td>
    419   <td><code>A:</code> reference-bearing register (8 bits)</td>
    420   <td>Acquire the monitor for the indicated object.</td>
    421 </tr>
    422 <tr>
    423   <td>1e 11x</td>
    424   <td>monitor-exit vAA</td>
    425   <td><code>A:</code> reference-bearing register (8 bits)</td>
    426   <td>Release the monitor for the indicated object.
    427     <p class="note"><strong>Note:</strong>
    428     If this instruction needs to throw an exception, it must do
    429     so as if the pc has already advanced past the instruction.
    430     It may be useful to think of this as the instruction successfully
    431     executing (in a sense), and the exception getting thrown <i>after</i>
    432     the instruction but <i>before</i> the next one gets a chance to
    433     run. This definition makes it possible for a method to use
    434     a monitor cleanup catch-all (e.g., <code>finally</code>) block as
    435     the monitor cleanup for that block itself, as a way to handle the
    436     arbitrary exceptions that might get thrown due to the historical
    437     implementation of <code>Thread.stop()</code>, while still managing
    438     to have proper monitor hygiene.</p>
    439   </td>
    440 </tr>
    441 <tr>
    442   <td>1f 21c</td>
    443   <td>check-cast vAA, type@BBBB</td>
    444   <td><code>A:</code> reference-bearing register (8 bits)<br/>
    445     <code>B:</code> type index (16 bits)</td>
    446   <td>Throw a <code>ClassCastException</code> if the reference in the
    447     given register cannot be cast to the indicated type.
    448     <p class="note"><strong>Note:</strong> Since <code>A</code> must always be a reference
    449     (and not a primitive value), this will necessarily fail at runtime
    450     (that is, it will throw an exception) if <code>B</code> refers to a
    451     primitive type.</p>
    452   </td>
    453 </tr>
    454 <tr>
    455   <td>20 22c</td>
    456   <td>instance-of vA, vB, type@CCCC</td>
    457   <td><code>A:</code> destination register (4 bits)<br/>
    458     <code>B:</code> reference-bearing register (4 bits)<br/>
    459     <code>C:</code> type index (16 bits)</td>
    460   <td>Store in the given destination register <code>1</code>
    461     if the indicated reference is an instance of the given type,
    462     or <code>0</code> if not.
    463     <p class="note"><strong>Note:</strong> Since <code>B</code> must always be a reference
    464     (and not a primitive value), this will always result
    465     in <code>0</code> being stored if <code>C</code> refers to a primitive
    466     type.</td>
    467 </tr>
    468 <tr>
    469   <td>21 12x</td>
    470   <td>array-length vA, vB</td>
    471   <td><code>A:</code> destination register (4 bits)<br/>
    472     <code>B:</code> array reference-bearing register (4 bits)</td>
    473   <td>Store in the given destination register the length of the indicated
    474     array, in entries</td>
    475 </tr>
    476 <tr>
    477   <td>22 21c</td>
    478   <td>new-instance vAA, type@BBBB</td>
    479   <td><code>A:</code> destination register (8 bits)<br/>
    480     <code>B:</code> type index</td>
    481   <td>Construct a new instance of the indicated type, storing a
    482     reference to it in the destination. The type must refer to a
    483     non-array class.</td>
    484 </tr>
    485 <tr>
    486   <td>23 22c</td>
    487   <td>new-array vA, vB, type@CCCC</td>
    488   <td><code>A:</code> destination register (4 bits)<br/>
    489     <code>B:</code> size register<br/>
    490     <code>C:</code> type index</td>
    491   <td>Construct a new array of the indicated type and size. The type
    492     must be an array type.</td>
    493 </tr>
    494 <tr>
    495   <td>24 35c</td>
    496   <td>filled-new-array {vC, vD, vE, vF, vG}, type@BBBB</td>
    497   <td>
    498     <code>A:</code> array size and argument word count (4 bits)<br/>
    499     <code>B:</code> type index (16 bits)<br/>
    500     <code>C..G:</code> argument registers (4 bits each)
    501   </td>
    502   <td>Construct an array of the given type and size, filling it with the
    503     supplied contents. The type must be an array type. The array's
    504     contents must be single-word (that is,
    505     no arrays of <code>long</code> or <code>double</code>, but reference
    506     types are acceptable). The constructed
    507     instance is stored as a "result" in the same way that the method invocation
    508     instructions store their results, so the constructed instance must
    509     be moved to a register with an immediately subsequent
    510     <code>move-result-object</code> instruction (if it is to be used).</td>
    511 </tr>
    512 <tr>
    513   <td>25 3rc</td>
    514   <td>filled-new-array/range {vCCCC .. vNNNN}, type@BBBB</td>
    515   <td><code>A:</code> array size and argument word count (8 bits)<br/>
    516     <code>B:</code> type index (16 bits)<br/>
    517     <code>C:</code> first argument register (16 bits)<br/>
    518     <code>N = A + C - 1</code></td>
    519   <td>Construct an array of the given type and size, filling it with
    520     the supplied contents. Clarifications and restrictions are the same
    521     as <code>filled-new-array</code>, described above.</td>
    522 </tr>
    523 <tr>
    524   <td>26 31t</td>
    525   <td>fill-array-data vAA, +BBBBBBBB <i>(with supplemental data as specified
    526     below in "<code>fill-array-data-payload</code> Format")</i></td>
    527   <td><code>A:</code> array reference (8 bits)<br/>
    528     <code>B:</code> signed "branch" offset to table data pseudo-instruction
    529     (32 bits)
    530   </td>
    531   <td>Fill the given array with the indicated data. The reference must be
    532     to an array of primitives, and the data table must match it in type and
    533     must contain no more elements than will fit in the array. That is,
    534     the array may be larger than the table, and if so, only the initial
    535     elements of the array are set, leaving the remainder alone.
    536   </td>
    537 </tr>
    538 <tr>
    539   <td>27 11x</td>
    540   <td>throw vAA</td>
    541   <td><code>A:</code> exception-bearing register (8 bits)<br/></td>
    542   <td>Throw the indicated exception.</td>
    543 </tr>
    544 <tr>
    545   <td>28 10t</td>
    546   <td>goto +AA</td>
    547   <td><code>A:</code> signed branch offset (8 bits)</td>
    548   <td>Unconditionally jump to the indicated instruction.
    549     <p class="note"><strong>Note:</strong>
    550     The branch offset must not be <code>0</code>. (A spin
    551     loop may be legally constructed either with <code>goto/32</code> or
    552     by including a <code>nop</code> as a target before the branch.)</p>
    553   </td>
    554 </tr>
    555 <tr>
    556   <td>29 20t</td>
    557   <td>goto/16 +AAAA</td>
    558   <td><code>A:</code> signed branch offset (16 bits)<br/></td>
    559   <td>Unconditionally jump to the indicated instruction.
    560     <p class="note"><strong>Note:</strong>
    561     The branch offset must not be <code>0</code>. (A spin
    562     loop may be legally constructed either with <code>goto/32</code> or
    563     by including a <code>nop</code> as a target before the branch.)</p>
    564   </td>
    565 </tr>
    566 <tr>
    567   <td>2a 30t</td>
    568   <td>goto/32 +AAAAAAAA</td>
    569   <td><code>A:</code> signed branch offset (32 bits)<br/></td>
    570   <td>Unconditionally jump to the indicated instruction.</td>
    571 </tr>
    572 <tr>
    573   <td>2b 31t</td>
    574   <td>packed-switch vAA, +BBBBBBBB <i>(with supplemental data as
    575     specified below in "<code>packed-switch-payload</code> Format")</i></td>
    576   <td><code>A:</code> register to test<br/>
    577     <code>B:</code> signed "branch" offset to table data pseudo-instruction
    578     (32 bits)
    579   </td>
    580   <td>Jump to a new instruction based on the value in the
    581     given register, using a table of offsets corresponding to each value
    582     in a particular integral range, or fall through to the next
    583     instruction if there is no match.
    584   </td>
    585 </tr>
    586 <tr>
    587   <td>2c 31t</td>
    588   <td>sparse-switch vAA, +BBBBBBBB <i>(with supplemental data as
    589     specified below in "<code>sparse-switch-payload</code> Format")</i></td>
    590   <td><code>A:</code> register to test<br/>
    591     <code>B:</code> signed "branch" offset to table data pseudo-instruction
    592     (32 bits)
    593   </td>
    594   <td>Jump to a new instruction based on the value in the given
    595     register, using an ordered table of value-offset pairs, or fall
    596     through to the next instruction if there is no match.
    597   </td>
    598 </tr>
    599 <tr>
    600   <td>2d..31 23x</td>
    601   <td>cmp<i>kind</i> vAA, vBB, vCC<br/>
    602     2d: cmpl-float <i>(lt bias)</i><br/>
    603     2e: cmpg-float <i>(gt bias)</i><br/>
    604     2f: cmpl-double <i>(lt bias)</i><br/>
    605     30: cmpg-double <i>(gt bias)</i><br/>
    606     31: cmp-long
    607   </td>
    608   <td><code>A:</code> destination register (8 bits)<br/>
    609     <code>B:</code> first source register or pair<br/>
    610     <code>C:</code> second source register or pair</td>
    611   <td>Perform the indicated floating point or <code>long</code> comparison,
    612     setting <code>a</code> to <code>0</code> if <code>b == c</code>,
    613     <code>1</code> if <code>b &gt; c</code>,
    614     or <code>-1</code> if <code>b &lt; c</code>.
    615     The "bias" listed for the floating point operations
    616     indicates how <code>NaN</code> comparisons are treated: "gt bias"
    617     instructions return <code>1</code> for <code>NaN</code> comparisons,
    618     and "lt bias" instructions return <code>-1</code>.
    619     <p>For example, to check to see if floating point
    620     <code>x &lt; y</code> it is advisable to use
    621     <code>cmpg-float</code>; a result of <code>-1</code> indicates that
    622     the test was true, and the other values indicate it was false either
    623     due to a valid comparison or because one of the values was
    624     <code>NaN</code>.</p>
    625   </td>
    626 </tr>
    627 <tr>
    628   <td>32..37 22t</td>
    629   <td>if-<i>test</i> vA, vB, +CCCC<br/>
    630     32: if-eq<br/>
    631     33: if-ne<br/>
    632     34: if-lt<br/>
    633     35: if-ge<br/>
    634     36: if-gt<br/>
    635     37: if-le<br/>
    636   </td>
    637   <td><code>A:</code> first register to test (4 bits)<br/>
    638     <code>B:</code> second register to test (4 bits)<br/>
    639     <code>C:</code> signed branch offset (16 bits)</td>
    640   <td>Branch to the given destination if the given two registers' values
    641     compare as specified.
    642     <p class="note"><strong>Note:</strong>
    643     The branch offset must not be <code>0</code>. (A spin
    644     loop may be legally constructed either by branching around a
    645     backward <code>goto</code> or by including a <code>nop</code> as
    646     a target before the branch.)</p>
    647   </td>
    648 </tr>
    649 <tr>
    650   <td>38..3d 21t</td>
    651   <td>if-<i>test</i>z vAA, +BBBB<br/>
    652     38: if-eqz<br/>
    653     39: if-nez<br/>
    654     3a: if-ltz<br/>
    655     3b: if-gez<br/>
    656     3c: if-gtz<br/>
    657     3d: if-lez<br/>
    658   </td>
    659   <td><code>A:</code> register to test (8 bits)<br/>
    660     <code>B:</code> signed branch offset (16 bits)</td>
    661   <td>Branch to the given destination if the given register's value compares
    662     with 0 as specified.
    663     <p class="note"><strong>Note:</strong>
    664     The branch offset must not be <code>0</code>. (A spin
    665     loop may be legally constructed either by branching around a
    666     backward <code>goto</code> or by including a <code>nop</code> as
    667     a target before the branch.)</p>
    668   </td>
    669 </tr>
    670 <tr>
    671   <td>3e..43 10x</td>
    672   <td><i>(unused)</i></td>
    673   <td>&nbsp;</td>
    674   <td><i>(unused)</i></td>
    675 </tr>
    676 <tr>
    677   <td>44..51 23x</td>
    678   <td><i>arrayop</i> vAA, vBB, vCC<br/>
    679     44: aget<br/>
    680     45: aget-wide<br/>
    681     46: aget-object<br/>
    682     47: aget-boolean<br/>
    683     48: aget-byte<br/>
    684     49: aget-char<br/>
    685     4a: aget-short<br/>
    686     4b: aput<br/>
    687     4c: aput-wide<br/>
    688     4d: aput-object<br/>
    689     4e: aput-boolean<br/>
    690     4f: aput-byte<br/>
    691     50: aput-char<br/>
    692     51: aput-short
    693   </td>
    694   <td><code>A:</code> value register or pair; may be source or dest
    695       (8 bits)<br/>
    696     <code>B:</code> array register (8 bits)<br/>
    697     <code>C:</code> index register (8 bits)</td>
    698   <td>Perform the identified array operation at the identified index of
    699     the given array, loading or storing into the value register.</td>
    700 </tr>
    701 <tr>
    702   <td>52..5f 22c</td>
    703   <td>i<i>instanceop</i> vA, vB, field@CCCC<br/>
    704     52: iget<br/>
    705     53: iget-wide<br/>
    706     54: iget-object<br/>
    707     55: iget-boolean<br/>
    708     56: iget-byte<br/>
    709     57: iget-char<br/>
    710     58: iget-short<br/>
    711     59: iput<br/>
    712     5a: iput-wide<br/>
    713     5b: iput-object<br/>
    714     5c: iput-boolean<br/>
    715     5d: iput-byte<br/>
    716     5e: iput-char<br/>
    717     5f: iput-short
    718   </td>
    719   <td><code>A:</code> value register or pair; may be source or dest
    720       (4 bits)<br/>
    721     <code>B:</code> object register (4 bits)<br/>
    722     <code>C:</code> instance field reference index (16 bits)</td>
    723   <td>Perform the identified object instance field operation with
    724     the identified field, loading or storing into the value register.
    725     <p class="note"><strong>Note:</strong> These opcodes are reasonable candidates for static linking,
    726     altering the field argument to be a more direct offset.</p>
    727   </td>
    728 </tr>
    729 <tr>
    730   <td>60..6d 21c</td>
    731   <td>s<i>staticop</i> vAA, field@BBBB<br/>
    732     60: sget<br/>
    733     61: sget-wide<br/>
    734     62: sget-object<br/>
    735     63: sget-boolean<br/>
    736     64: sget-byte<br/>
    737     65: sget-char<br/>
    738     66: sget-short<br/>
    739     67: sput<br/>
    740     68: sput-wide<br/>
    741     69: sput-object<br/>
    742     6a: sput-boolean<br/>
    743     6b: sput-byte<br/>
    744     6c: sput-char<br/>
    745     6d: sput-short
    746   </td>
    747   <td><code>A:</code> value register or pair; may be source or dest
    748       (8 bits)<br/>
    749     <code>B:</code> static field reference index (16 bits)</td>
    750   <td>Perform the identified object static field operation with the identified
    751     static field, loading or storing into the value register.
    752     <p class="note"><strong>Note:</strong> These opcodes are reasonable candidates for static linking,
    753     altering the field argument to be a more direct offset.</p>
    754   </td>
    755 </tr>
    756 <tr>
    757   <td>6e..72 35c</td>
    758   <td>invoke-<i>kind</i> {vC, vD, vE, vF, vG}, meth@BBBB<br/>
    759     6e: invoke-virtual<br/>
    760     6f: invoke-super<br/>
    761     70: invoke-direct<br/>
    762     71: invoke-static<br/>
    763     72: invoke-interface
    764   </td>
    765   <td>
    766     <code>A:</code> argument word count (4 bits)<br/>
    767     <code>B:</code> method reference index (16 bits)<br/>
    768     <code>C..G:</code> argument registers (4 bits each)
    769   </td>
    770   <td>Call the indicated method. The result (if any) may be stored
    771     with an appropriate <code>move-result*</code> variant as the immediately
    772     subsequent instruction.
    773     <p><code>invoke-virtual</code> is used to invoke a normal virtual
    774     method (a method that is not <code>private</code>, <code>static</code>,
    775     or <code>final</code>, and is also not a constructor).</p>
    776     <p>When the <code>method_id</code> references a method of a non-interface
    777     class, <code>invoke-super</code> is used to invoke the closest superclass's
    778     virtual method (as opposed to the one with the same <code>method_id</code>
    779     in the calling class). The same method restrictions hold as for
    780     <code>invoke-virtual</code>.</p>
    781     <p>In Dex files version <code>037</code> or later, if the
    782     <code>method_id</code> refers to an interface method,
    783     <code>invoke-super</code> is used to invoke the most specific,
    784     non-overridden version of that method defined on that interface.  The same
    785     method restrictions hold as for <code>invoke-virtual</code>. In Dex files
    786     prior to version <code>037</code>, having an interface
    787     <code>method_id</code> is illegal and undefined.</p>
    788     <p><code>invoke-direct</code> is used to invoke a non-<code>static</code>
    789     direct method (that is, an instance method that is by its nature
    790     non-overridable, namely either a <code>private</code> instance method or a
    791     constructor).</p>
    792     <p><code>invoke-static</code> is used to invoke a <code>static</code>
    793     method (which is always considered a direct method).</p>
    794     <p><code>invoke-interface</code> is used to invoke an
    795     <code>interface</code> method, that is, on an object whose concrete
    796     class isn't known, using a <code>method_id</code> that refers to
    797     an <code>interface</code>.</p>
    798     <p class="note"><strong>Note:</strong> These opcodes are reasonable candidates for static linking,
    799     altering the method argument to be a more direct offset
    800     (or pair thereof).</p>
    801   </td>
    802 </tr>
    803 <tr>
    804   <td>73 10x</td>
    805   <td><i>(unused)</i></td>
    806   <td>&nbsp;</td>
    807   <td><i>(unused)</i></td>
    808 </tr>
    809 <tr>
    810   <td>74..78 3rc</td>
    811   <td>invoke-<i>kind</i>/range {vCCCC .. vNNNN}, meth@BBBB<br/>
    812     74: invoke-virtual/range<br/>
    813     75: invoke-super/range<br/>
    814     76: invoke-direct/range<br/>
    815     77: invoke-static/range<br/>
    816     78: invoke-interface/range
    817   </td>
    818   <td><code>A:</code> argument word count (8 bits)<br/>
    819     <code>B:</code> method reference index (16 bits)<br/>
    820     <code>C:</code> first argument register (16 bits)<br/>
    821     <code>N = A + C - 1</code></td>
    822   <td>Call the indicated method. See first <code>invoke-<i>kind</i></code>
    823     description above for details, caveats, and suggestions.
    824   </td>
    825 </tr>
    826 <tr>
    827   <td>79..7a 10x</td>
    828   <td><i>(unused)</i></td>
    829   <td>&nbsp;</td>
    830   <td><i>(unused)</i></td>
    831 </tr>
    832 <tr>
    833   <td>7b..8f 12x</td>
    834   <td><i>unop</i> vA, vB<br/>
    835     7b: neg-int<br/>
    836     7c: not-int<br/>
    837     7d: neg-long<br/>
    838     7e: not-long<br/>
    839     7f: neg-float<br/>
    840     80: neg-double<br/>
    841     81: int-to-long<br/>
    842     82: int-to-float<br/>
    843     83: int-to-double<br/>
    844     84: long-to-int<br/>
    845     85: long-to-float<br/>
    846     86: long-to-double<br/>
    847     87: float-to-int<br/>
    848     88: float-to-long<br/>
    849     89: float-to-double<br/>
    850     8a: double-to-int<br/>
    851     8b: double-to-long<br/>
    852     8c: double-to-float<br/>
    853     8d: int-to-byte<br/>
    854     8e: int-to-char<br/>
    855     8f: int-to-short
    856   </td>
    857   <td><code>A:</code> destination register or pair (4 bits)<br/>
    858     <code>B:</code> source register or pair (4 bits)</td>
    859   <td>Perform the identified unary operation on the source register,
    860     storing the result in the destination register.</td>
    861 </tr>
    862 
    863 <tr>
    864   <td>90..af 23x</td>
    865   <td><i>binop</i> vAA, vBB, vCC<br/>
    866     90: add-int<br/>
    867     91: sub-int<br/>
    868     92: mul-int<br/>
    869     93: div-int<br/>
    870     94: rem-int<br/>
    871     95: and-int<br/>
    872     96: or-int<br/>
    873     97: xor-int<br/>
    874     98: shl-int<br/>
    875     99: shr-int<br/>
    876     9a: ushr-int<br/>
    877     9b: add-long<br/>
    878     9c: sub-long<br/>
    879     9d: mul-long<br/>
    880     9e: div-long<br/>
    881     9f: rem-long<br/>
    882     a0: and-long<br/>
    883     a1: or-long<br/>
    884     a2: xor-long<br/>
    885     a3: shl-long<br/>
    886     a4: shr-long<br/>
    887     a5: ushr-long<br/>
    888     a6: add-float<br/>
    889     a7: sub-float<br/>
    890     a8: mul-float<br/>
    891     a9: div-float<br/>
    892     aa: rem-float<br/>
    893     ab: add-double<br/>
    894     ac: sub-double<br/>
    895     ad: mul-double<br/>
    896     ae: div-double<br/>
    897     af: rem-double
    898   </td>
    899   <td><code>A:</code> destination register or pair (8 bits)<br/>
    900     <code>B:</code> first source register or pair (8 bits)<br/>
    901     <code>C:</code> second source register or pair (8 bits)</td>
    902   <td>Perform the identified binary operation on the two source registers,
    903     storing the result in the destination register.
    904     <p class="note"><strong>Note:</strong>
    905     Contrary to other <code>-long</code> mathematical operations (which
    906     take register pairs for both their first and their second source),
    907     <code>shl-long</code>, <code>shr-long</code>, and <code>ushr-long</code>
    908     take a register pair for their first source (the value to be shifted),
    909     but a single register for their second source (the shifting distance).
    910     </p>
    911 </td>
    912 </tr>
    913 <tr>
    914   <td>b0..cf 12x</td>
    915   <td><i>binop</i>/2addr vA, vB<br/>
    916     b0: add-int/2addr<br/>
    917     b1: sub-int/2addr<br/>
    918     b2: mul-int/2addr<br/>
    919     b3: div-int/2addr<br/>
    920     b4: rem-int/2addr<br/>
    921     b5: and-int/2addr<br/>
    922     b6: or-int/2addr<br/>
    923     b7: xor-int/2addr<br/>
    924     b8: shl-int/2addr<br/>
    925     b9: shr-int/2addr<br/>
    926     ba: ushr-int/2addr<br/>
    927     bb: add-long/2addr<br/>
    928     bc: sub-long/2addr<br/>
    929     bd: mul-long/2addr<br/>
    930     be: div-long/2addr<br/>
    931     bf: rem-long/2addr<br/>
    932     c0: and-long/2addr<br/>
    933     c1: or-long/2addr<br/>
    934     c2: xor-long/2addr<br/>
    935     c3: shl-long/2addr<br/>
    936     c4: shr-long/2addr<br/>
    937     c5: ushr-long/2addr<br/>
    938     c6: add-float/2addr<br/>
    939     c7: sub-float/2addr<br/>
    940     c8: mul-float/2addr<br/>
    941     c9: div-float/2addr<br/>
    942     ca: rem-float/2addr<br/>
    943     cb: add-double/2addr<br/>
    944     cc: sub-double/2addr<br/>
    945     cd: mul-double/2addr<br/>
    946     ce: div-double/2addr<br/>
    947     cf: rem-double/2addr
    948   </td>
    949   <td><code>A:</code> destination and first source register or pair
    950       (4 bits)<br/>
    951     <code>B:</code> second source register or pair (4 bits)</td>
    952   <td>Perform the identified binary operation on the two source registers,
    953     storing the result in the first source register.
    954     <p class="note"><strong>Note:</strong>
    955     Contrary to other <code>-long/2addr</code> mathematical operations
    956     (which take register pairs for both their destination/first source and
    957     their second source), <code>shl-long/2addr</code>,
    958     <code>shr-long/2addr</code>, and <code>ushr-long/2addr</code> take a
    959     register pair for their destination/first source (the value to be
    960     shifted), but a single register for their second source (the shifting
    961     distance).
    962     </p>
    963   </td>
    964 </tr>
    965 <tr>
    966   <td>d0..d7 22s</td>
    967   <td><i>binop</i>/lit16 vA, vB, #+CCCC<br/>
    968     d0: add-int/lit16<br/>
    969     d1: rsub-int (reverse subtract)<br/>
    970     d2: mul-int/lit16<br/>
    971     d3: div-int/lit16<br/>
    972     d4: rem-int/lit16<br/>
    973     d5: and-int/lit16<br/>
    974     d6: or-int/lit16<br/>
    975     d7: xor-int/lit16
    976   </td>
    977   <td><code>A:</code> destination register (4 bits)<br/>
    978     <code>B:</code> source register (4 bits)<br/>
    979     <code>C:</code> signed int constant (16 bits)</td>
    980   <td>Perform the indicated binary op on the indicated register (first
    981     argument) and literal value (second argument), storing the result in
    982     the destination register.
    983     <p class="note"><strong>Note:</strong>
    984     <code>rsub-int</code> does not have a suffix since this version is the
    985     main opcode of its family. Also, see below for details on its semantics.
    986     </p>
    987   </td>
    988 </tr>
    989 <tr>
    990   <td>d8..e2 22b</td>
    991   <td><i>binop</i>/lit8 vAA, vBB, #+CC<br/>
    992     d8: add-int/lit8<br/>
    993     d9: rsub-int/lit8<br/>
    994     da: mul-int/lit8<br/>
    995     db: div-int/lit8<br/>
    996     dc: rem-int/lit8<br/>
    997     dd: and-int/lit8<br/>
    998     de: or-int/lit8<br/>
    999     df: xor-int/lit8<br/>
   1000     e0: shl-int/lit8<br/>
   1001     e1: shr-int/lit8<br/>
   1002     e2: ushr-int/lit8
   1003   </td>
   1004   <td><code>A:</code> destination register (8 bits)<br/>
   1005     <code>B:</code> source register (8 bits)<br/>
   1006     <code>C:</code> signed int constant (8 bits)</td>
   1007   <td>Perform the indicated binary op on the indicated register (first
   1008     argument) and literal value (second argument), storing the result
   1009     in the destination register.
   1010     <p class="note"><strong>Note:</strong> See below for details on the semantics of
   1011     <code>rsub-int</code>.</p>
   1012   </td>
   1013 </tr>
   1014 <tr>
   1015   <td>e3..f9 10x</td>
   1016   <td><i>(unused)</i></td>
   1017   <td>&nbsp;</td>
   1018   <td><i>(unused)</i></td>
   1019 </tr>
   1020 <tr>
   1021   <td>fa 45cc</td>
   1022   <td>invoke-polymorphic {vC, vD, vE, vF, vG}, meth@BBBB, proto@HHHH</td>
   1023   <td>
   1024     <code>A:</code> argument word count (4 bits) </br>
   1025     <code>B:</code> method reference index (16 bits) </br>
   1026     <code>C:</code> method handle reference to invoke (16 bits) </br>
   1027     <code>D..G:</code> argument registers (4 bits each) </br>
   1028     <code>H:</code> prototype reference index (16 bits) </br>
   1029   </td>
   1030   <td>
   1031     Invoke the indicated method handle. The result (if any) may be stored
   1032     with an appropriate <code>move-result*</code> variant as the immediately
   1033     subsequent instruction.
   1034     <p> The method reference must be to <code>java.lang.invoke.MethodHandle.invoke</code>
   1035         or <code>java.lang.invoke.MethodHandle.invokeExact</code>.
   1036     <p> The prototype reference describes the argument types provided
   1037         and the expected return type.
   1038     <p> The <code>invoke-polymorphic</code> bytecode may raise exceptions when it
   1039         executes. The exceptions are described in the API documentation
   1040         for <code>java.lang.invoke.MethodHandle.invoke</code> and
   1041         <code>java.lang.invoke.MethodHandle.invokeExact</code>.
   1042     <p> Present in Dex files from version <code>038</code> onwards.
   1043   </td>
   1044 </tr>
   1045 <tr>
   1046   <td>fb 4rcc</td>
   1047   <td>invoke-polymorphic/range {vCCCC .. vNNNN}, meth@BBBB, proto@HHHH</td>
   1048   <td>
   1049     <code>A:</code> argument word count (8 bits) </br>
   1050     <code>B:</code> method reference index (16 bits) </br>
   1051     <code>C:</code> method handle reference to invoke (16 bits) </br>
   1052     <code>H:</code> prototype reference index (16 bits) </br>
   1053     <code>N = A + C - 1</code>
   1054   </td>
   1055   <td>
   1056     Invoke the indicated method handle. See the <code>invoke-polymorphic</code>
   1057     description above for details.
   1058     <p> Present in Dex files from version <code>038</code> onwards.
   1059   </td>
   1060 </tr>
   1061 <tr>
   1062   <td>fc 35c</td>
   1063   <td>invoke-custom {vC, vD, vE, vF, vG}, call_site@BBBB</td>
   1064   <td>
   1065     <code>A:</code> argument word count (4 bits) <br>
   1066     <code>B:</code> call site reference index (16 bits) <br>
   1067     <code>C..G:</code> argument registers (4 bits each)
   1068   </td>
   1069   <td> Resolves and invokes the indicated call site.
   1070     The result from the invocation (if any) may be stored with an
   1071     appropriate <code>move-result*</code> variant as the immediately
   1072     subsequent instruction.
   1073 
   1074     <p> This instruction executes in two phases: call site
   1075         resolution and call site invocation.
   1076 
   1077     <p> Call site resolution checks whether the indicated
   1078       call site has an associated <code>java.lang.invoke.CallSite</code> instance.
   1079       If not, the bootstrap linker method for the indicated call site is
   1080       invoked using arguments present in the DEX file
   1081       (see <a href="dex-format.html#call-site-item">call_site_item</a>). The
   1082       bootstrap linker method returns
   1083       a <code>java.lang.invoke.CallSite</code> instance that will then
   1084       be associated with the indicated call site if no association
   1085       exists. Another thread may have already made the association first,
   1086       and if so execution of the instruction continues with the
   1087       first associated <code>java.lang.invoke.CallSite</code> instance.
   1088 
   1089     <p> Call site invocation is made on the <code>java.lang.invoke.MethodHandle</code> target of the
   1090       resolved <code>java.lang.invoke.CallSite</code> instance. The target is invoked as if
   1091       executing <code>invoke-polymorphic</code> (described above)
   1092       using the method handle and arguments to
   1093       the <code>invoke-custom</code> instruction as the arguments to an
   1094       exact method handle invocation.
   1095 
   1096     <p> Exceptions raised by the bootstrap linker method are wrapped
   1097       in a <code>java.lang.BootstrapMethodError</code>.  A <code>BootstrapMethodError</code> is also raised if:
   1098       <ul>
   1099         <li>the bootstrap linker method fails to return a <code>java.lang.invoke.CallSite</code> instance.</li>
   1100         <li>the returned <code>java.lang.invoke.CallSite</code> has a <code>null</code> method handle target.</li>
   1101         <li>the method handle target is not of the requested type.</li>
   1102       </ul>
   1103     <p> Present in Dex files from version <code>038</code> onwards.
   1104   </td>
   1105 </tr>
   1106 <tr>
   1107   <td>fd 3rc</td>
   1108   <td>invoke-custom/range {vCCCC .. vNNNN}, call_site@BBBB</td>
   1109   <td>
   1110     <code>A:</code> argument word count (8 bits) <br>
   1111     <code>B:</code> call site reference index (16 bits) <br>
   1112     <code>C:</code> first argument register (16-bits) <br>
   1113     <code>N = A + C - 1</code>
   1114   </td>
   1115   <td>
   1116     Resolve and invoke a call site. See the <code>invoke-custom</code> description above for details.
   1117     <p> Present in Dex files from version <code>038</code> onwards.
   1118   </td>
   1119 </tr>
   1120 <tr>
   1121   <td>fe..ff 10x</td>
   1122   <td><i>(unused)</i></td>
   1123   <td>&nbsp;</td>
   1124   <td><i>(unused)</i></td>
   1125 </tr>
   1126 </tbody>
   1127 </table>
   1128 
   1129 <h2 id="packed-switch">packed-switch-payload format</h2>
   1130 
   1131 <table class="supplement">
   1132 <thead>
   1133 <tr>
   1134   <th>Name</th>
   1135   <th>Format</th>
   1136   <th>Description</th>
   1137 </tr>
   1138 </thead>
   1139 <tbody>
   1140 <tr>
   1141   <td>ident</td>
   1142   <td>ushort = 0x0100</td>
   1143   <td>identifying pseudo-opcode</td>
   1144 </tr>
   1145 <tr>
   1146   <td>size</td>
   1147   <td>ushort</td>
   1148   <td>number of entries in the table</td>
   1149 </tr>
   1150 <tr>
   1151   <td>first_key</td>
   1152   <td>int</td>
   1153   <td>first (and lowest) switch case value</td>
   1154 </tr>
   1155 <tr>
   1156   <td>targets</td>
   1157   <td>int[]</td>
   1158   <td>list of <code>size</code> relative branch targets. The targets are
   1159     relative to the address of the switch opcode, not of this table.
   1160   </td>
   1161 </tr>
   1162 </tbody>
   1163 </table>
   1164 
   1165 <p class="note"><strong>Note:</strong> The total number of code units for an instance of this
   1166 table is <code>(size * 2) + 4</code>.</p>
   1167 
   1168 <h2 id="sparse-switch">sparse-switch-payload format</h2>
   1169 
   1170 <table class="supplement">
   1171 <thead>
   1172 <tr>
   1173   <th>Name</th>
   1174   <th>Format</th>
   1175   <th>Description</th>
   1176 </tr>
   1177 </thead>
   1178 <tbody>
   1179 <tr>
   1180   <td>ident</td>
   1181   <td>ushort = 0x0200</td>
   1182   <td>identifying pseudo-opcode</td>
   1183 </tr>
   1184 <tr>
   1185   <td>size</td>
   1186   <td>ushort</td>
   1187   <td>number of entries in the table</td>
   1188 </tr>
   1189 <tr>
   1190   <td>keys</td>
   1191   <td>int[]</td>
   1192   <td>list of <code>size</code> key values, sorted low-to-high</td>
   1193 </tr>
   1194 <tr>
   1195   <td>targets</td>
   1196   <td>int[]</td>
   1197   <td>list of <code>size</code> relative branch targets, each corresponding
   1198     to the key value at the same index. The targets are
   1199     relative to the address of the switch opcode, not of this table.
   1200   </td>
   1201 </tr>
   1202 </tbody>
   1203 </table>
   1204 
   1205 <p class="note"><strong>Note:</strong> The total number of code units for an instance of this
   1206 table is <code>(size * 4) + 2</code>.</p>
   1207 
   1208 <h2 id="fill-array">fill-array-data-payload format</h2>
   1209 
   1210 <table class="supplement">
   1211 <thead>
   1212 <tr>
   1213   <th>Name</th>
   1214   <th>Format</th>
   1215   <th>Description</th>
   1216 </tr>
   1217 </thead>
   1218 <tbody>
   1219 <tr>
   1220   <td>ident</td>
   1221   <td>ushort = 0x0300</td>
   1222   <td>identifying pseudo-opcode</td>
   1223 </tr>
   1224 <tr>
   1225   <td>element_width</td>
   1226   <td>ushort</td>
   1227   <td>number of bytes in each element</td>
   1228 </tr>
   1229 <tr>
   1230   <td>size</td>
   1231   <td>uint</td>
   1232   <td>number of elements in the table</td>
   1233 </tr>
   1234 <tr>
   1235   <td>data</td>
   1236   <td>ubyte[]</td>
   1237   <td>data values</td>
   1238 </tr>
   1239 </tbody>
   1240 </table>
   1241 
   1242 <p class="note"><strong>Note:</strong> The total number of code units for an instance of this
   1243 table is <code>(size * element_width + 1) / 2 + 4</code>.</p>
   1244 
   1245 
   1246 <h2 id="math">Mathematical operation details</h2>
   1247 
   1248 <p class="note"><strong>Note:</strong> Floating point operations must follow IEEE 754 rules, using
   1249 round-to-nearest and gradual underflow, except where stated otherwise.</p>
   1250 
   1251 <table class="math">
   1252 <thead>
   1253 <tr>
   1254   <th>Opcode</th>
   1255   <th>C Semantics</th>
   1256   <th>Notes</th>
   1257 </tr>
   1258 </thead>
   1259 <tbody>
   1260 <tr>
   1261   <td>neg-int</td>
   1262   <td>int32 a;<br/>
   1263     int32 result = -a;
   1264   </td>
   1265   <td>Unary twos-complement.</td>
   1266 </tr>
   1267 <tr>
   1268   <td>not-int</td>
   1269   <td>int32 a;<br/>
   1270     int32 result = ~a;
   1271   </td>
   1272   <td>Unary ones-complement.</td>
   1273 </tr>
   1274 <tr>
   1275   <td>neg-long</td>
   1276   <td>int64 a;<br/>
   1277     int64 result = -a;
   1278   </td>
   1279   <td>Unary twos-complement.</td>
   1280 </tr>
   1281 <tr>
   1282   <td>not-long</td>
   1283   <td>int64 a;<br/>
   1284     int64 result = ~a;
   1285   </td>
   1286   <td>Unary ones-complement.</td>
   1287 </tr>
   1288 <tr>
   1289   <td>neg-float</td>
   1290   <td>float a;<br/>
   1291     float result = -a;
   1292   </td>
   1293   <td>Floating point negation.</td>
   1294 </tr>
   1295 <tr>
   1296   <td>neg-double</td>
   1297   <td>double a;<br/>
   1298     double result = -a;
   1299   </td>
   1300   <td>Floating point negation.</td>
   1301 </tr>
   1302 <tr>
   1303   <td>int-to-long</td>
   1304   <td>int32 a;<br/>
   1305     int64 result = (int64) a;
   1306   </td>
   1307   <td>Sign extension of <code>int32</code> into <code>int64</code>.</td>
   1308 </tr>
   1309 <tr>
   1310   <td>int-to-float</td>
   1311   <td>int32 a;<br/>
   1312     float result = (float) a;
   1313   </td>
   1314   <td>Conversion of <code>int32</code> to <code>float</code>, using
   1315     round-to-nearest. This loses precision for some values.
   1316   </td>
   1317 </tr>
   1318 <tr>
   1319   <td>int-to-double</td>
   1320   <td>int32 a;<br/>
   1321     double result = (double) a;
   1322   </td>
   1323   <td>Conversion of <code>int32</code> to <code>double</code>.</td>
   1324 </tr>
   1325 <tr>
   1326   <td>long-to-int</td>
   1327   <td>int64 a;<br/>
   1328     int32 result = (int32) a;
   1329   </td>
   1330   <td>Truncation of <code>int64</code> into <code>int32</code>.</td>
   1331 </tr>
   1332 <tr>
   1333   <td>long-to-float</td>
   1334   <td>int64 a;<br/>
   1335     float result = (float) a;
   1336   </td>
   1337   <td>Conversion of <code>int64</code> to <code>float</code>, using
   1338     round-to-nearest. This loses precision for some values.
   1339   </td>
   1340 </tr>
   1341 <tr>
   1342   <td>long-to-double</td>
   1343   <td>int64 a;<br/>
   1344     double result = (double) a;
   1345   </td>
   1346   <td>Conversion of <code>int64</code> to <code>double</code>, using
   1347     round-to-nearest. This loses precision for some values.
   1348   </td>
   1349 </tr>
   1350 <tr>
   1351   <td>float-to-int</td>
   1352   <td>float a;<br/>
   1353     int32 result = (int32) a;
   1354   </td>
   1355   <td>Conversion of <code>float</code> to <code>int32</code>, using
   1356     round-toward-zero. <code>NaN</code> and <code>-0.0</code> (negative zero)
   1357     convert to the integer <code>0</code>. Infinities and values with
   1358     too large a magnitude to be represented get converted to either
   1359     <code>0x7fffffff</code> or <code>-0x80000000</code> depending on sign.
   1360   </td>
   1361 </tr>
   1362 <tr>
   1363   <td>float-to-long</td>
   1364   <td>float a;<br/>
   1365     int64 result = (int64) a;
   1366   </td>
   1367   <td>Conversion of <code>float</code> to <code>int64</code>, using
   1368     round-toward-zero. The same special case rules as for
   1369     <code>float-to-int</code> apply here, except that out-of-range values
   1370     get converted to either <code>0x7fffffffffffffff</code> or
   1371     <code>-0x8000000000000000</code> depending on sign.
   1372   </td>
   1373 </tr>
   1374 <tr>
   1375   <td>float-to-double</td>
   1376   <td>float a;<br/>
   1377     double result = (double) a;
   1378   </td>
   1379   <td>Conversion of <code>float</code> to <code>double</code>, preserving
   1380     the value exactly.
   1381   </td>
   1382 </tr>
   1383 <tr>
   1384   <td>double-to-int</td>
   1385   <td>double a;<br/>
   1386     int32 result = (int32) a;
   1387   </td>
   1388   <td>Conversion of <code>double</code> to <code>int32</code>, using
   1389     round-toward-zero. The same special case rules as for
   1390     <code>float-to-int</code> apply here.
   1391   </td>
   1392 </tr>
   1393 <tr>
   1394   <td>double-to-long</td>
   1395   <td>double a;<br/>
   1396     int64 result = (int64) a;
   1397   </td>
   1398   <td>Conversion of <code>double</code> to <code>int64</code>, using
   1399     round-toward-zero. The same special case rules as for
   1400     <code>float-to-long</code> apply here.
   1401   </td>
   1402 </tr>
   1403 <tr>
   1404   <td>double-to-float</td>
   1405   <td>double a;<br/>
   1406     float result = (float) a;
   1407   </td>
   1408   <td>Conversion of <code>double</code> to <code>float</code>, using
   1409     round-to-nearest. This loses precision for some values.
   1410   </td>
   1411 </tr>
   1412 <tr>
   1413   <td>int-to-byte</td>
   1414   <td>int32 a;<br/>
   1415     int32 result = (a &lt;&lt; 24) &gt;&gt; 24;
   1416   </td>
   1417   <td>Truncation of <code>int32</code> to <code>int8</code>, sign
   1418     extending the result.
   1419   </td>
   1420 </tr>
   1421 <tr>
   1422   <td>int-to-char</td>
   1423   <td>int32 a;<br/>
   1424     int32 result = a &amp; 0xffff;
   1425   </td>
   1426   <td>Truncation of <code>int32</code> to <code>uint16</code>, without
   1427     sign extension.
   1428   </td>
   1429 </tr>
   1430 <tr>
   1431   <td>int-to-short</td>
   1432   <td>int32 a;<br/>
   1433     int32 result = (a &lt;&lt; 16) &gt;&gt; 16;
   1434   </td>
   1435   <td>Truncation of <code>int32</code> to <code>int16</code>, sign
   1436     extending the result.
   1437   </td>
   1438 </tr>
   1439 <tr>
   1440   <td>add-int</td>
   1441   <td>int32 a, b;<br/>
   1442     int32 result = a + b;
   1443   </td>
   1444   <td>Twos-complement addition.</td>
   1445 </tr>
   1446 <tr>
   1447   <td>sub-int</td>
   1448   <td>int32 a, b;<br/>
   1449     int32 result = a - b;
   1450   </td>
   1451   <td>Twos-complement subtraction.</td>
   1452 </tr>
   1453 <tr>
   1454   <td>rsub-int</td>
   1455   <td>int32 a, b;<br/>
   1456     int32 result = b - a;
   1457   </td>
   1458   <td>Twos-complement reverse subtraction.</td>
   1459 </tr>
   1460 <tr>
   1461   <td>mul-int</td>
   1462   <td>int32 a, b;<br/>
   1463     int32 result = a * b;
   1464   </td>
   1465   <td>Twos-complement multiplication.</td>
   1466 </tr>
   1467 <tr>
   1468   <td>div-int</td>
   1469   <td>int32 a, b;<br/>
   1470     int32 result = a / b;
   1471   </td>
   1472   <td>Twos-complement division, rounded towards zero (that is, truncated to
   1473     integer). This throws <code>ArithmeticException</code> if
   1474     <code>b == 0</code>.
   1475   </td>
   1476 </tr>
   1477 <tr>
   1478   <td>rem-int</td>
   1479   <td>int32 a, b;<br/>
   1480     int32 result = a % b;
   1481   </td>
   1482   <td>Twos-complement remainder after division. The sign of the result
   1483     is the same as that of <code>a</code>, and it is more precisely
   1484     defined as <code>result == a - (a / b) * b</code>. This throws
   1485     <code>ArithmeticException</code> if <code>b == 0</code>.
   1486   </td>
   1487 </tr>
   1488 <tr>
   1489   <td>and-int</td>
   1490   <td>int32 a, b;<br/>
   1491     int32 result = a &amp; b;
   1492   </td>
   1493   <td>Bitwise AND.</td>
   1494 </tr>
   1495 <tr>
   1496   <td>or-int</td>
   1497   <td>int32 a, b;<br/>
   1498     int32 result = a | b;
   1499   </td>
   1500   <td>Bitwise OR.</td>
   1501 </tr>
   1502 <tr>
   1503   <td>xor-int</td>
   1504   <td>int32 a, b;<br/>
   1505     int32 result = a ^ b;
   1506   </td>
   1507   <td>Bitwise XOR.</td>
   1508 </tr>
   1509 <tr>
   1510   <td>shl-int</td>
   1511   <td>int32 a, b;<br/>
   1512     int32 result = a &lt;&lt; (b &amp; 0x1f);
   1513   </td>
   1514   <td>Bitwise shift left (with masked argument).</td>
   1515 </tr>
   1516 <tr>
   1517   <td>shr-int</td>
   1518   <td>int32 a, b;<br/>
   1519     int32 result = a &gt;&gt; (b &amp; 0x1f);
   1520   </td>
   1521   <td>Bitwise signed shift right (with masked argument).</td>
   1522 </tr>
   1523 <tr>
   1524   <td>ushr-int</td>
   1525   <td>uint32 a, b;<br/>
   1526     int32 result = a &gt;&gt; (b &amp; 0x1f);
   1527   </td>
   1528   <td>Bitwise unsigned shift right (with masked argument).</td>
   1529 </tr>
   1530 <tr>
   1531   <td>add-long</td>
   1532   <td>int64 a, b;<br/>
   1533     int64 result = a + b;
   1534   </td>
   1535   <td>Twos-complement addition.</td>
   1536 </tr>
   1537 <tr>
   1538   <td>sub-long</td>
   1539   <td>int64 a, b;<br/>
   1540     int64 result = a - b;
   1541   </td>
   1542   <td>Twos-complement subtraction.</td>
   1543 </tr>
   1544 <tr>
   1545   <td>mul-long</td>
   1546   <td>int64 a, b;<br/>
   1547     int64 result = a * b;
   1548   </td>
   1549   <td>Twos-complement multiplication.</td>
   1550 </tr>
   1551 <tr>
   1552   <td>div-long</td>
   1553   <td>int64 a, b;<br/>
   1554     int64 result = a / b;
   1555   </td>
   1556   <td>Twos-complement division, rounded towards zero (that is, truncated to
   1557     integer). This throws <code>ArithmeticException</code> if
   1558     <code>b == 0</code>.
   1559   </td>
   1560 </tr>
   1561 <tr>
   1562   <td>rem-long</td>
   1563   <td>int64 a, b;<br/>
   1564     int64 result = a % b;
   1565   </td>
   1566   <td>Twos-complement remainder after division. The sign of the result
   1567     is the same as that of <code>a</code>, and it is more precisely
   1568     defined as <code>result == a - (a / b) * b</code>. This throws
   1569     <code>ArithmeticException</code> if <code>b == 0</code>.
   1570   </td>
   1571 </tr>
   1572 <tr>
   1573   <td>and-long</td>
   1574   <td>int64 a, b;<br/>
   1575     int64 result = a &amp; b;
   1576   </td>
   1577   <td>Bitwise AND.</td>
   1578 </tr>
   1579 <tr>
   1580   <td>or-long</td>
   1581   <td>int64 a, b;<br/>
   1582     int64 result = a | b;
   1583   </td>
   1584   <td>Bitwise OR.</td>
   1585 </tr>
   1586 <tr>
   1587   <td>xor-long</td>
   1588   <td>int64 a, b;<br/>
   1589     int64 result = a ^ b;
   1590   </td>
   1591   <td>Bitwise XOR.</td>
   1592 </tr>
   1593 <tr>
   1594   <td>shl-long</td>
   1595   <td>int64 a;<br/>
   1596     int32 b;<br/>
   1597     int64 result = a &lt;&lt; (b &amp; 0x3f);
   1598   </td>
   1599   <td>Bitwise shift left (with masked argument).</td>
   1600 </tr>
   1601 <tr>
   1602   <td>shr-long</td>
   1603   <td>int64 a;<br/>
   1604     int32 b;<br/>
   1605     int64 result = a &gt;&gt; (b &amp; 0x3f);
   1606   </td>
   1607   <td>Bitwise signed shift right (with masked argument).</td>
   1608 </tr>
   1609 <tr>
   1610   <td>ushr-long</td>
   1611   <td>uint64 a;<br/>
   1612     int32 b;<br/>
   1613     int64 result = a &gt;&gt; (b &amp; 0x3f);
   1614   </td>
   1615   <td>Bitwise unsigned shift right (with masked argument).</td>
   1616 </tr>
   1617 <tr>
   1618   <td>add-float</td>
   1619   <td>float a, b;<br/>
   1620     float result = a + b;
   1621   </td>
   1622   <td>Floating point addition.</td>
   1623 </tr>
   1624 <tr>
   1625   <td>sub-float</td>
   1626   <td>float a, b;<br/>
   1627     float result = a - b;
   1628   </td>
   1629   <td>Floating point subtraction.</td>
   1630 </tr>
   1631 <tr>
   1632   <td>mul-float</td>
   1633   <td>float a, b;<br/>
   1634     float result = a * b;
   1635   </td>
   1636   <td>Floating point multiplication.</td>
   1637 </tr>
   1638 <tr>
   1639   <td>div-float</td>
   1640   <td>float a, b;<br/>
   1641     float result = a / b;
   1642   </td>
   1643   <td>Floating point division.</td>
   1644 </tr>
   1645 <tr>
   1646   <td>rem-float</td>
   1647   <td>float a, b;<br/>
   1648     float result = a % b;
   1649   </td>
   1650   <td>Floating point remainder after division. This function is different
   1651     than IEEE 754 remainder and is defined as
   1652     <code>result == a - roundTowardZero(a / b) * b</code>.
   1653   </td>
   1654 </tr>
   1655 <tr>
   1656   <td>add-double</td>
   1657   <td>double a, b;<br/>
   1658     double result = a + b;
   1659   </td>
   1660   <td>Floating point addition.</td>
   1661 </tr>
   1662 <tr>
   1663   <td>sub-double</td>
   1664   <td>double a, b;<br/>
   1665     double result = a - b;
   1666   </td>
   1667   <td>Floating point subtraction.</td>
   1668 </tr>
   1669 <tr>
   1670   <td>mul-double</td>
   1671   <td>double a, b;<br/>
   1672     double result = a * b;
   1673   </td>
   1674   <td>Floating point multiplication.</td>
   1675 </tr>
   1676 <tr>
   1677   <td>div-double</td>
   1678   <td>double a, b;<br/>
   1679     double result = a / b;
   1680   </td>
   1681   <td>Floating point division.</td>
   1682 </tr>
   1683 <tr>
   1684   <td>rem-double</td>
   1685   <td>double a, b;<br/>
   1686     double result = a % b;
   1687   </td>
   1688   <td>Floating point remainder after division. This function is different
   1689     than IEEE 754 remainder and is defined as
   1690     <code>result == a - roundTowardZero(a / b) * b</code>.
   1691   </td>
   1692 </tr>
   1693 </tbody>
   1694 </table>
   1695 
   1696   </body>
   1697 </html>
   1698