Home | History | Annotate | Download | only in src
      1 
      2 /* -----------------------------------------------------------------------------------------------------------
      3 Software License for The Fraunhofer FDK AAC Codec Library for Android
      4 
      5  Copyright  1995 - 2013 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V.
      6   All rights reserved.
      7 
      8  1.    INTRODUCTION
      9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
     10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
     11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
     12 
     13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
     14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
     15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
     16 of the MPEG specifications.
     17 
     18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
     19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
     20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
     21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
     22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
     23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
     24 
     25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
     26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
     27 applications information and documentation.
     28 
     29 2.    COPYRIGHT LICENSE
     30 
     31 Redistribution and use in source and binary forms, with or without modification, are permitted without
     32 payment of copyright license fees provided that you satisfy the following conditions:
     33 
     34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
     35 your modifications thereto in source code form.
     36 
     37 You must retain the complete text of this software license in the documentation and/or other materials
     38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
     39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
     40 modifications thereto to recipients of copies in binary form.
     41 
     42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
     43 prior written permission.
     44 
     45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
     46 software or your modifications thereto.
     47 
     48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
     49 and the date of any change. For modified versions of the FDK AAC Codec, the term
     50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
     51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
     52 
     53 3.    NO PATENT LICENSE
     54 
     55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
     56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
     57 respect to this software.
     58 
     59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
     60 by appropriate patent licenses.
     61 
     62 4.    DISCLAIMER
     63 
     64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
     65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
     66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
     67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
     68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
     69 or business interruption, however caused and on any theory of liability, whether in contract, strict
     70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
     71 advised of the possibility of such damage.
     72 
     73 5.    CONTACT INFORMATION
     74 
     75 Fraunhofer Institute for Integrated Circuits IIS
     76 Attention: Audio and Multimedia Departments - FDK AAC LL
     77 Am Wolfsmantel 33
     78 91058 Erlangen, Germany
     79 
     80 www.iis.fraunhofer.de/amm
     81 amm-info (at) iis.fraunhofer.de
     82 ----------------------------------------------------------------------------------------------------------- */
     83 
     84 /*!
     85   \file
     86   \brief  FDK Fixed Point Arithmetic Library Interface
     87 */
     88 
     89 #ifndef __TRANSCENDENT_H
     90 #define __TRANSCENDENT_H
     91 
     92 #include "sbrdecoder.h"
     93 #include "sbr_rom.h"
     94 
     95 /************************************************************************/
     96 /*!
     97   \brief   Get number of octaves between frequencies a and b
     98 
     99   The Result is scaled with 1/8.
    100   The valid range for a and b is 1 to LOG_DUALIS_TABLE_SIZE.
    101 
    102   \return   ld(a/b) / 8
    103 */
    104 /************************************************************************/
    105 static inline FIXP_SGL FDK_getNumOctavesDiv8(INT a, /*!< lower band */
    106                                              INT b) /*!< upper band */
    107 {
    108   return ( (SHORT)((LONG)(CalcLdInt(b) - CalcLdInt(a))>>(FRACT_BITS-3)) );
    109 }
    110 
    111 
    112 /************************************************************************/
    113 /*!
    114   \brief   Add two values given by mantissa and exponent.
    115 
    116   Mantissas are in fract format with values between 0 and 1. <br>
    117   The base for exponents is 2.  Example:  \f$  a = a\_m * 2^{a\_e}  \f$<br>
    118 */
    119 /************************************************************************/
    120 inline void FDK_add_MantExp(FIXP_SGL a_m, /*!< Mantissa of 1st operand a */
    121                      SCHAR     a_e,       /*!< Exponent of 1st operand a */
    122                      FIXP_SGL  b_m,       /*!< Mantissa of 2nd operand b */
    123                      SCHAR     b_e,       /*!< Exponent of 2nd operand b */
    124                      FIXP_SGL *ptrSum_m,  /*!< Mantissa of result */
    125                      SCHAR    *ptrSum_e)  /*!< Exponent of result */
    126 {
    127   FIXP_DBL accu;
    128   int   shift;
    129   int   shiftAbs;
    130 
    131   FIXP_DBL shiftedMantissa;
    132   FIXP_DBL otherMantissa;
    133 
    134   /* Equalize exponents of the summands.
    135      For the smaller summand, the exponent is adapted and
    136      for compensation, the mantissa is shifted right. */
    137 
    138   shift = (int)(a_e - b_e);
    139 
    140   shiftAbs = (shift>0)? shift : -shift;
    141   shiftAbs = (shiftAbs < DFRACT_BITS-1)? shiftAbs : DFRACT_BITS-1;
    142   shiftedMantissa = (shift>0)? (FX_SGL2FX_DBL(b_m) >> shiftAbs) : (FX_SGL2FX_DBL(a_m) >> shiftAbs);
    143   otherMantissa = (shift>0)? FX_SGL2FX_DBL(a_m) : FX_SGL2FX_DBL(b_m);
    144   *ptrSum_e = (shift>0)? a_e : b_e;
    145 
    146   accu = (shiftedMantissa >> 1) + (otherMantissa >> 1);
    147   /* shift by 1 bit to avoid overflow */
    148 
    149   if ( (accu >= (FL2FXCONST_DBL(0.5f) - (FIXP_DBL)1)) || (accu <= FL2FXCONST_DBL(-0.5f)) )
    150     *ptrSum_e += 1;
    151   else
    152     accu = (shiftedMantissa + otherMantissa);
    153 
    154   *ptrSum_m = FX_DBL2FX_SGL(accu);
    155 
    156 }
    157 
    158 inline void FDK_add_MantExp(FIXP_DBL a,   /*!< Mantissa of 1st operand a */
    159                      SCHAR     a_e,       /*!< Exponent of 1st operand a */
    160                      FIXP_DBL  b,         /*!< Mantissa of 2nd operand b */
    161                      SCHAR     b_e,       /*!< Exponent of 2nd operand b */
    162                      FIXP_DBL *ptrSum,    /*!< Mantissa of result */
    163                      SCHAR    *ptrSum_e)  /*!< Exponent of result */
    164 {
    165   FIXP_DBL accu;
    166   int   shift;
    167   int   shiftAbs;
    168 
    169   FIXP_DBL shiftedMantissa;
    170   FIXP_DBL otherMantissa;
    171 
    172   /* Equalize exponents of the summands.
    173      For the smaller summand, the exponent is adapted and
    174      for compensation, the mantissa is shifted right. */
    175 
    176   shift = (int)(a_e - b_e);
    177 
    178   shiftAbs = (shift>0)? shift : -shift;
    179   shiftAbs = (shiftAbs < DFRACT_BITS-1)? shiftAbs : DFRACT_BITS-1;
    180   shiftedMantissa = (shift>0)? (b >> shiftAbs) : (a >> shiftAbs);
    181   otherMantissa = (shift>0)? a : b;
    182   *ptrSum_e = (shift>0)? a_e : b_e;
    183 
    184   accu = (shiftedMantissa >> 1) + (otherMantissa >> 1);
    185   /* shift by 1 bit to avoid overflow */
    186 
    187   if ( (accu >= (FL2FXCONST_DBL(0.5f) - (FIXP_DBL)1)) || (accu <= FL2FXCONST_DBL(-0.5f)) )
    188     *ptrSum_e += 1;
    189   else
    190     accu = (shiftedMantissa + otherMantissa);
    191 
    192   *ptrSum = accu;
    193 
    194 }
    195 
    196 /************************************************************************/
    197 /*!
    198   \brief   Divide two values given by mantissa and exponent.
    199 
    200   Mantissas are in fract format with values between 0 and 1. <br>
    201   The base for exponents is 2.  Example:  \f$  a = a\_m * 2^{a\_e}  \f$<br>
    202 
    203   For performance reasons, the division is based on a table lookup
    204   which limits accuracy.
    205 */
    206 /************************************************************************/
    207 static inline void FDK_divide_MantExp(FIXP_SGL a_m,           /*!< Mantissa of dividend a */
    208                                       SCHAR     a_e,          /*!< Exponent of dividend a */
    209                                       FIXP_SGL  b_m,          /*!< Mantissa of divisor b */
    210                                       SCHAR     b_e,          /*!< Exponent of divisor b */
    211                                       FIXP_SGL *ptrResult_m,  /*!< Mantissa of quotient a/b */
    212                                       SCHAR    *ptrResult_e)  /*!< Exponent of quotient a/b */
    213 
    214 {
    215   int preShift, postShift, index, shift;
    216   FIXP_DBL ratio_m;
    217   FIXP_SGL  bInv_m = FL2FXCONST_SGL(0.0f);
    218 
    219   preShift = CntLeadingZeros(FX_SGL2FX_DBL(b_m));
    220 
    221   /*
    222     Shift b into the range from 0..INV_TABLE_SIZE-1,
    223 
    224     E.g. 10 bits must be skipped for INV_TABLE_BITS 8:
    225     - leave 8 bits as index for table
    226     - skip sign bit,
    227     - skip first bit of mantissa, because this is always the same (>0.5)
    228 
    229     We are dealing with energies, so we need not care
    230     about negative numbers
    231   */
    232 
    233   /*
    234     The first interval has half width so the lowest bit of the index is
    235     needed for a doubled resolution.
    236   */
    237   shift = (FRACT_BITS - 2 - INV_TABLE_BITS - preShift);
    238 
    239   index = (shift<0)? (LONG)b_m << (-shift) : (LONG)b_m >> shift;
    240 
    241 
    242   /* The index has INV_TABLE_BITS +1 valid bits here. Clear the other bits. */
    243   index &= (1 << (INV_TABLE_BITS+1)) - 1;
    244 
    245     /* Remove offset of half an interval */
    246   index--;
    247 
    248     /* Now the lowest bit is shifted out */
    249   index = index >> 1;
    250 
    251     /* Fetch inversed mantissa from table: */
    252   bInv_m = (index<0)? bInv_m : FDK_sbrDecoder_invTable[index];
    253 
    254     /* Multiply a with the inverse of b: */
    255   ratio_m = (index<0)? FX_SGL2FX_DBL(a_m >> 1) : fMultDiv2(bInv_m,a_m);
    256 
    257   postShift = CntLeadingZeros(ratio_m)-1;
    258 
    259   *ptrResult_m = FX_DBL2FX_SGL(ratio_m << postShift);
    260   *ptrResult_e = a_e - b_e + 1 + preShift - postShift;
    261 }
    262 
    263 static inline void FDK_divide_MantExp(FIXP_DBL a_m,           /*!< Mantissa of dividend a */
    264                                       SCHAR     a_e,          /*!< Exponent of dividend a */
    265                                       FIXP_DBL  b_m,          /*!< Mantissa of divisor b */
    266                                       SCHAR     b_e,          /*!< Exponent of divisor b */
    267                                       FIXP_DBL *ptrResult_m,  /*!< Mantissa of quotient a/b */
    268                                       SCHAR    *ptrResult_e)  /*!< Exponent of quotient a/b */
    269 
    270 {
    271   int preShift, postShift, index, shift;
    272   FIXP_DBL ratio_m;
    273   FIXP_SGL  bInv_m = FL2FXCONST_SGL(0.0f);
    274 
    275   preShift = CntLeadingZeros(b_m);
    276 
    277   /*
    278     Shift b into the range from 0..INV_TABLE_SIZE-1,
    279 
    280     E.g. 10 bits must be skipped for INV_TABLE_BITS 8:
    281     - leave 8 bits as index for table
    282     - skip sign bit,
    283     - skip first bit of mantissa, because this is always the same (>0.5)
    284 
    285     We are dealing with energies, so we need not care
    286     about negative numbers
    287   */
    288 
    289   /*
    290     The first interval has half width so the lowest bit of the index is
    291     needed for a doubled resolution.
    292   */
    293   shift = (DFRACT_BITS - 2 - INV_TABLE_BITS - preShift);
    294 
    295   index = (shift<0)? (LONG)b_m << (-shift) : (LONG)b_m >> shift;
    296 
    297 
    298   /* The index has INV_TABLE_BITS +1 valid bits here. Clear the other bits. */
    299   index &= (1 << (INV_TABLE_BITS+1)) - 1;
    300 
    301     /* Remove offset of half an interval */
    302   index--;
    303 
    304     /* Now the lowest bit is shifted out */
    305   index = index >> 1;
    306 
    307     /* Fetch inversed mantissa from table: */
    308   bInv_m = (index<0)? bInv_m : FDK_sbrDecoder_invTable[index];
    309 
    310     /* Multiply a with the inverse of b: */
    311   ratio_m = (index<0)? (a_m >> 1) : fMultDiv2(bInv_m,a_m);
    312 
    313   postShift = CntLeadingZeros(ratio_m)-1;
    314 
    315   *ptrResult_m = ratio_m << postShift;
    316   *ptrResult_e = a_e - b_e + 1 + preShift - postShift;
    317 }
    318 
    319 /*!
    320   \brief   Calculate the squareroot of a number given by mantissa and exponent
    321 
    322   Mantissa is in fract format with values between 0 and 1. <br>
    323   The base for the exponent is 2.  Example:  \f$  a = a\_m * 2^{a\_e}  \f$<br>
    324   The operand is addressed via pointers and will be overwritten with the result.
    325 
    326   For performance reasons, the square root is based on a table lookup
    327   which limits accuracy.
    328 */
    329 static inline void FDK_sqrt_MantExp(FIXP_DBL *mantissa,    /*!< Pointer to mantissa */
    330                                     SCHAR    *exponent,
    331                                     const SCHAR *destScale)
    332 {
    333   FIXP_DBL input_m = *mantissa;
    334   int   input_e = (int) *exponent;
    335   FIXP_DBL result = FL2FXCONST_DBL(0.0f);
    336   int    result_e = -FRACT_BITS;
    337 
    338   /* Call lookup square root, which does internally normalization. */
    339   result   = sqrtFixp_lookup(input_m, &input_e);
    340   result_e = input_e;
    341 
    342   /* Write result */
    343   if (exponent==destScale) {
    344     *mantissa = result;
    345     *exponent = result_e;
    346   } else {
    347     int shift = result_e - *destScale;
    348     *mantissa = (shift>=0) ? result << (INT)fixMin(DFRACT_BITS-1,shift)
    349                            : result >> (INT)fixMin(DFRACT_BITS-1,-shift);
    350     *exponent = *destScale;
    351   }
    352 }
    353 
    354 
    355 #endif
    356