1 <html devsite> 2 <head> 3 <title>Dalvik bytecode</title> 4 <meta name="project_path" value="/_project.yaml" /> 5 <meta name="book_path" value="/_book.yaml" /> 6 </head> 7 <body> 8 <!-- 9 Copyright 2017 The Android Open Source Project 10 11 Licensed under the Apache License, Version 2.0 (the "License"); 12 you may not use this file except in compliance with the License. 13 You may obtain a copy of the License at 14 15 http://www.apache.org/licenses/LICENSE-2.0 16 17 Unless required by applicable law or agreed to in writing, software 18 distributed under the License is distributed on an "AS IS" BASIS, 19 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 20 See the License for the specific language governing permissions and 21 limitations under the License. 22 --> 23 24 25 26 <h2 id="design">General design</h2> 27 28 <ul> 29 <li>The machine model and calling conventions are meant to approximately 30 imitate common real architectures and C-style calling conventions: 31 <ul> 32 <li>The machine is register-based, and frames are fixed in size upon creation. 33 Each frame consists of a particular number of registers (specified by 34 the method) as well as any adjunct data needed to execute the method, 35 such as (but not limited to) the program counter and a reference to the 36 <code>.dex</code> file that contains the method. 37 </li> 38 <li>When used for bit values (such as integers and floating point 39 numbers), registers are considered 32 bits wide. Adjacent register 40 pairs are used for 64-bit values. There is no alignment requirement 41 for register pairs. 42 </li> 43 <li>When used for object references, registers are considered wide enough 44 to hold exactly one such reference. 45 </li> 46 <li>In terms of bitwise representation, <code>(Object) null == (int) 47 0</code>. 48 </li> 49 <li>The <i>N</i> arguments to a method land in the last <i>N</i> registers 50 of the method's invocation frame, in order. Wide arguments consume 51 two registers. Instance methods are passed a <code>this</code> reference 52 as their first argument. 53 </li> 54 </ul> 55 <li>The storage unit in the instruction stream is a 16-bit unsigned quantity. 56 Some bits in some instructions are ignored / must-be-zero. 57 </li> 58 <li>Instructions aren't gratuitously limited to a particular type. For 59 example, instructions that move 32-bit register values without interpretation 60 don't have to specify whether they are moving ints or floats. 61 </li> 62 <li>There are separately enumerated and indexed constant pools for 63 references to strings, types, fields, and methods. 64 </li> 65 <li>Bitwise literal data is represented in-line in the instruction stream.</li> 66 <li>Because, in practice, it is uncommon for a method to need more than 67 16 registers, and because needing more than eight registers <i>is</i> 68 reasonably common, many instructions are limited to only addressing 69 the first 16 70 registers. When reasonably possible, instructions allow references to 71 up to the first 256 registers. In addition, some instructions have variants 72 that allow for much larger register counts, including a pair of catch-all 73 <code>move</code> instructions that can address registers in the range 74 <code>v0</code> – <code>v65535</code>. 75 In cases where an instruction variant isn't 76 available to address a desired register, it is expected that the register 77 contents get moved from the original register to a low register (before the 78 operation) and/or moved from a low result register to a high register 79 (after the operation). 80 </li> 81 <li>There are several "pseudo-instructions" that are used to hold 82 variable-length data payloads, which are referred to by regular 83 instructions (for example, 84 <code>fill-array-data</code>). Such instructions must never be 85 encountered during the normal flow of execution. In addition, the 86 instructions must be located on even-numbered bytecode offsets (that is, 87 4-byte aligned). In order to meet this requirement, dex generation tools 88 must emit an extra <code>nop</code> instruction as a spacer if such an 89 instruction would otherwise be unaligned. Finally, though not required, 90 it is expected that most tools will choose to emit these instructions at 91 the ends of methods, since otherwise it would likely be the case that 92 additional instructions would be needed to branch around them. 93 </li> 94 <li>When installed on a running system, some instructions may be altered, 95 changing their format, as an install-time static linking optimization. 96 This is to allow for faster execution once linkage is known. 97 See the associated 98 <a href="instruction-formats.html">instruction formats document</a> 99 for the suggested variants. The word "suggested" is used advisedly; 100 it is not mandatory to implement these. 101 </li> 102 <li>Human-syntax and mnemonics: 103 <ul> 104 <li>Dest-then-source ordering for arguments.</li> 105 <li>Some opcodes have a disambiguating name suffix to indicate the type(s) 106 they operate on: 107 <ul> 108 <li>Type-general 32-bit opcodes are unmarked.</li> 109 <li>Type-general 64-bit opcodes are suffixed with <code>-wide</code>.</li> 110 <li>Type-specific opcodes are suffixed with their type (or a 111 straightforward abbreviation), one of: <code>-boolean</code> 112 <code>-byte</code> <code>-char</code> <code>-short</code> 113 <code>-int</code> <code>-long</code> <code>-float</code> 114 <code>-double</code> <code>-object</code> <code>-string</code> 115 <code>-class</code> <code>-void</code>.</li> 116 </ul> 117 </li> 118 <li>Some opcodes have a disambiguating suffix to distinguish 119 otherwise-identical operations that have different instruction layouts 120 or options. These suffixes are separated from the main names with a slash 121 ("<code>/</code>") and mainly exist at all to make there be a one-to-one 122 mapping with static constants in the code that generates and interprets 123 executables (that is, to reduce ambiguity for humans). 124 </li> 125 <li>In the descriptions here, the width of a value (indicating, e.g., the 126 range of a constant or the number of registers possibly addressed) is 127 emphasized by the use of a character per four bits of width. 128 </li> 129 <li>For example, in the instruction 130 "<code>move-wide/from16 vAA, vBBBB</code>": 131 <ul> 132 <li>"<code>move</code>" is the base opcode, indicating the base operation 133 (move a register's value).</li> 134 <li>"<code>wide</code>" is the name suffix, indicating that it operates 135 on wide (64 bit) data.</li> 136 <li>"<code>from16</code>" is the opcode suffix, indicating a variant 137 that has a 16-bit register reference as a source.</li> 138 <li>"<code>vAA</code>" is the destination register (implied by the 139 operation; again, the rule is that destination arguments always come 140 first), which must be in the range <code>v0</code> – 141 <code>v255</code>.</li> 142 <li>"<code>vBBBB</code>" is the source register, which must be in the 143 range <code>v0</code> – <code>v65535</code>.</li> 144 </ul> 145 </li> 146 </ul> 147 </li> 148 <li>See the <a href="instruction-formats.html">instruction formats 149 document</a> for more details about the various instruction formats 150 (listed under "Op & Format") as well as details about the opcode 151 syntax. 152 </li> 153 <li>See the <a href="dex-format.html"><code>.dex</code> file format 154 document</a> for more details about where the bytecode fits into 155 the bigger picture. 156 </li> 157 </ul> 158 159 <h2 id="instructions">Summary of bytecode set</h2> 160 161 <table class="instruc"> 162 <thead> 163 <tr> 164 <th>Op & Format</th> 165 <th>Mnemonic / Syntax</th> 166 <th>Arguments</th> 167 <th>Description</th> 168 </tr> 169 </thead> 170 <tbody> 171 <tr> 172 <td>00 10x</td> 173 <td>nop</td> 174 <td> </td> 175 <td>Waste cycles. 176 <p class="note"><strong>Note:</strong> 177 Data-bearing pseudo-instructions are tagged with this opcode, in which 178 case the high-order byte of the opcode unit indicates the nature of 179 the data. See "<code>packed-switch-payload</code> Format", 180 "<code>sparse-switch-payload</code> Format", and 181 "<code>fill-array-data-payload</code> Format" below.</p> 182 </td> 183 </tr> 184 <tr> 185 <td>01 12x</td> 186 <td>move vA, vB</td> 187 <td><code>A:</code> destination register (4 bits)<br/> 188 <code>B:</code> source register (4 bits)</td> 189 <td>Move the contents of one non-object register to another.</td> 190 </tr> 191 <tr> 192 <td>02 22x</td> 193 <td>move/from16 vAA, vBBBB</td> 194 <td><code>A:</code> destination register (8 bits)<br/> 195 <code>B:</code> source register (16 bits)</td> 196 <td>Move the contents of one non-object register to another.</td> 197 </tr> 198 <tr> 199 <td>03 32x</td> 200 <td>move/16 vAAAA, vBBBB</td> 201 <td><code>A:</code> destination register (16 bits)<br/> 202 <code>B:</code> source register (16 bits)</td> 203 <td>Move the contents of one non-object register to another.</td> 204 </tr> 205 <tr> 206 <td>04 12x</td> 207 <td>move-wide vA, vB</td> 208 <td><code>A:</code> destination register pair (4 bits)<br/> 209 <code>B:</code> source register pair (4 bits)</td> 210 <td>Move the contents of one register-pair to another. 211 <p class="note"><strong>Note:</strong> 212 It is legal to move from <code>v<i>N</i></code> to either 213 <code>v<i>N-1</i></code> or <code>v<i>N+1</i></code>, so implementations 214 must arrange for both halves of a register pair to be read before 215 anything is written.</p> 216 </td> 217 </tr> 218 <tr> 219 <td>05 22x</td> 220 <td>move-wide/from16 vAA, vBBBB</td> 221 <td><code>A:</code> destination register pair (8 bits)<br/> 222 <code>B:</code> source register pair (16 bits)</td> 223 <td>Move the contents of one register-pair to another. 224 <p class="note"><strong>Note:</strong> 225 Implementation considerations are the same as <code>move-wide</code>, 226 above.</p> 227 </td> 228 </tr> 229 <tr> 230 <td>06 32x</td> 231 <td>move-wide/16 vAAAA, vBBBB</td> 232 <td><code>A:</code> destination register pair (16 bits)<br/> 233 <code>B:</code> source register pair (16 bits)</td> 234 <td>Move the contents of one register-pair to another. 235 <p class="note"><strong>Note:</strong> 236 Implementation considerations are the same as <code>move-wide</code>, 237 above.</p> 238 </td> 239 </tr> 240 <tr> 241 <td>07 12x</td> 242 <td>move-object vA, vB</td> 243 <td><code>A:</code> destination register (4 bits)<br/> 244 <code>B:</code> source register (4 bits)</td> 245 <td>Move the contents of one object-bearing register to another.</td> 246 </tr> 247 <tr> 248 <td>08 22x</td> 249 <td>move-object/from16 vAA, vBBBB</td> 250 <td><code>A:</code> destination register (8 bits)<br/> 251 <code>B:</code> source register (16 bits)</td> 252 <td>Move the contents of one object-bearing register to another.</td> 253 </tr> 254 <tr> 255 <td>09 32x</td> 256 <td>move-object/16 vAAAA, vBBBB</td> 257 <td><code>A:</code> destination register (16 bits)<br/> 258 <code>B:</code> source register (16 bits)</td> 259 <td>Move the contents of one object-bearing register to another.</td> 260 </tr> 261 <tr> 262 <td>0a 11x</td> 263 <td>move-result vAA</td> 264 <td><code>A:</code> destination register (8 bits)</td> 265 <td>Move the single-word non-object result of the most recent 266 <code>invoke-<i>kind</i></code> into the indicated register. 267 This must be done as the instruction immediately after an 268 <code>invoke-<i>kind</i></code> whose (single-word, non-object) result 269 is not to be ignored; anywhere else is invalid.</td> 270 </tr> 271 <tr> 272 <td>0b 11x</td> 273 <td>move-result-wide vAA</td> 274 <td><code>A:</code> destination register pair (8 bits)</td> 275 <td>Move the double-word result of the most recent 276 <code>invoke-<i>kind</i></code> into the indicated register pair. 277 This must be done as the instruction immediately after an 278 <code>invoke-<i>kind</i></code> whose (double-word) result 279 is not to be ignored; anywhere else is invalid.</td> 280 </tr> 281 <tr> 282 <td>0c 11x</td> 283 <td>move-result-object vAA</td> 284 <td><code>A:</code> destination register (8 bits)</td> 285 <td>Move the object result of the most recent <code>invoke-<i>kind</i></code> 286 into the indicated register. This must be done as the instruction 287 immediately after an <code>invoke-<i>kind</i></code> or 288 <code>filled-new-array</code> 289 whose (object) result is not to be ignored; anywhere else is invalid.</td> 290 </tr> 291 <tr> 292 <td>0d 11x</td> 293 <td>move-exception vAA</td> 294 <td><code>A:</code> destination register (8 bits)</td> 295 <td>Save a just-caught exception into the given register. This must 296 be the first instruction of any exception handler whose caught 297 exception is not to be ignored, and this instruction must <i>only</i> 298 ever occur as the first instruction of an exception handler; anywhere 299 else is invalid.</td> 300 </tr> 301 <tr> 302 <td>0e 10x</td> 303 <td>return-void</td> 304 <td> </td> 305 <td>Return from a <code>void</code> method.</td> 306 </tr> 307 <tr> 308 <td>0f 11x</td> 309 <td>return vAA</td> 310 <td><code>A:</code> return value register (8 bits)</td> 311 <td>Return from a single-width (32-bit) non-object value-returning 312 method. 313 </td> 314 </tr> 315 <tr> 316 <td>10 11x</td> 317 <td>return-wide vAA</td> 318 <td><code>A:</code> return value register-pair (8 bits)</td> 319 <td>Return from a double-width (64-bit) value-returning method.</td> 320 </tr> 321 <tr> 322 <td>11 11x</td> 323 <td>return-object vAA</td> 324 <td><code>A:</code> return value register (8 bits)</td> 325 <td>Return from an object-returning method.</td> 326 </tr> 327 <tr> 328 <td>12 11n</td> 329 <td>const/4 vA, #+B</td> 330 <td><code>A:</code> destination register (4 bits)<br/> 331 <code>B:</code> signed int (4 bits)</td> 332 <td>Move the given literal value (sign-extended to 32 bits) into 333 the specified register.</td> 334 </tr> 335 <tr> 336 <td>13 21s</td> 337 <td>const/16 vAA, #+BBBB</td> 338 <td><code>A:</code> destination register (8 bits)<br/> 339 <code>B:</code> signed int (16 bits)</td> 340 <td>Move the given literal value (sign-extended to 32 bits) into 341 the specified register.</td> 342 </tr> 343 <tr> 344 <td>14 31i</td> 345 <td>const vAA, #+BBBBBBBB</td> 346 <td><code>A:</code> destination register (8 bits)<br/> 347 <code>B:</code> arbitrary 32-bit constant</td> 348 <td>Move the given literal value into the specified register.</td> 349 </tr> 350 <tr> 351 <td>15 21h</td> 352 <td>const/high16 vAA, #+BBBB0000</td> 353 <td><code>A:</code> destination register (8 bits)<br/> 354 <code>B:</code> signed int (16 bits)</td> 355 <td>Move the given literal value (right-zero-extended to 32 bits) into 356 the specified register.</td> 357 </tr> 358 <tr> 359 <td>16 21s</td> 360 <td>const-wide/16 vAA, #+BBBB</td> 361 <td><code>A:</code> destination register (8 bits)<br/> 362 <code>B:</code> signed int (16 bits)</td> 363 <td>Move the given literal value (sign-extended to 64 bits) into 364 the specified register-pair.</td> 365 </tr> 366 <tr> 367 <td>17 31i</td> 368 <td>const-wide/32 vAA, #+BBBBBBBB</td> 369 <td><code>A:</code> destination register (8 bits)<br/> 370 <code>B:</code> signed int (32 bits)</td> 371 <td>Move the given literal value (sign-extended to 64 bits) into 372 the specified register-pair.</td> 373 </tr> 374 <tr> 375 <td>18 51l</td> 376 <td>const-wide vAA, #+BBBBBBBBBBBBBBBB</td> 377 <td><code>A:</code> destination register (8 bits)<br/> 378 <code>B:</code> arbitrary double-width (64-bit) constant</td> 379 <td>Move the given literal value into 380 the specified register-pair.</td> 381 </tr> 382 <tr> 383 <td>19 21h</td> 384 <td>const-wide/high16 vAA, #+BBBB000000000000</td> 385 <td><code>A:</code> destination register (8 bits)<br/> 386 <code>B:</code> signed int (16 bits)</td> 387 <td>Move the given literal value (right-zero-extended to 64 bits) into 388 the specified register-pair.</td> 389 </tr> 390 <tr> 391 <td>1a 21c</td> 392 <td>const-string vAA, string@BBBB</td> 393 <td><code>A:</code> destination register (8 bits)<br/> 394 <code>B:</code> string index</td> 395 <td>Move a reference to the string specified by the given index into the 396 specified register.</td> 397 </tr> 398 <tr> 399 <td>1b 31c</td> 400 <td>const-string/jumbo vAA, string@BBBBBBBB</td> 401 <td><code>A:</code> destination register (8 bits)<br/> 402 <code>B:</code> string index</td> 403 <td>Move a reference to the string specified by the given index into the 404 specified register.</td> 405 </tr> 406 <tr> 407 <td>1c 21c</td> 408 <td>const-class vAA, type@BBBB</td> 409 <td><code>A:</code> destination register (8 bits)<br/> 410 <code>B:</code> type index</td> 411 <td>Move a reference to the class specified by the given index into the 412 specified register. In the case where the indicated type is primitive, 413 this will store a reference to the primitive type's degenerate 414 class.</td> 415 </tr> 416 <tr> 417 <td>1d 11x</td> 418 <td>monitor-enter vAA</td> 419 <td><code>A:</code> reference-bearing register (8 bits)</td> 420 <td>Acquire the monitor for the indicated object.</td> 421 </tr> 422 <tr> 423 <td>1e 11x</td> 424 <td>monitor-exit vAA</td> 425 <td><code>A:</code> reference-bearing register (8 bits)</td> 426 <td>Release the monitor for the indicated object. 427 <p class="note"><strong>Note:</strong> 428 If this instruction needs to throw an exception, it must do 429 so as if the pc has already advanced past the instruction. 430 It may be useful to think of this as the instruction successfully 431 executing (in a sense), and the exception getting thrown <i>after</i> 432 the instruction but <i>before</i> the next one gets a chance to 433 run. This definition makes it possible for a method to use 434 a monitor cleanup catch-all (e.g., <code>finally</code>) block as 435 the monitor cleanup for that block itself, as a way to handle the 436 arbitrary exceptions that might get thrown due to the historical 437 implementation of <code>Thread.stop()</code>, while still managing 438 to have proper monitor hygiene.</p> 439 </td> 440 </tr> 441 <tr> 442 <td>1f 21c</td> 443 <td>check-cast vAA, type@BBBB</td> 444 <td><code>A:</code> reference-bearing register (8 bits)<br/> 445 <code>B:</code> type index (16 bits)</td> 446 <td>Throw a <code>ClassCastException</code> if the reference in the 447 given register cannot be cast to the indicated type. 448 <p class="note"><strong>Note:</strong> Since <code>A</code> must always be a reference 449 (and not a primitive value), this will necessarily fail at runtime 450 (that is, it will throw an exception) if <code>B</code> refers to a 451 primitive type.</p> 452 </td> 453 </tr> 454 <tr> 455 <td>20 22c</td> 456 <td>instance-of vA, vB, type@CCCC</td> 457 <td><code>A:</code> destination register (4 bits)<br/> 458 <code>B:</code> reference-bearing register (4 bits)<br/> 459 <code>C:</code> type index (16 bits)</td> 460 <td>Store in the given destination register <code>1</code> 461 if the indicated reference is an instance of the given type, 462 or <code>0</code> if not. 463 <p class="note"><strong>Note:</strong> Since <code>B</code> must always be a reference 464 (and not a primitive value), this will always result 465 in <code>0</code> being stored if <code>C</code> refers to a primitive 466 type.</td> 467 </tr> 468 <tr> 469 <td>21 12x</td> 470 <td>array-length vA, vB</td> 471 <td><code>A:</code> destination register (4 bits)<br/> 472 <code>B:</code> array reference-bearing register (4 bits)</td> 473 <td>Store in the given destination register the length of the indicated 474 array, in entries</td> 475 </tr> 476 <tr> 477 <td>22 21c</td> 478 <td>new-instance vAA, type@BBBB</td> 479 <td><code>A:</code> destination register (8 bits)<br/> 480 <code>B:</code> type index</td> 481 <td>Construct a new instance of the indicated type, storing a 482 reference to it in the destination. The type must refer to a 483 non-array class.</td> 484 </tr> 485 <tr> 486 <td>23 22c</td> 487 <td>new-array vA, vB, type@CCCC</td> 488 <td><code>A:</code> destination register (4 bits)<br/> 489 <code>B:</code> size register<br/> 490 <code>C:</code> type index</td> 491 <td>Construct a new array of the indicated type and size. The type 492 must be an array type.</td> 493 </tr> 494 <tr> 495 <td>24 35c</td> 496 <td>filled-new-array {vC, vD, vE, vF, vG}, type@BBBB</td> 497 <td> 498 <code>A:</code> array size and argument word count (4 bits)<br/> 499 <code>B:</code> type index (16 bits)<br/> 500 <code>C..G:</code> argument registers (4 bits each) 501 </td> 502 <td>Construct an array of the given type and size, filling it with the 503 supplied contents. The type must be an array type. The array's 504 contents must be single-word (that is, 505 no arrays of <code>long</code> or <code>double</code>, but reference 506 types are acceptable). The constructed 507 instance is stored as a "result" in the same way that the method invocation 508 instructions store their results, so the constructed instance must 509 be moved to a register with an immediately subsequent 510 <code>move-result-object</code> instruction (if it is to be used).</td> 511 </tr> 512 <tr> 513 <td>25 3rc</td> 514 <td>filled-new-array/range {vCCCC .. vNNNN}, type@BBBB</td> 515 <td><code>A:</code> array size and argument word count (8 bits)<br/> 516 <code>B:</code> type index (16 bits)<br/> 517 <code>C:</code> first argument register (16 bits)<br/> 518 <code>N = A + C - 1</code></td> 519 <td>Construct an array of the given type and size, filling it with 520 the supplied contents. Clarifications and restrictions are the same 521 as <code>filled-new-array</code>, described above.</td> 522 </tr> 523 <tr> 524 <td>26 31t</td> 525 <td>fill-array-data vAA, +BBBBBBBB <i>(with supplemental data as specified 526 below in "<code>fill-array-data-payload</code> Format")</i></td> 527 <td><code>A:</code> array reference (8 bits)<br/> 528 <code>B:</code> signed "branch" offset to table data pseudo-instruction 529 (32 bits) 530 </td> 531 <td>Fill the given array with the indicated data. The reference must be 532 to an array of primitives, and the data table must match it in type and 533 must contain no more elements than will fit in the array. That is, 534 the array may be larger than the table, and if so, only the initial 535 elements of the array are set, leaving the remainder alone. 536 </td> 537 </tr> 538 <tr> 539 <td>27 11x</td> 540 <td>throw vAA</td> 541 <td><code>A:</code> exception-bearing register (8 bits)<br/></td> 542 <td>Throw the indicated exception.</td> 543 </tr> 544 <tr> 545 <td>28 10t</td> 546 <td>goto +AA</td> 547 <td><code>A:</code> signed branch offset (8 bits)</td> 548 <td>Unconditionally jump to the indicated instruction. 549 <p class="note"><strong>Note:</strong> 550 The branch offset must not be <code>0</code>. (A spin 551 loop may be legally constructed either with <code>goto/32</code> or 552 by including a <code>nop</code> as a target before the branch.)</p> 553 </td> 554 </tr> 555 <tr> 556 <td>29 20t</td> 557 <td>goto/16 +AAAA</td> 558 <td><code>A:</code> signed branch offset (16 bits)<br/></td> 559 <td>Unconditionally jump to the indicated instruction. 560 <p class="note"><strong>Note:</strong> 561 The branch offset must not be <code>0</code>. (A spin 562 loop may be legally constructed either with <code>goto/32</code> or 563 by including a <code>nop</code> as a target before the branch.)</p> 564 </td> 565 </tr> 566 <tr> 567 <td>2a 30t</td> 568 <td>goto/32 +AAAAAAAA</td> 569 <td><code>A:</code> signed branch offset (32 bits)<br/></td> 570 <td>Unconditionally jump to the indicated instruction.</td> 571 </tr> 572 <tr> 573 <td>2b 31t</td> 574 <td>packed-switch vAA, +BBBBBBBB <i>(with supplemental data as 575 specified below in "<code>packed-switch-payload</code> Format")</i></td> 576 <td><code>A:</code> register to test<br/> 577 <code>B:</code> signed "branch" offset to table data pseudo-instruction 578 (32 bits) 579 </td> 580 <td>Jump to a new instruction based on the value in the 581 given register, using a table of offsets corresponding to each value 582 in a particular integral range, or fall through to the next 583 instruction if there is no match. 584 </td> 585 </tr> 586 <tr> 587 <td>2c 31t</td> 588 <td>sparse-switch vAA, +BBBBBBBB <i>(with supplemental data as 589 specified below in "<code>sparse-switch-payload</code> Format")</i></td> 590 <td><code>A:</code> register to test<br/> 591 <code>B:</code> signed "branch" offset to table data pseudo-instruction 592 (32 bits) 593 </td> 594 <td>Jump to a new instruction based on the value in the given 595 register, using an ordered table of value-offset pairs, or fall 596 through to the next instruction if there is no match. 597 </td> 598 </tr> 599 <tr> 600 <td>2d..31 23x</td> 601 <td>cmp<i>kind</i> vAA, vBB, vCC<br/> 602 2d: cmpl-float <i>(lt bias)</i><br/> 603 2e: cmpg-float <i>(gt bias)</i><br/> 604 2f: cmpl-double <i>(lt bias)</i><br/> 605 30: cmpg-double <i>(gt bias)</i><br/> 606 31: cmp-long 607 </td> 608 <td><code>A:</code> destination register (8 bits)<br/> 609 <code>B:</code> first source register or pair<br/> 610 <code>C:</code> second source register or pair</td> 611 <td>Perform the indicated floating point or <code>long</code> comparison, 612 setting <code>a</code> to <code>0</code> if <code>b == c</code>, 613 <code>1</code> if <code>b > c</code>, 614 or <code>-1</code> if <code>b < c</code>. 615 The "bias" listed for the floating point operations 616 indicates how <code>NaN</code> comparisons are treated: "gt bias" 617 instructions return <code>1</code> for <code>NaN</code> comparisons, 618 and "lt bias" instructions return <code>-1</code>. 619 <p>For example, to check to see if floating point 620 <code>x < y</code> it is advisable to use 621 <code>cmpg-float</code>; a result of <code>-1</code> indicates that 622 the test was true, and the other values indicate it was false either 623 due to a valid comparison or because one of the values was 624 <code>NaN</code>.</p> 625 </td> 626 </tr> 627 <tr> 628 <td>32..37 22t</td> 629 <td>if-<i>test</i> vA, vB, +CCCC<br/> 630 32: if-eq<br/> 631 33: if-ne<br/> 632 34: if-lt<br/> 633 35: if-ge<br/> 634 36: if-gt<br/> 635 37: if-le<br/> 636 </td> 637 <td><code>A:</code> first register to test (4 bits)<br/> 638 <code>B:</code> second register to test (4 bits)<br/> 639 <code>C:</code> signed branch offset (16 bits)</td> 640 <td>Branch to the given destination if the given two registers' values 641 compare as specified. 642 <p class="note"><strong>Note:</strong> 643 The branch offset must not be <code>0</code>. (A spin 644 loop may be legally constructed either by branching around a 645 backward <code>goto</code> or by including a <code>nop</code> as 646 a target before the branch.)</p> 647 </td> 648 </tr> 649 <tr> 650 <td>38..3d 21t</td> 651 <td>if-<i>test</i>z vAA, +BBBB<br/> 652 38: if-eqz<br/> 653 39: if-nez<br/> 654 3a: if-ltz<br/> 655 3b: if-gez<br/> 656 3c: if-gtz<br/> 657 3d: if-lez<br/> 658 </td> 659 <td><code>A:</code> register to test (8 bits)<br/> 660 <code>B:</code> signed branch offset (16 bits)</td> 661 <td>Branch to the given destination if the given register's value compares 662 with 0 as specified. 663 <p class="note"><strong>Note:</strong> 664 The branch offset must not be <code>0</code>. (A spin 665 loop may be legally constructed either by branching around a 666 backward <code>goto</code> or by including a <code>nop</code> as 667 a target before the branch.)</p> 668 </td> 669 </tr> 670 <tr> 671 <td>3e..43 10x</td> 672 <td><i>(unused)</i></td> 673 <td> </td> 674 <td><i>(unused)</i></td> 675 </tr> 676 <tr> 677 <td>44..51 23x</td> 678 <td><i>arrayop</i> vAA, vBB, vCC<br/> 679 44: aget<br/> 680 45: aget-wide<br/> 681 46: aget-object<br/> 682 47: aget-boolean<br/> 683 48: aget-byte<br/> 684 49: aget-char<br/> 685 4a: aget-short<br/> 686 4b: aput<br/> 687 4c: aput-wide<br/> 688 4d: aput-object<br/> 689 4e: aput-boolean<br/> 690 4f: aput-byte<br/> 691 50: aput-char<br/> 692 51: aput-short 693 </td> 694 <td><code>A:</code> value register or pair; may be source or dest 695 (8 bits)<br/> 696 <code>B:</code> array register (8 bits)<br/> 697 <code>C:</code> index register (8 bits)</td> 698 <td>Perform the identified array operation at the identified index of 699 the given array, loading or storing into the value register.</td> 700 </tr> 701 <tr> 702 <td>52..5f 22c</td> 703 <td>i<i>instanceop</i> vA, vB, field@CCCC<br/> 704 52: iget<br/> 705 53: iget-wide<br/> 706 54: iget-object<br/> 707 55: iget-boolean<br/> 708 56: iget-byte<br/> 709 57: iget-char<br/> 710 58: iget-short<br/> 711 59: iput<br/> 712 5a: iput-wide<br/> 713 5b: iput-object<br/> 714 5c: iput-boolean<br/> 715 5d: iput-byte<br/> 716 5e: iput-char<br/> 717 5f: iput-short 718 </td> 719 <td><code>A:</code> value register or pair; may be source or dest 720 (4 bits)<br/> 721 <code>B:</code> object register (4 bits)<br/> 722 <code>C:</code> instance field reference index (16 bits)</td> 723 <td>Perform the identified object instance field operation with 724 the identified field, loading or storing into the value register. 725 <p class="note"><strong>Note:</strong> These opcodes are reasonable candidates for static linking, 726 altering the field argument to be a more direct offset.</p> 727 </td> 728 </tr> 729 <tr> 730 <td>60..6d 21c</td> 731 <td>s<i>staticop</i> vAA, field@BBBB<br/> 732 60: sget<br/> 733 61: sget-wide<br/> 734 62: sget-object<br/> 735 63: sget-boolean<br/> 736 64: sget-byte<br/> 737 65: sget-char<br/> 738 66: sget-short<br/> 739 67: sput<br/> 740 68: sput-wide<br/> 741 69: sput-object<br/> 742 6a: sput-boolean<br/> 743 6b: sput-byte<br/> 744 6c: sput-char<br/> 745 6d: sput-short 746 </td> 747 <td><code>A:</code> value register or pair; may be source or dest 748 (8 bits)<br/> 749 <code>B:</code> static field reference index (16 bits)</td> 750 <td>Perform the identified object static field operation with the identified 751 static field, loading or storing into the value register. 752 <p class="note"><strong>Note:</strong> These opcodes are reasonable candidates for static linking, 753 altering the field argument to be a more direct offset.</p> 754 </td> 755 </tr> 756 <tr> 757 <td>6e..72 35c</td> 758 <td>invoke-<i>kind</i> {vC, vD, vE, vF, vG}, meth@BBBB<br/> 759 6e: invoke-virtual<br/> 760 6f: invoke-super<br/> 761 70: invoke-direct<br/> 762 71: invoke-static<br/> 763 72: invoke-interface 764 </td> 765 <td> 766 <code>A:</code> argument word count (4 bits)<br/> 767 <code>B:</code> method reference index (16 bits)<br/> 768 <code>C..G:</code> argument registers (4 bits each) 769 </td> 770 <td>Call the indicated method. The result (if any) may be stored 771 with an appropriate <code>move-result*</code> variant as the immediately 772 subsequent instruction. 773 <p><code>invoke-virtual</code> is used to invoke a normal virtual 774 method (a method that is not <code>private</code>, <code>static</code>, 775 or <code>final</code>, and is also not a constructor).</p> 776 <p>When the <code>method_id</code> references a method of a non-interface 777 class, <code>invoke-super</code> is used to invoke the closest superclass's 778 virtual method (as opposed to the one with the same <code>method_id</code> 779 in the calling class). The same method restrictions hold as for 780 <code>invoke-virtual</code>.</p> 781 <p>In Dex files version <code>037</code> or later, if the 782 <code>method_id</code> refers to an interface method, 783 <code>invoke-super</code> is used to invoke the most specific, 784 non-overridden version of that method defined on that interface. The same 785 method restrictions hold as for <code>invoke-virtual</code>. In Dex files 786 prior to version <code>037</code>, having an interface 787 <code>method_id</code> is illegal and undefined.</p> 788 <p><code>invoke-direct</code> is used to invoke a non-<code>static</code> 789 direct method (that is, an instance method that is by its nature 790 non-overridable, namely either a <code>private</code> instance method or a 791 constructor).</p> 792 <p><code>invoke-static</code> is used to invoke a <code>static</code> 793 method (which is always considered a direct method).</p> 794 <p><code>invoke-interface</code> is used to invoke an 795 <code>interface</code> method, that is, on an object whose concrete 796 class isn't known, using a <code>method_id</code> that refers to 797 an <code>interface</code>.</p> 798 <p class="note"><strong>Note:</strong> These opcodes are reasonable candidates for static linking, 799 altering the method argument to be a more direct offset 800 (or pair thereof).</p> 801 </td> 802 </tr> 803 <tr> 804 <td>73 10x</td> 805 <td><i>(unused)</i></td> 806 <td> </td> 807 <td><i>(unused)</i></td> 808 </tr> 809 <tr> 810 <td>74..78 3rc</td> 811 <td>invoke-<i>kind</i>/range {vCCCC .. vNNNN}, meth@BBBB<br/> 812 74: invoke-virtual/range<br/> 813 75: invoke-super/range<br/> 814 76: invoke-direct/range<br/> 815 77: invoke-static/range<br/> 816 78: invoke-interface/range 817 </td> 818 <td><code>A:</code> argument word count (8 bits)<br/> 819 <code>B:</code> method reference index (16 bits)<br/> 820 <code>C:</code> first argument register (16 bits)<br/> 821 <code>N = A + C - 1</code></td> 822 <td>Call the indicated method. See first <code>invoke-<i>kind</i></code> 823 description above for details, caveats, and suggestions. 824 </td> 825 </tr> 826 <tr> 827 <td>79..7a 10x</td> 828 <td><i>(unused)</i></td> 829 <td> </td> 830 <td><i>(unused)</i></td> 831 </tr> 832 <tr> 833 <td>7b..8f 12x</td> 834 <td><i>unop</i> vA, vB<br/> 835 7b: neg-int<br/> 836 7c: not-int<br/> 837 7d: neg-long<br/> 838 7e: not-long<br/> 839 7f: neg-float<br/> 840 80: neg-double<br/> 841 81: int-to-long<br/> 842 82: int-to-float<br/> 843 83: int-to-double<br/> 844 84: long-to-int<br/> 845 85: long-to-float<br/> 846 86: long-to-double<br/> 847 87: float-to-int<br/> 848 88: float-to-long<br/> 849 89: float-to-double<br/> 850 8a: double-to-int<br/> 851 8b: double-to-long<br/> 852 8c: double-to-float<br/> 853 8d: int-to-byte<br/> 854 8e: int-to-char<br/> 855 8f: int-to-short 856 </td> 857 <td><code>A:</code> destination register or pair (4 bits)<br/> 858 <code>B:</code> source register or pair (4 bits)</td> 859 <td>Perform the identified unary operation on the source register, 860 storing the result in the destination register.</td> 861 </tr> 862 863 <tr> 864 <td>90..af 23x</td> 865 <td><i>binop</i> vAA, vBB, vCC<br/> 866 90: add-int<br/> 867 91: sub-int<br/> 868 92: mul-int<br/> 869 93: div-int<br/> 870 94: rem-int<br/> 871 95: and-int<br/> 872 96: or-int<br/> 873 97: xor-int<br/> 874 98: shl-int<br/> 875 99: shr-int<br/> 876 9a: ushr-int<br/> 877 9b: add-long<br/> 878 9c: sub-long<br/> 879 9d: mul-long<br/> 880 9e: div-long<br/> 881 9f: rem-long<br/> 882 a0: and-long<br/> 883 a1: or-long<br/> 884 a2: xor-long<br/> 885 a3: shl-long<br/> 886 a4: shr-long<br/> 887 a5: ushr-long<br/> 888 a6: add-float<br/> 889 a7: sub-float<br/> 890 a8: mul-float<br/> 891 a9: div-float<br/> 892 aa: rem-float<br/> 893 ab: add-double<br/> 894 ac: sub-double<br/> 895 ad: mul-double<br/> 896 ae: div-double<br/> 897 af: rem-double 898 </td> 899 <td><code>A:</code> destination register or pair (8 bits)<br/> 900 <code>B:</code> first source register or pair (8 bits)<br/> 901 <code>C:</code> second source register or pair (8 bits)</td> 902 <td>Perform the identified binary operation on the two source registers, 903 storing the result in the destination register. 904 <p class="note"><strong>Note:</strong> 905 Contrary to other <code>-long</code> mathematical operations (which 906 take register pairs for both their first and their second source), 907 <code>shl-long</code>, <code>shr-long</code>, and <code>ushr-long</code> 908 take a register pair for their first source (the value to be shifted), 909 but a single register for their second source (the shifting distance). 910 </p> 911 </td> 912 </tr> 913 <tr> 914 <td>b0..cf 12x</td> 915 <td><i>binop</i>/2addr vA, vB<br/> 916 b0: add-int/2addr<br/> 917 b1: sub-int/2addr<br/> 918 b2: mul-int/2addr<br/> 919 b3: div-int/2addr<br/> 920 b4: rem-int/2addr<br/> 921 b5: and-int/2addr<br/> 922 b6: or-int/2addr<br/> 923 b7: xor-int/2addr<br/> 924 b8: shl-int/2addr<br/> 925 b9: shr-int/2addr<br/> 926 ba: ushr-int/2addr<br/> 927 bb: add-long/2addr<br/> 928 bc: sub-long/2addr<br/> 929 bd: mul-long/2addr<br/> 930 be: div-long/2addr<br/> 931 bf: rem-long/2addr<br/> 932 c0: and-long/2addr<br/> 933 c1: or-long/2addr<br/> 934 c2: xor-long/2addr<br/> 935 c3: shl-long/2addr<br/> 936 c4: shr-long/2addr<br/> 937 c5: ushr-long/2addr<br/> 938 c6: add-float/2addr<br/> 939 c7: sub-float/2addr<br/> 940 c8: mul-float/2addr<br/> 941 c9: div-float/2addr<br/> 942 ca: rem-float/2addr<br/> 943 cb: add-double/2addr<br/> 944 cc: sub-double/2addr<br/> 945 cd: mul-double/2addr<br/> 946 ce: div-double/2addr<br/> 947 cf: rem-double/2addr 948 </td> 949 <td><code>A:</code> destination and first source register or pair 950 (4 bits)<br/> 951 <code>B:</code> second source register or pair (4 bits)</td> 952 <td>Perform the identified binary operation on the two source registers, 953 storing the result in the first source register. 954 <p class="note"><strong>Note:</strong> 955 Contrary to other <code>-long/2addr</code> mathematical operations 956 (which take register pairs for both their destination/first source and 957 their second source), <code>shl-long/2addr</code>, 958 <code>shr-long/2addr</code>, and <code>ushr-long/2addr</code> take a 959 register pair for their destination/first source (the value to be 960 shifted), but a single register for their second source (the shifting 961 distance). 962 </p> 963 </td> 964 </tr> 965 <tr> 966 <td>d0..d7 22s</td> 967 <td><i>binop</i>/lit16 vA, vB, #+CCCC<br/> 968 d0: add-int/lit16<br/> 969 d1: rsub-int (reverse subtract)<br/> 970 d2: mul-int/lit16<br/> 971 d3: div-int/lit16<br/> 972 d4: rem-int/lit16<br/> 973 d5: and-int/lit16<br/> 974 d6: or-int/lit16<br/> 975 d7: xor-int/lit16 976 </td> 977 <td><code>A:</code> destination register (4 bits)<br/> 978 <code>B:</code> source register (4 bits)<br/> 979 <code>C:</code> signed int constant (16 bits)</td> 980 <td>Perform the indicated binary op on the indicated register (first 981 argument) and literal value (second argument), storing the result in 982 the destination register. 983 <p class="note"><strong>Note:</strong> 984 <code>rsub-int</code> does not have a suffix since this version is the 985 main opcode of its family. Also, see below for details on its semantics. 986 </p> 987 </td> 988 </tr> 989 <tr> 990 <td>d8..e2 22b</td> 991 <td><i>binop</i>/lit8 vAA, vBB, #+CC<br/> 992 d8: add-int/lit8<br/> 993 d9: rsub-int/lit8<br/> 994 da: mul-int/lit8<br/> 995 db: div-int/lit8<br/> 996 dc: rem-int/lit8<br/> 997 dd: and-int/lit8<br/> 998 de: or-int/lit8<br/> 999 df: xor-int/lit8<br/> 1000 e0: shl-int/lit8<br/> 1001 e1: shr-int/lit8<br/> 1002 e2: ushr-int/lit8 1003 </td> 1004 <td><code>A:</code> destination register (8 bits)<br/> 1005 <code>B:</code> source register (8 bits)<br/> 1006 <code>C:</code> signed int constant (8 bits)</td> 1007 <td>Perform the indicated binary op on the indicated register (first 1008 argument) and literal value (second argument), storing the result 1009 in the destination register. 1010 <p class="note"><strong>Note:</strong> See below for details on the semantics of 1011 <code>rsub-int</code>.</p> 1012 </td> 1013 </tr> 1014 <tr> 1015 <td>e3..f9 10x</td> 1016 <td><i>(unused)</i></td> 1017 <td> </td> 1018 <td><i>(unused)</i></td> 1019 </tr> 1020 <tr> 1021 <td>fa 45cc</td> 1022 <td>invoke-polymorphic {vC, vD, vE, vF, vG}, meth@BBBB, proto@HHHH</td> 1023 <td> 1024 <code>A:</code> argument word count (4 bits) </br> 1025 <code>B:</code> method reference index (16 bits) </br> 1026 <code>C:</code> method handle reference to invoke (16 bits) </br> 1027 <code>D..G:</code> argument registers (4 bits each) </br> 1028 <code>H:</code> prototype reference index (16 bits) </br> 1029 </td> 1030 <td> 1031 Invoke the indicated method handle. The result (if any) may be stored 1032 with an appropriate <code>move-result*</code> variant as the immediately 1033 subsequent instruction. 1034 <p> The method reference must be to <code>java.lang.invoke.MethodHandle.invoke</code> 1035 or <code>java.lang.invoke.MethodHandle.invokeExact</code>. 1036 <p> The prototype reference describes the argument types provided 1037 and the expected return type. 1038 <p> The <code>invoke-polymorphic</code> bytecode may raise exceptions when it 1039 executes. The exceptions are described in the API documentation 1040 for <code>java.lang.invoke.MethodHandle.invoke</code> and 1041 <code>java.lang.invoke.MethodHandle.invokeExact</code>. 1042 <p> Present in Dex files from version <code>038</code> onwards. 1043 </td> 1044 </tr> 1045 <tr> 1046 <td>fb 4rcc</td> 1047 <td>invoke-polymorphic/range {vCCCC .. vNNNN}, meth@BBBB, proto@HHHH</td> 1048 <td> 1049 <code>A:</code> argument word count (8 bits) </br> 1050 <code>B:</code> method reference index (16 bits) </br> 1051 <code>C:</code> method handle reference to invoke (16 bits) </br> 1052 <code>H:</code> prototype reference index (16 bits) </br> 1053 <code>N = A + C - 1</code> 1054 </td> 1055 <td> 1056 Invoke the indicated method handle. See the <code>invoke-polymorphic</code> 1057 description above for details. 1058 <p> Present in Dex files from version <code>038</code> onwards. 1059 </td> 1060 </tr> 1061 <tr> 1062 <td>fc 35c</td> 1063 <td>invoke-custom {vC, vD, vE, vF, vG}, call_site@BBBB</td> 1064 <td> 1065 <code>A:</code> argument word count (4 bits) <br> 1066 <code>B:</code> call site reference index (16 bits) <br> 1067 <code>C..G:</code> argument registers (4 bits each) 1068 </td> 1069 <td> Resolves and invokes the indicated call site. 1070 The result from the invocation (if any) may be stored with an 1071 appropriate <code>move-result*</code> variant as the immediately 1072 subsequent instruction. 1073 1074 <p> This instruction executes in two phases: call site 1075 resolution and call site invocation. 1076 1077 <p> Call site resolution checks whether the indicated 1078 call site has an associated <code>java.lang.invoke.CallSite</code> instance. 1079 If not, the bootstrap linker method for the indicated call site is 1080 invoked using arguments present in the DEX file 1081 (see <a href="dex-format.html#call-site-item">call_site_item</a>). The 1082 bootstrap linker method returns 1083 a <code>java.lang.invoke.CallSite</code> instance that will then 1084 be associated with the indicated call site if no association 1085 exists. Another thread may have already made the association first, 1086 and if so execution of the instruction continues with the 1087 first associated <code>java.lang.invoke.CallSite</code> instance. 1088 1089 <p> Call site invocation is made on the <code>java.lang.invoke.MethodHandle</code> target of the 1090 resolved <code>java.lang.invoke.CallSite</code> instance. The target is invoked as if 1091 executing <code>invoke-polymorphic</code> (described above) 1092 using the method handle and arguments to 1093 the <code>invoke-custom</code> instruction as the arguments to an 1094 exact method handle invocation. 1095 1096 <p> Exceptions raised by the bootstrap linker method are wrapped 1097 in a <code>java.lang.BootstrapMethodError</code>. A <code>BootstrapMethodError</code> is also raised if: 1098 <ul> 1099 <li>the bootstrap linker method fails to return a <code>java.lang.invoke.CallSite</code> instance.</li> 1100 <li>the returned <code>java.lang.invoke.CallSite</code> has a <code>null</code> method handle target.</li> 1101 <li>the method handle target is not of the requested type.</li> 1102 </ul> 1103 <p> Present in Dex files from version <code>038</code> onwards. 1104 </td> 1105 </tr> 1106 <tr> 1107 <td>fd 3rc</td> 1108 <td>invoke-custom/range {vCCCC .. vNNNN}, call_site@BBBB</td> 1109 <td> 1110 <code>A:</code> argument word count (8 bits) <br> 1111 <code>B:</code> call site reference index (16 bits) <br> 1112 <code>C:</code> first argument register (16-bits) <br> 1113 <code>N = A + C - 1</code> 1114 </td> 1115 <td> 1116 Resolve and invoke a call site. See the <code>invoke-custom</code> description above for details. 1117 <p> Present in Dex files from version <code>038</code> onwards. 1118 </td> 1119 </tr> 1120 <tr> 1121 <td>fe..ff 10x</td> 1122 <td><i>(unused)</i></td> 1123 <td> </td> 1124 <td><i>(unused)</i></td> 1125 </tr> 1126 </tbody> 1127 </table> 1128 1129 <h2 id="packed-switch">packed-switch-payload format</h2> 1130 1131 <table class="supplement"> 1132 <thead> 1133 <tr> 1134 <th>Name</th> 1135 <th>Format</th> 1136 <th>Description</th> 1137 </tr> 1138 </thead> 1139 <tbody> 1140 <tr> 1141 <td>ident</td> 1142 <td>ushort = 0x0100</td> 1143 <td>identifying pseudo-opcode</td> 1144 </tr> 1145 <tr> 1146 <td>size</td> 1147 <td>ushort</td> 1148 <td>number of entries in the table</td> 1149 </tr> 1150 <tr> 1151 <td>first_key</td> 1152 <td>int</td> 1153 <td>first (and lowest) switch case value</td> 1154 </tr> 1155 <tr> 1156 <td>targets</td> 1157 <td>int[]</td> 1158 <td>list of <code>size</code> relative branch targets. The targets are 1159 relative to the address of the switch opcode, not of this table. 1160 </td> 1161 </tr> 1162 </tbody> 1163 </table> 1164 1165 <p class="note"><strong>Note:</strong> The total number of code units for an instance of this 1166 table is <code>(size * 2) + 4</code>.</p> 1167 1168 <h2 id="sparse-switch">sparse-switch-payload format</h2> 1169 1170 <table class="supplement"> 1171 <thead> 1172 <tr> 1173 <th>Name</th> 1174 <th>Format</th> 1175 <th>Description</th> 1176 </tr> 1177 </thead> 1178 <tbody> 1179 <tr> 1180 <td>ident</td> 1181 <td>ushort = 0x0200</td> 1182 <td>identifying pseudo-opcode</td> 1183 </tr> 1184 <tr> 1185 <td>size</td> 1186 <td>ushort</td> 1187 <td>number of entries in the table</td> 1188 </tr> 1189 <tr> 1190 <td>keys</td> 1191 <td>int[]</td> 1192 <td>list of <code>size</code> key values, sorted low-to-high</td> 1193 </tr> 1194 <tr> 1195 <td>targets</td> 1196 <td>int[]</td> 1197 <td>list of <code>size</code> relative branch targets, each corresponding 1198 to the key value at the same index. The targets are 1199 relative to the address of the switch opcode, not of this table. 1200 </td> 1201 </tr> 1202 </tbody> 1203 </table> 1204 1205 <p class="note"><strong>Note:</strong> The total number of code units for an instance of this 1206 table is <code>(size * 4) + 2</code>.</p> 1207 1208 <h2 id="fill-array">fill-array-data-payload format</h2> 1209 1210 <table class="supplement"> 1211 <thead> 1212 <tr> 1213 <th>Name</th> 1214 <th>Format</th> 1215 <th>Description</th> 1216 </tr> 1217 </thead> 1218 <tbody> 1219 <tr> 1220 <td>ident</td> 1221 <td>ushort = 0x0300</td> 1222 <td>identifying pseudo-opcode</td> 1223 </tr> 1224 <tr> 1225 <td>element_width</td> 1226 <td>ushort</td> 1227 <td>number of bytes in each element</td> 1228 </tr> 1229 <tr> 1230 <td>size</td> 1231 <td>uint</td> 1232 <td>number of elements in the table</td> 1233 </tr> 1234 <tr> 1235 <td>data</td> 1236 <td>ubyte[]</td> 1237 <td>data values</td> 1238 </tr> 1239 </tbody> 1240 </table> 1241 1242 <p class="note"><strong>Note:</strong> The total number of code units for an instance of this 1243 table is <code>(size * element_width + 1) / 2 + 4</code>.</p> 1244 1245 1246 <h2 id="math">Mathematical operation details</h2> 1247 1248 <p class="note"><strong>Note:</strong> Floating point operations must follow IEEE 754 rules, using 1249 round-to-nearest and gradual underflow, except where stated otherwise.</p> 1250 1251 <table class="math"> 1252 <thead> 1253 <tr> 1254 <th>Opcode</th> 1255 <th>C Semantics</th> 1256 <th>Notes</th> 1257 </tr> 1258 </thead> 1259 <tbody> 1260 <tr> 1261 <td>neg-int</td> 1262 <td>int32 a;<br/> 1263 int32 result = -a; 1264 </td> 1265 <td>Unary twos-complement.</td> 1266 </tr> 1267 <tr> 1268 <td>not-int</td> 1269 <td>int32 a;<br/> 1270 int32 result = ~a; 1271 </td> 1272 <td>Unary ones-complement.</td> 1273 </tr> 1274 <tr> 1275 <td>neg-long</td> 1276 <td>int64 a;<br/> 1277 int64 result = -a; 1278 </td> 1279 <td>Unary twos-complement.</td> 1280 </tr> 1281 <tr> 1282 <td>not-long</td> 1283 <td>int64 a;<br/> 1284 int64 result = ~a; 1285 </td> 1286 <td>Unary ones-complement.</td> 1287 </tr> 1288 <tr> 1289 <td>neg-float</td> 1290 <td>float a;<br/> 1291 float result = -a; 1292 </td> 1293 <td>Floating point negation.</td> 1294 </tr> 1295 <tr> 1296 <td>neg-double</td> 1297 <td>double a;<br/> 1298 double result = -a; 1299 </td> 1300 <td>Floating point negation.</td> 1301 </tr> 1302 <tr> 1303 <td>int-to-long</td> 1304 <td>int32 a;<br/> 1305 int64 result = (int64) a; 1306 </td> 1307 <td>Sign extension of <code>int32</code> into <code>int64</code>.</td> 1308 </tr> 1309 <tr> 1310 <td>int-to-float</td> 1311 <td>int32 a;<br/> 1312 float result = (float) a; 1313 </td> 1314 <td>Conversion of <code>int32</code> to <code>float</code>, using 1315 round-to-nearest. This loses precision for some values. 1316 </td> 1317 </tr> 1318 <tr> 1319 <td>int-to-double</td> 1320 <td>int32 a;<br/> 1321 double result = (double) a; 1322 </td> 1323 <td>Conversion of <code>int32</code> to <code>double</code>.</td> 1324 </tr> 1325 <tr> 1326 <td>long-to-int</td> 1327 <td>int64 a;<br/> 1328 int32 result = (int32) a; 1329 </td> 1330 <td>Truncation of <code>int64</code> into <code>int32</code>.</td> 1331 </tr> 1332 <tr> 1333 <td>long-to-float</td> 1334 <td>int64 a;<br/> 1335 float result = (float) a; 1336 </td> 1337 <td>Conversion of <code>int64</code> to <code>float</code>, using 1338 round-to-nearest. This loses precision for some values. 1339 </td> 1340 </tr> 1341 <tr> 1342 <td>long-to-double</td> 1343 <td>int64 a;<br/> 1344 double result = (double) a; 1345 </td> 1346 <td>Conversion of <code>int64</code> to <code>double</code>, using 1347 round-to-nearest. This loses precision for some values. 1348 </td> 1349 </tr> 1350 <tr> 1351 <td>float-to-int</td> 1352 <td>float a;<br/> 1353 int32 result = (int32) a; 1354 </td> 1355 <td>Conversion of <code>float</code> to <code>int32</code>, using 1356 round-toward-zero. <code>NaN</code> and <code>-0.0</code> (negative zero) 1357 convert to the integer <code>0</code>. Infinities and values with 1358 too large a magnitude to be represented get converted to either 1359 <code>0x7fffffff</code> or <code>-0x80000000</code> depending on sign. 1360 </td> 1361 </tr> 1362 <tr> 1363 <td>float-to-long</td> 1364 <td>float a;<br/> 1365 int64 result = (int64) a; 1366 </td> 1367 <td>Conversion of <code>float</code> to <code>int64</code>, using 1368 round-toward-zero. The same special case rules as for 1369 <code>float-to-int</code> apply here, except that out-of-range values 1370 get converted to either <code>0x7fffffffffffffff</code> or 1371 <code>-0x8000000000000000</code> depending on sign. 1372 </td> 1373 </tr> 1374 <tr> 1375 <td>float-to-double</td> 1376 <td>float a;<br/> 1377 double result = (double) a; 1378 </td> 1379 <td>Conversion of <code>float</code> to <code>double</code>, preserving 1380 the value exactly. 1381 </td> 1382 </tr> 1383 <tr> 1384 <td>double-to-int</td> 1385 <td>double a;<br/> 1386 int32 result = (int32) a; 1387 </td> 1388 <td>Conversion of <code>double</code> to <code>int32</code>, using 1389 round-toward-zero. The same special case rules as for 1390 <code>float-to-int</code> apply here. 1391 </td> 1392 </tr> 1393 <tr> 1394 <td>double-to-long</td> 1395 <td>double a;<br/> 1396 int64 result = (int64) a; 1397 </td> 1398 <td>Conversion of <code>double</code> to <code>int64</code>, using 1399 round-toward-zero. The same special case rules as for 1400 <code>float-to-long</code> apply here. 1401 </td> 1402 </tr> 1403 <tr> 1404 <td>double-to-float</td> 1405 <td>double a;<br/> 1406 float result = (float) a; 1407 </td> 1408 <td>Conversion of <code>double</code> to <code>float</code>, using 1409 round-to-nearest. This loses precision for some values. 1410 </td> 1411 </tr> 1412 <tr> 1413 <td>int-to-byte</td> 1414 <td>int32 a;<br/> 1415 int32 result = (a << 24) >> 24; 1416 </td> 1417 <td>Truncation of <code>int32</code> to <code>int8</code>, sign 1418 extending the result. 1419 </td> 1420 </tr> 1421 <tr> 1422 <td>int-to-char</td> 1423 <td>int32 a;<br/> 1424 int32 result = a & 0xffff; 1425 </td> 1426 <td>Truncation of <code>int32</code> to <code>uint16</code>, without 1427 sign extension. 1428 </td> 1429 </tr> 1430 <tr> 1431 <td>int-to-short</td> 1432 <td>int32 a;<br/> 1433 int32 result = (a << 16) >> 16; 1434 </td> 1435 <td>Truncation of <code>int32</code> to <code>int16</code>, sign 1436 extending the result. 1437 </td> 1438 </tr> 1439 <tr> 1440 <td>add-int</td> 1441 <td>int32 a, b;<br/> 1442 int32 result = a + b; 1443 </td> 1444 <td>Twos-complement addition.</td> 1445 </tr> 1446 <tr> 1447 <td>sub-int</td> 1448 <td>int32 a, b;<br/> 1449 int32 result = a - b; 1450 </td> 1451 <td>Twos-complement subtraction.</td> 1452 </tr> 1453 <tr> 1454 <td>rsub-int</td> 1455 <td>int32 a, b;<br/> 1456 int32 result = b - a; 1457 </td> 1458 <td>Twos-complement reverse subtraction.</td> 1459 </tr> 1460 <tr> 1461 <td>mul-int</td> 1462 <td>int32 a, b;<br/> 1463 int32 result = a * b; 1464 </td> 1465 <td>Twos-complement multiplication.</td> 1466 </tr> 1467 <tr> 1468 <td>div-int</td> 1469 <td>int32 a, b;<br/> 1470 int32 result = a / b; 1471 </td> 1472 <td>Twos-complement division, rounded towards zero (that is, truncated to 1473 integer). This throws <code>ArithmeticException</code> if 1474 <code>b == 0</code>. 1475 </td> 1476 </tr> 1477 <tr> 1478 <td>rem-int</td> 1479 <td>int32 a, b;<br/> 1480 int32 result = a % b; 1481 </td> 1482 <td>Twos-complement remainder after division. The sign of the result 1483 is the same as that of <code>a</code>, and it is more precisely 1484 defined as <code>result == a - (a / b) * b</code>. This throws 1485 <code>ArithmeticException</code> if <code>b == 0</code>. 1486 </td> 1487 </tr> 1488 <tr> 1489 <td>and-int</td> 1490 <td>int32 a, b;<br/> 1491 int32 result = a & b; 1492 </td> 1493 <td>Bitwise AND.</td> 1494 </tr> 1495 <tr> 1496 <td>or-int</td> 1497 <td>int32 a, b;<br/> 1498 int32 result = a | b; 1499 </td> 1500 <td>Bitwise OR.</td> 1501 </tr> 1502 <tr> 1503 <td>xor-int</td> 1504 <td>int32 a, b;<br/> 1505 int32 result = a ^ b; 1506 </td> 1507 <td>Bitwise XOR.</td> 1508 </tr> 1509 <tr> 1510 <td>shl-int</td> 1511 <td>int32 a, b;<br/> 1512 int32 result = a << (b & 0x1f); 1513 </td> 1514 <td>Bitwise shift left (with masked argument).</td> 1515 </tr> 1516 <tr> 1517 <td>shr-int</td> 1518 <td>int32 a, b;<br/> 1519 int32 result = a >> (b & 0x1f); 1520 </td> 1521 <td>Bitwise signed shift right (with masked argument).</td> 1522 </tr> 1523 <tr> 1524 <td>ushr-int</td> 1525 <td>uint32 a, b;<br/> 1526 int32 result = a >> (b & 0x1f); 1527 </td> 1528 <td>Bitwise unsigned shift right (with masked argument).</td> 1529 </tr> 1530 <tr> 1531 <td>add-long</td> 1532 <td>int64 a, b;<br/> 1533 int64 result = a + b; 1534 </td> 1535 <td>Twos-complement addition.</td> 1536 </tr> 1537 <tr> 1538 <td>sub-long</td> 1539 <td>int64 a, b;<br/> 1540 int64 result = a - b; 1541 </td> 1542 <td>Twos-complement subtraction.</td> 1543 </tr> 1544 <tr> 1545 <td>mul-long</td> 1546 <td>int64 a, b;<br/> 1547 int64 result = a * b; 1548 </td> 1549 <td>Twos-complement multiplication.</td> 1550 </tr> 1551 <tr> 1552 <td>div-long</td> 1553 <td>int64 a, b;<br/> 1554 int64 result = a / b; 1555 </td> 1556 <td>Twos-complement division, rounded towards zero (that is, truncated to 1557 integer). This throws <code>ArithmeticException</code> if 1558 <code>b == 0</code>. 1559 </td> 1560 </tr> 1561 <tr> 1562 <td>rem-long</td> 1563 <td>int64 a, b;<br/> 1564 int64 result = a % b; 1565 </td> 1566 <td>Twos-complement remainder after division. The sign of the result 1567 is the same as that of <code>a</code>, and it is more precisely 1568 defined as <code>result == a - (a / b) * b</code>. This throws 1569 <code>ArithmeticException</code> if <code>b == 0</code>. 1570 </td> 1571 </tr> 1572 <tr> 1573 <td>and-long</td> 1574 <td>int64 a, b;<br/> 1575 int64 result = a & b; 1576 </td> 1577 <td>Bitwise AND.</td> 1578 </tr> 1579 <tr> 1580 <td>or-long</td> 1581 <td>int64 a, b;<br/> 1582 int64 result = a | b; 1583 </td> 1584 <td>Bitwise OR.</td> 1585 </tr> 1586 <tr> 1587 <td>xor-long</td> 1588 <td>int64 a, b;<br/> 1589 int64 result = a ^ b; 1590 </td> 1591 <td>Bitwise XOR.</td> 1592 </tr> 1593 <tr> 1594 <td>shl-long</td> 1595 <td>int64 a;<br/> 1596 int32 b;<br/> 1597 int64 result = a << (b & 0x3f); 1598 </td> 1599 <td>Bitwise shift left (with masked argument).</td> 1600 </tr> 1601 <tr> 1602 <td>shr-long</td> 1603 <td>int64 a;<br/> 1604 int32 b;<br/> 1605 int64 result = a >> (b & 0x3f); 1606 </td> 1607 <td>Bitwise signed shift right (with masked argument).</td> 1608 </tr> 1609 <tr> 1610 <td>ushr-long</td> 1611 <td>uint64 a;<br/> 1612 int32 b;<br/> 1613 int64 result = a >> (b & 0x3f); 1614 </td> 1615 <td>Bitwise unsigned shift right (with masked argument).</td> 1616 </tr> 1617 <tr> 1618 <td>add-float</td> 1619 <td>float a, b;<br/> 1620 float result = a + b; 1621 </td> 1622 <td>Floating point addition.</td> 1623 </tr> 1624 <tr> 1625 <td>sub-float</td> 1626 <td>float a, b;<br/> 1627 float result = a - b; 1628 </td> 1629 <td>Floating point subtraction.</td> 1630 </tr> 1631 <tr> 1632 <td>mul-float</td> 1633 <td>float a, b;<br/> 1634 float result = a * b; 1635 </td> 1636 <td>Floating point multiplication.</td> 1637 </tr> 1638 <tr> 1639 <td>div-float</td> 1640 <td>float a, b;<br/> 1641 float result = a / b; 1642 </td> 1643 <td>Floating point division.</td> 1644 </tr> 1645 <tr> 1646 <td>rem-float</td> 1647 <td>float a, b;<br/> 1648 float result = a % b; 1649 </td> 1650 <td>Floating point remainder after division. This function is different 1651 than IEEE 754 remainder and is defined as 1652 <code>result == a - roundTowardZero(a / b) * b</code>. 1653 </td> 1654 </tr> 1655 <tr> 1656 <td>add-double</td> 1657 <td>double a, b;<br/> 1658 double result = a + b; 1659 </td> 1660 <td>Floating point addition.</td> 1661 </tr> 1662 <tr> 1663 <td>sub-double</td> 1664 <td>double a, b;<br/> 1665 double result = a - b; 1666 </td> 1667 <td>Floating point subtraction.</td> 1668 </tr> 1669 <tr> 1670 <td>mul-double</td> 1671 <td>double a, b;<br/> 1672 double result = a * b; 1673 </td> 1674 <td>Floating point multiplication.</td> 1675 </tr> 1676 <tr> 1677 <td>div-double</td> 1678 <td>double a, b;<br/> 1679 double result = a / b; 1680 </td> 1681 <td>Floating point division.</td> 1682 </tr> 1683 <tr> 1684 <td>rem-double</td> 1685 <td>double a, b;<br/> 1686 double result = a % b; 1687 </td> 1688 <td>Floating point remainder after division. This function is different 1689 than IEEE 754 remainder and is defined as 1690 <code>result == a - roundTowardZero(a / b) * b</code>. 1691 </td> 1692 </tr> 1693 </tbody> 1694 </table> 1695 1696 </body> 1697 </html> 1698