Home | History | Annotate | Download | only in ec
      1 /* Copyright (c) 2015, Google Inc.
      2  *
      3  * Permission to use, copy, modify, and/or distribute this software for any
      4  * purpose with or without fee is hereby granted, provided that the above
      5  * copyright notice and this permission notice appear in all copies.
      6  *
      7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
      9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
     12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
     13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
     14 
     15 /* A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
     16  *
     17  * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
     18  * and Adam Langley's public domain 64-bit C implementation of curve25519. */
     19 
     20 #include <openssl/base.h>
     21 
     22 #if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS) && \
     23     !defined(OPENSSL_SMALL)
     24 
     25 #include <openssl/bn.h>
     26 #include <openssl/ec.h>
     27 #include <openssl/err.h>
     28 #include <openssl/mem.h>
     29 
     30 #include <string.h>
     31 
     32 #include "internal.h"
     33 #include "../delocate.h"
     34 #include "../../internal.h"
     35 
     36 
     37 /* Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
     38  * using 64-bit coefficients called 'limbs', and sometimes (for multiplication
     39  * results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
     40  * 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-p224_limb
     41  * representation is an 'p224_felem'; a 7-p224_widelimb representation is a
     42  * 'p224_widefelem'. Even within felems, bits of adjacent limbs overlap, and we
     43  * don't always reduce the representations: we ensure that inputs to each
     44  * p224_felem multiplication satisfy a_i < 2^60, so outputs satisfy b_i <
     45  * 4*2^60*2^60, and fit into a 128-bit word without overflow. The coefficients
     46  * are then again partially reduced to obtain an p224_felem satisfying a_i <
     47  * 2^57. We only reduce to the unique minimal representation at the end of the
     48  * computation. */
     49 
     50 typedef uint64_t p224_limb;
     51 typedef uint128_t p224_widelimb;
     52 
     53 typedef p224_limb p224_felem[4];
     54 typedef p224_widelimb p224_widefelem[7];
     55 
     56 /* Field element represented as a byte arrary. 28*8 = 224 bits is also the
     57  * group order size for the elliptic curve, and we also use this type for
     58  * scalars for point multiplication. */
     59 typedef uint8_t p224_felem_bytearray[28];
     60 
     61 /* Precomputed multiples of the standard generator
     62  * Points are given in coordinates (X, Y, Z) where Z normally is 1
     63  * (0 for the point at infinity).
     64  * For each field element, slice a_0 is word 0, etc.
     65  *
     66  * The table has 2 * 16 elements, starting with the following:
     67  * index | bits    | point
     68  * ------+---------+------------------------------
     69  *     0 | 0 0 0 0 | 0G
     70  *     1 | 0 0 0 1 | 1G
     71  *     2 | 0 0 1 0 | 2^56G
     72  *     3 | 0 0 1 1 | (2^56 + 1)G
     73  *     4 | 0 1 0 0 | 2^112G
     74  *     5 | 0 1 0 1 | (2^112 + 1)G
     75  *     6 | 0 1 1 0 | (2^112 + 2^56)G
     76  *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
     77  *     8 | 1 0 0 0 | 2^168G
     78  *     9 | 1 0 0 1 | (2^168 + 1)G
     79  *    10 | 1 0 1 0 | (2^168 + 2^56)G
     80  *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
     81  *    12 | 1 1 0 0 | (2^168 + 2^112)G
     82  *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
     83  *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
     84  *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
     85  * followed by a copy of this with each element multiplied by 2^28.
     86  *
     87  * The reason for this is so that we can clock bits into four different
     88  * locations when doing simple scalar multiplies against the base point,
     89  * and then another four locations using the second 16 elements. */
     90 static const p224_felem g_p224_pre_comp[2][16][3] = {
     91     {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
     92      {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
     93       {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
     94       {1, 0, 0, 0}},
     95      {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
     96       {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
     97       {1, 0, 0, 0}},
     98      {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
     99       {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
    100       {1, 0, 0, 0}},
    101      {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
    102       {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
    103       {1, 0, 0, 0}},
    104      {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
    105       {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
    106       {1, 0, 0, 0}},
    107      {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
    108       {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
    109       {1, 0, 0, 0}},
    110      {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
    111       {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
    112       {1, 0, 0, 0}},
    113      {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
    114       {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
    115       {1, 0, 0, 0}},
    116      {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
    117       {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
    118       {1, 0, 0, 0}},
    119      {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
    120       {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
    121       {1, 0, 0, 0}},
    122      {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
    123       {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
    124       {1, 0, 0, 0}},
    125      {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
    126       {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
    127       {1, 0, 0, 0}},
    128      {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
    129       {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
    130       {1, 0, 0, 0}},
    131      {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
    132       {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
    133       {1, 0, 0, 0}},
    134      {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
    135       {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
    136       {1, 0, 0, 0}}},
    137     {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
    138      {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
    139       {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
    140       {1, 0, 0, 0}},
    141      {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
    142       {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
    143       {1, 0, 0, 0}},
    144      {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
    145       {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
    146       {1, 0, 0, 0}},
    147      {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
    148       {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
    149       {1, 0, 0, 0}},
    150      {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
    151       {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
    152       {1, 0, 0, 0}},
    153      {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
    154       {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
    155       {1, 0, 0, 0}},
    156      {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
    157       {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
    158       {1, 0, 0, 0}},
    159      {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
    160       {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
    161       {1, 0, 0, 0}},
    162      {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
    163       {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
    164       {1, 0, 0, 0}},
    165      {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
    166       {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
    167       {1, 0, 0, 0}},
    168      {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
    169       {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
    170       {1, 0, 0, 0}},
    171      {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
    172       {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
    173       {1, 0, 0, 0}},
    174      {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
    175       {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
    176       {1, 0, 0, 0}},
    177      {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
    178       {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
    179       {1, 0, 0, 0}},
    180      {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
    181       {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
    182       {1, 0, 0, 0}}}};
    183 
    184 static uint64_t p224_load_u64(const uint8_t in[8]) {
    185   uint64_t ret;
    186   OPENSSL_memcpy(&ret, in, sizeof(ret));
    187   return ret;
    188 }
    189 
    190 /* Helper functions to convert field elements to/from internal representation */
    191 static void p224_bin28_to_felem(p224_felem out, const uint8_t in[28]) {
    192   out[0] = p224_load_u64(in) & 0x00ffffffffffffff;
    193   out[1] = p224_load_u64(in + 7) & 0x00ffffffffffffff;
    194   out[2] = p224_load_u64(in + 14) & 0x00ffffffffffffff;
    195   out[3] = p224_load_u64(in + 20) >> 8;
    196 }
    197 
    198 static void p224_felem_to_bin28(uint8_t out[28], const p224_felem in) {
    199   for (size_t i = 0; i < 7; ++i) {
    200     out[i] = in[0] >> (8 * i);
    201     out[i + 7] = in[1] >> (8 * i);
    202     out[i + 14] = in[2] >> (8 * i);
    203     out[i + 21] = in[3] >> (8 * i);
    204   }
    205 }
    206 
    207 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
    208 static void p224_flip_endian(uint8_t *out, const uint8_t *in, size_t len) {
    209   for (size_t i = 0; i < len; ++i) {
    210     out[i] = in[len - 1 - i];
    211   }
    212 }
    213 
    214 /* From OpenSSL BIGNUM to internal representation */
    215 static int p224_BN_to_felem(p224_felem out, const BIGNUM *bn) {
    216   /* BN_bn2bin eats leading zeroes */
    217   p224_felem_bytearray b_out;
    218   OPENSSL_memset(b_out, 0, sizeof(b_out));
    219   size_t num_bytes = BN_num_bytes(bn);
    220   if (num_bytes > sizeof(b_out) ||
    221       BN_is_negative(bn)) {
    222     OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
    223     return 0;
    224   }
    225 
    226   p224_felem_bytearray b_in;
    227   num_bytes = BN_bn2bin(bn, b_in);
    228   p224_flip_endian(b_out, b_in, num_bytes);
    229   p224_bin28_to_felem(out, b_out);
    230   return 1;
    231 }
    232 
    233 /* From internal representation to OpenSSL BIGNUM */
    234 static BIGNUM *p224_felem_to_BN(BIGNUM *out, const p224_felem in) {
    235   p224_felem_bytearray b_in, b_out;
    236   p224_felem_to_bin28(b_in, in);
    237   p224_flip_endian(b_out, b_in, sizeof(b_out));
    238   return BN_bin2bn(b_out, sizeof(b_out), out);
    239 }
    240 
    241 /* Field operations, using the internal representation of field elements.
    242  * NB! These operations are specific to our point multiplication and cannot be
    243  * expected to be correct in general - e.g., multiplication with a large scalar
    244  * will cause an overflow. */
    245 
    246 static void p224_felem_assign(p224_felem out, const p224_felem in) {
    247   out[0] = in[0];
    248   out[1] = in[1];
    249   out[2] = in[2];
    250   out[3] = in[3];
    251 }
    252 
    253 /* Sum two field elements: out += in */
    254 static void p224_felem_sum(p224_felem out, const p224_felem in) {
    255   out[0] += in[0];
    256   out[1] += in[1];
    257   out[2] += in[2];
    258   out[3] += in[3];
    259 }
    260 
    261 /* Get negative value: out = -in */
    262 /* Assumes in[i] < 2^57 */
    263 static void p224_felem_neg(p224_felem out, const p224_felem in) {
    264   static const p224_limb two58p2 =
    265       (((p224_limb)1) << 58) + (((p224_limb)1) << 2);
    266   static const p224_limb two58m2 =
    267       (((p224_limb)1) << 58) - (((p224_limb)1) << 2);
    268   static const p224_limb two58m42m2 =
    269       (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2);
    270 
    271   /* Set to 0 mod 2^224-2^96+1 to ensure out > in */
    272   out[0] = two58p2 - in[0];
    273   out[1] = two58m42m2 - in[1];
    274   out[2] = two58m2 - in[2];
    275   out[3] = two58m2 - in[3];
    276 }
    277 
    278 /* Subtract field elements: out -= in */
    279 /* Assumes in[i] < 2^57 */
    280 static void p224_felem_diff(p224_felem out, const p224_felem in) {
    281   static const p224_limb two58p2 =
    282       (((p224_limb)1) << 58) + (((p224_limb)1) << 2);
    283   static const p224_limb two58m2 =
    284       (((p224_limb)1) << 58) - (((p224_limb)1) << 2);
    285   static const p224_limb two58m42m2 =
    286       (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2);
    287 
    288   /* Add 0 mod 2^224-2^96+1 to ensure out > in */
    289   out[0] += two58p2;
    290   out[1] += two58m42m2;
    291   out[2] += two58m2;
    292   out[3] += two58m2;
    293 
    294   out[0] -= in[0];
    295   out[1] -= in[1];
    296   out[2] -= in[2];
    297   out[3] -= in[3];
    298 }
    299 
    300 /* Subtract in unreduced 128-bit mode: out -= in */
    301 /* Assumes in[i] < 2^119 */
    302 static void p224_widefelem_diff(p224_widefelem out, const p224_widefelem in) {
    303   static const p224_widelimb two120 = ((p224_widelimb)1) << 120;
    304   static const p224_widelimb two120m64 =
    305       (((p224_widelimb)1) << 120) - (((p224_widelimb)1) << 64);
    306   static const p224_widelimb two120m104m64 = (((p224_widelimb)1) << 120) -
    307                                              (((p224_widelimb)1) << 104) -
    308                                              (((p224_widelimb)1) << 64);
    309 
    310   /* Add 0 mod 2^224-2^96+1 to ensure out > in */
    311   out[0] += two120;
    312   out[1] += two120m64;
    313   out[2] += two120m64;
    314   out[3] += two120;
    315   out[4] += two120m104m64;
    316   out[5] += two120m64;
    317   out[6] += two120m64;
    318 
    319   out[0] -= in[0];
    320   out[1] -= in[1];
    321   out[2] -= in[2];
    322   out[3] -= in[3];
    323   out[4] -= in[4];
    324   out[5] -= in[5];
    325   out[6] -= in[6];
    326 }
    327 
    328 /* Subtract in mixed mode: out128 -= in64 */
    329 /* in[i] < 2^63 */
    330 static void p224_felem_diff_128_64(p224_widefelem out, const p224_felem in) {
    331   static const p224_widelimb two64p8 =
    332       (((p224_widelimb)1) << 64) + (((p224_widelimb)1) << 8);
    333   static const p224_widelimb two64m8 =
    334       (((p224_widelimb)1) << 64) - (((p224_widelimb)1) << 8);
    335   static const p224_widelimb two64m48m8 = (((p224_widelimb)1) << 64) -
    336                                           (((p224_widelimb)1) << 48) -
    337                                           (((p224_widelimb)1) << 8);
    338 
    339   /* Add 0 mod 2^224-2^96+1 to ensure out > in */
    340   out[0] += two64p8;
    341   out[1] += two64m48m8;
    342   out[2] += two64m8;
    343   out[3] += two64m8;
    344 
    345   out[0] -= in[0];
    346   out[1] -= in[1];
    347   out[2] -= in[2];
    348   out[3] -= in[3];
    349 }
    350 
    351 /* Multiply a field element by a scalar: out = out * scalar
    352  * The scalars we actually use are small, so results fit without overflow */
    353 static void p224_felem_scalar(p224_felem out, const p224_limb scalar) {
    354   out[0] *= scalar;
    355   out[1] *= scalar;
    356   out[2] *= scalar;
    357   out[3] *= scalar;
    358 }
    359 
    360 /* Multiply an unreduced field element by a scalar: out = out * scalar
    361  * The scalars we actually use are small, so results fit without overflow */
    362 static void p224_widefelem_scalar(p224_widefelem out,
    363                                   const p224_widelimb scalar) {
    364   out[0] *= scalar;
    365   out[1] *= scalar;
    366   out[2] *= scalar;
    367   out[3] *= scalar;
    368   out[4] *= scalar;
    369   out[5] *= scalar;
    370   out[6] *= scalar;
    371 }
    372 
    373 /* Square a field element: out = in^2 */
    374 static void p224_felem_square(p224_widefelem out, const p224_felem in) {
    375   p224_limb tmp0, tmp1, tmp2;
    376   tmp0 = 2 * in[0];
    377   tmp1 = 2 * in[1];
    378   tmp2 = 2 * in[2];
    379   out[0] = ((p224_widelimb)in[0]) * in[0];
    380   out[1] = ((p224_widelimb)in[0]) * tmp1;
    381   out[2] = ((p224_widelimb)in[0]) * tmp2 + ((p224_widelimb)in[1]) * in[1];
    382   out[3] = ((p224_widelimb)in[3]) * tmp0 + ((p224_widelimb)in[1]) * tmp2;
    383   out[4] = ((p224_widelimb)in[3]) * tmp1 + ((p224_widelimb)in[2]) * in[2];
    384   out[5] = ((p224_widelimb)in[3]) * tmp2;
    385   out[6] = ((p224_widelimb)in[3]) * in[3];
    386 }
    387 
    388 /* Multiply two field elements: out = in1 * in2 */
    389 static void p224_felem_mul(p224_widefelem out, const p224_felem in1,
    390                            const p224_felem in2) {
    391   out[0] = ((p224_widelimb)in1[0]) * in2[0];
    392   out[1] = ((p224_widelimb)in1[0]) * in2[1] + ((p224_widelimb)in1[1]) * in2[0];
    393   out[2] = ((p224_widelimb)in1[0]) * in2[2] + ((p224_widelimb)in1[1]) * in2[1] +
    394            ((p224_widelimb)in1[2]) * in2[0];
    395   out[3] = ((p224_widelimb)in1[0]) * in2[3] + ((p224_widelimb)in1[1]) * in2[2] +
    396            ((p224_widelimb)in1[2]) * in2[1] + ((p224_widelimb)in1[3]) * in2[0];
    397   out[4] = ((p224_widelimb)in1[1]) * in2[3] + ((p224_widelimb)in1[2]) * in2[2] +
    398            ((p224_widelimb)in1[3]) * in2[1];
    399   out[5] = ((p224_widelimb)in1[2]) * in2[3] + ((p224_widelimb)in1[3]) * in2[2];
    400   out[6] = ((p224_widelimb)in1[3]) * in2[3];
    401 }
    402 
    403 /* Reduce seven 128-bit coefficients to four 64-bit coefficients.
    404  * Requires in[i] < 2^126,
    405  * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
    406 static void p224_felem_reduce(p224_felem out, const p224_widefelem in) {
    407   static const p224_widelimb two127p15 =
    408       (((p224_widelimb)1) << 127) + (((p224_widelimb)1) << 15);
    409   static const p224_widelimb two127m71 =
    410       (((p224_widelimb)1) << 127) - (((p224_widelimb)1) << 71);
    411   static const p224_widelimb two127m71m55 = (((p224_widelimb)1) << 127) -
    412                                             (((p224_widelimb)1) << 71) -
    413                                             (((p224_widelimb)1) << 55);
    414   p224_widelimb output[5];
    415 
    416   /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
    417   output[0] = in[0] + two127p15;
    418   output[1] = in[1] + two127m71m55;
    419   output[2] = in[2] + two127m71;
    420   output[3] = in[3];
    421   output[4] = in[4];
    422 
    423   /* Eliminate in[4], in[5], in[6] */
    424   output[4] += in[6] >> 16;
    425   output[3] += (in[6] & 0xffff) << 40;
    426   output[2] -= in[6];
    427 
    428   output[3] += in[5] >> 16;
    429   output[2] += (in[5] & 0xffff) << 40;
    430   output[1] -= in[5];
    431 
    432   output[2] += output[4] >> 16;
    433   output[1] += (output[4] & 0xffff) << 40;
    434   output[0] -= output[4];
    435 
    436   /* Carry 2 -> 3 -> 4 */
    437   output[3] += output[2] >> 56;
    438   output[2] &= 0x00ffffffffffffff;
    439 
    440   output[4] = output[3] >> 56;
    441   output[3] &= 0x00ffffffffffffff;
    442 
    443   /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
    444 
    445   /* Eliminate output[4] */
    446   output[2] += output[4] >> 16;
    447   /* output[2] < 2^56 + 2^56 = 2^57 */
    448   output[1] += (output[4] & 0xffff) << 40;
    449   output[0] -= output[4];
    450 
    451   /* Carry 0 -> 1 -> 2 -> 3 */
    452   output[1] += output[0] >> 56;
    453   out[0] = output[0] & 0x00ffffffffffffff;
    454 
    455   output[2] += output[1] >> 56;
    456   /* output[2] < 2^57 + 2^72 */
    457   out[1] = output[1] & 0x00ffffffffffffff;
    458   output[3] += output[2] >> 56;
    459   /* output[3] <= 2^56 + 2^16 */
    460   out[2] = output[2] & 0x00ffffffffffffff;
    461 
    462   /* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
    463    * out[3] <= 2^56 + 2^16 (due to final carry),
    464    * so out < 2*p */
    465   out[3] = output[3];
    466 }
    467 
    468 /* Reduce to unique minimal representation.
    469  * Requires 0 <= in < 2*p (always call p224_felem_reduce first) */
    470 static void p224_felem_contract(p224_felem out, const p224_felem in) {
    471   static const int64_t two56 = ((p224_limb)1) << 56;
    472   /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
    473   /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
    474   int64_t tmp[4], a;
    475   tmp[0] = in[0];
    476   tmp[1] = in[1];
    477   tmp[2] = in[2];
    478   tmp[3] = in[3];
    479   /* Case 1: a = 1 iff in >= 2^224 */
    480   a = (in[3] >> 56);
    481   tmp[0] -= a;
    482   tmp[1] += a << 40;
    483   tmp[3] &= 0x00ffffffffffffff;
    484   /* Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
    485    * the lower part is non-zero */
    486   a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
    487       (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
    488   a &= 0x00ffffffffffffff;
    489   /* turn a into an all-one mask (if a = 0) or an all-zero mask */
    490   a = (a - 1) >> 63;
    491   /* subtract 2^224 - 2^96 + 1 if a is all-one */
    492   tmp[3] &= a ^ 0xffffffffffffffff;
    493   tmp[2] &= a ^ 0xffffffffffffffff;
    494   tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
    495   tmp[0] -= 1 & a;
    496 
    497   /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
    498    * be non-zero, so we only need one step */
    499   a = tmp[0] >> 63;
    500   tmp[0] += two56 & a;
    501   tmp[1] -= 1 & a;
    502 
    503   /* carry 1 -> 2 -> 3 */
    504   tmp[2] += tmp[1] >> 56;
    505   tmp[1] &= 0x00ffffffffffffff;
    506 
    507   tmp[3] += tmp[2] >> 56;
    508   tmp[2] &= 0x00ffffffffffffff;
    509 
    510   /* Now 0 <= out < p */
    511   out[0] = tmp[0];
    512   out[1] = tmp[1];
    513   out[2] = tmp[2];
    514   out[3] = tmp[3];
    515 }
    516 
    517 /* Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
    518  * elements are reduced to in < 2^225, so we only need to check three cases: 0,
    519  * 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 */
    520 static p224_limb p224_felem_is_zero(const p224_felem in) {
    521   p224_limb zero = in[0] | in[1] | in[2] | in[3];
    522   zero = (((int64_t)(zero)-1) >> 63) & 1;
    523 
    524   p224_limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
    525                      (in[2] ^ 0x00ffffffffffffff) |
    526                      (in[3] ^ 0x00ffffffffffffff);
    527   two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
    528   p224_limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
    529                      (in[2] ^ 0x00ffffffffffffff) |
    530                      (in[3] ^ 0x01ffffffffffffff);
    531   two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
    532   return (zero | two224m96p1 | two225m97p2);
    533 }
    534 
    535 /* Invert a field element */
    536 /* Computation chain copied from djb's code */
    537 static void p224_felem_inv(p224_felem out, const p224_felem in) {
    538   p224_felem ftmp, ftmp2, ftmp3, ftmp4;
    539   p224_widefelem tmp;
    540 
    541   p224_felem_square(tmp, in);
    542   p224_felem_reduce(ftmp, tmp); /* 2 */
    543   p224_felem_mul(tmp, in, ftmp);
    544   p224_felem_reduce(ftmp, tmp); /* 2^2 - 1 */
    545   p224_felem_square(tmp, ftmp);
    546   p224_felem_reduce(ftmp, tmp); /* 2^3 - 2 */
    547   p224_felem_mul(tmp, in, ftmp);
    548   p224_felem_reduce(ftmp, tmp); /* 2^3 - 1 */
    549   p224_felem_square(tmp, ftmp);
    550   p224_felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
    551   p224_felem_square(tmp, ftmp2);
    552   p224_felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
    553   p224_felem_square(tmp, ftmp2);
    554   p224_felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
    555   p224_felem_mul(tmp, ftmp2, ftmp);
    556   p224_felem_reduce(ftmp, tmp); /* 2^6 - 1 */
    557   p224_felem_square(tmp, ftmp);
    558   p224_felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
    559   for (size_t i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
    560     p224_felem_square(tmp, ftmp2);
    561     p224_felem_reduce(ftmp2, tmp);
    562   }
    563   p224_felem_mul(tmp, ftmp2, ftmp);
    564   p224_felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
    565   p224_felem_square(tmp, ftmp2);
    566   p224_felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
    567   for (size_t i = 0; i < 11; ++i) {/* 2^24 - 2^12 */
    568     p224_felem_square(tmp, ftmp3);
    569     p224_felem_reduce(ftmp3, tmp);
    570   }
    571   p224_felem_mul(tmp, ftmp3, ftmp2);
    572   p224_felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
    573   p224_felem_square(tmp, ftmp2);
    574   p224_felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
    575   for (size_t i = 0; i < 23; ++i) {/* 2^48 - 2^24 */
    576     p224_felem_square(tmp, ftmp3);
    577     p224_felem_reduce(ftmp3, tmp);
    578   }
    579   p224_felem_mul(tmp, ftmp3, ftmp2);
    580   p224_felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
    581   p224_felem_square(tmp, ftmp3);
    582   p224_felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
    583   for (size_t i = 0; i < 47; ++i) {/* 2^96 - 2^48 */
    584     p224_felem_square(tmp, ftmp4);
    585     p224_felem_reduce(ftmp4, tmp);
    586   }
    587   p224_felem_mul(tmp, ftmp3, ftmp4);
    588   p224_felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
    589   p224_felem_square(tmp, ftmp3);
    590   p224_felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
    591   for (size_t i = 0; i < 23; ++i) {/* 2^120 - 2^24 */
    592     p224_felem_square(tmp, ftmp4);
    593     p224_felem_reduce(ftmp4, tmp);
    594   }
    595   p224_felem_mul(tmp, ftmp2, ftmp4);
    596   p224_felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
    597   for (size_t i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
    598     p224_felem_square(tmp, ftmp2);
    599     p224_felem_reduce(ftmp2, tmp);
    600   }
    601   p224_felem_mul(tmp, ftmp2, ftmp);
    602   p224_felem_reduce(ftmp, tmp); /* 2^126 - 1 */
    603   p224_felem_square(tmp, ftmp);
    604   p224_felem_reduce(ftmp, tmp); /* 2^127 - 2 */
    605   p224_felem_mul(tmp, ftmp, in);
    606   p224_felem_reduce(ftmp, tmp); /* 2^127 - 1 */
    607   for (size_t i = 0; i < 97; ++i) {/* 2^224 - 2^97 */
    608     p224_felem_square(tmp, ftmp);
    609     p224_felem_reduce(ftmp, tmp);
    610   }
    611   p224_felem_mul(tmp, ftmp, ftmp3);
    612   p224_felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
    613 }
    614 
    615 /* Copy in constant time:
    616  * if icopy == 1, copy in to out,
    617  * if icopy == 0, copy out to itself. */
    618 static void p224_copy_conditional(p224_felem out, const p224_felem in,
    619                                   p224_limb icopy) {
    620   /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
    621   const p224_limb copy = -icopy;
    622   for (size_t i = 0; i < 4; ++i) {
    623     const p224_limb tmp = copy & (in[i] ^ out[i]);
    624     out[i] ^= tmp;
    625   }
    626 }
    627 
    628 /* ELLIPTIC CURVE POINT OPERATIONS
    629  *
    630  * Points are represented in Jacobian projective coordinates:
    631  * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
    632  * or to the point at infinity if Z == 0. */
    633 
    634 /* Double an elliptic curve point:
    635  * (X', Y', Z') = 2 * (X, Y, Z), where
    636  * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
    637  * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
    638  * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
    639  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
    640  * while x_out == y_in is not (maybe this works, but it's not tested). */
    641 static void p224_point_double(p224_felem x_out, p224_felem y_out,
    642                               p224_felem z_out, const p224_felem x_in,
    643                               const p224_felem y_in, const p224_felem z_in) {
    644   p224_widefelem tmp, tmp2;
    645   p224_felem delta, gamma, beta, alpha, ftmp, ftmp2;
    646 
    647   p224_felem_assign(ftmp, x_in);
    648   p224_felem_assign(ftmp2, x_in);
    649 
    650   /* delta = z^2 */
    651   p224_felem_square(tmp, z_in);
    652   p224_felem_reduce(delta, tmp);
    653 
    654   /* gamma = y^2 */
    655   p224_felem_square(tmp, y_in);
    656   p224_felem_reduce(gamma, tmp);
    657 
    658   /* beta = x*gamma */
    659   p224_felem_mul(tmp, x_in, gamma);
    660   p224_felem_reduce(beta, tmp);
    661 
    662   /* alpha = 3*(x-delta)*(x+delta) */
    663   p224_felem_diff(ftmp, delta);
    664   /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
    665   p224_felem_sum(ftmp2, delta);
    666   /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
    667   p224_felem_scalar(ftmp2, 3);
    668   /* ftmp2[i] < 3 * 2^58 < 2^60 */
    669   p224_felem_mul(tmp, ftmp, ftmp2);
    670   /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
    671   p224_felem_reduce(alpha, tmp);
    672 
    673   /* x' = alpha^2 - 8*beta */
    674   p224_felem_square(tmp, alpha);
    675   /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
    676   p224_felem_assign(ftmp, beta);
    677   p224_felem_scalar(ftmp, 8);
    678   /* ftmp[i] < 8 * 2^57 = 2^60 */
    679   p224_felem_diff_128_64(tmp, ftmp);
    680   /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
    681   p224_felem_reduce(x_out, tmp);
    682 
    683   /* z' = (y + z)^2 - gamma - delta */
    684   p224_felem_sum(delta, gamma);
    685   /* delta[i] < 2^57 + 2^57 = 2^58 */
    686   p224_felem_assign(ftmp, y_in);
    687   p224_felem_sum(ftmp, z_in);
    688   /* ftmp[i] < 2^57 + 2^57 = 2^58 */
    689   p224_felem_square(tmp, ftmp);
    690   /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
    691   p224_felem_diff_128_64(tmp, delta);
    692   /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
    693   p224_felem_reduce(z_out, tmp);
    694 
    695   /* y' = alpha*(4*beta - x') - 8*gamma^2 */
    696   p224_felem_scalar(beta, 4);
    697   /* beta[i] < 4 * 2^57 = 2^59 */
    698   p224_felem_diff(beta, x_out);
    699   /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
    700   p224_felem_mul(tmp, alpha, beta);
    701   /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
    702   p224_felem_square(tmp2, gamma);
    703   /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
    704   p224_widefelem_scalar(tmp2, 8);
    705   /* tmp2[i] < 8 * 2^116 = 2^119 */
    706   p224_widefelem_diff(tmp, tmp2);
    707   /* tmp[i] < 2^119 + 2^120 < 2^121 */
    708   p224_felem_reduce(y_out, tmp);
    709 }
    710 
    711 /* Add two elliptic curve points:
    712  * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
    713  * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
    714  * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
    715  * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
    716  * X_1)^2 - X_3) -
    717  *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
    718  * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
    719  *
    720  * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. */
    721 
    722 /* This function is not entirely constant-time: it includes a branch for
    723  * checking whether the two input points are equal, (while not equal to the
    724  * point at infinity). This case never happens during single point
    725  * multiplication, so there is no timing leak for ECDH or ECDSA signing. */
    726 static void p224_point_add(p224_felem x3, p224_felem y3, p224_felem z3,
    727                            const p224_felem x1, const p224_felem y1,
    728                            const p224_felem z1, const int mixed,
    729                            const p224_felem x2, const p224_felem y2,
    730                            const p224_felem z2) {
    731   p224_felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
    732   p224_widefelem tmp, tmp2;
    733   p224_limb z1_is_zero, z2_is_zero, x_equal, y_equal;
    734 
    735   if (!mixed) {
    736     /* ftmp2 = z2^2 */
    737     p224_felem_square(tmp, z2);
    738     p224_felem_reduce(ftmp2, tmp);
    739 
    740     /* ftmp4 = z2^3 */
    741     p224_felem_mul(tmp, ftmp2, z2);
    742     p224_felem_reduce(ftmp4, tmp);
    743 
    744     /* ftmp4 = z2^3*y1 */
    745     p224_felem_mul(tmp2, ftmp4, y1);
    746     p224_felem_reduce(ftmp4, tmp2);
    747 
    748     /* ftmp2 = z2^2*x1 */
    749     p224_felem_mul(tmp2, ftmp2, x1);
    750     p224_felem_reduce(ftmp2, tmp2);
    751   } else {
    752     /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
    753 
    754     /* ftmp4 = z2^3*y1 */
    755     p224_felem_assign(ftmp4, y1);
    756 
    757     /* ftmp2 = z2^2*x1 */
    758     p224_felem_assign(ftmp2, x1);
    759   }
    760 
    761   /* ftmp = z1^2 */
    762   p224_felem_square(tmp, z1);
    763   p224_felem_reduce(ftmp, tmp);
    764 
    765   /* ftmp3 = z1^3 */
    766   p224_felem_mul(tmp, ftmp, z1);
    767   p224_felem_reduce(ftmp3, tmp);
    768 
    769   /* tmp = z1^3*y2 */
    770   p224_felem_mul(tmp, ftmp3, y2);
    771   /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
    772 
    773   /* ftmp3 = z1^3*y2 - z2^3*y1 */
    774   p224_felem_diff_128_64(tmp, ftmp4);
    775   /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
    776   p224_felem_reduce(ftmp3, tmp);
    777 
    778   /* tmp = z1^2*x2 */
    779   p224_felem_mul(tmp, ftmp, x2);
    780   /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
    781 
    782   /* ftmp = z1^2*x2 - z2^2*x1 */
    783   p224_felem_diff_128_64(tmp, ftmp2);
    784   /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
    785   p224_felem_reduce(ftmp, tmp);
    786 
    787   /* the formulae are incorrect if the points are equal
    788    * so we check for this and do doubling if this happens */
    789   x_equal = p224_felem_is_zero(ftmp);
    790   y_equal = p224_felem_is_zero(ftmp3);
    791   z1_is_zero = p224_felem_is_zero(z1);
    792   z2_is_zero = p224_felem_is_zero(z2);
    793   /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
    794   if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
    795     p224_point_double(x3, y3, z3, x1, y1, z1);
    796     return;
    797   }
    798 
    799   /* ftmp5 = z1*z2 */
    800   if (!mixed) {
    801     p224_felem_mul(tmp, z1, z2);
    802     p224_felem_reduce(ftmp5, tmp);
    803   } else {
    804     /* special case z2 = 0 is handled later */
    805     p224_felem_assign(ftmp5, z1);
    806   }
    807 
    808   /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
    809   p224_felem_mul(tmp, ftmp, ftmp5);
    810   p224_felem_reduce(z_out, tmp);
    811 
    812   /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
    813   p224_felem_assign(ftmp5, ftmp);
    814   p224_felem_square(tmp, ftmp);
    815   p224_felem_reduce(ftmp, tmp);
    816 
    817   /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
    818   p224_felem_mul(tmp, ftmp, ftmp5);
    819   p224_felem_reduce(ftmp5, tmp);
    820 
    821   /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
    822   p224_felem_mul(tmp, ftmp2, ftmp);
    823   p224_felem_reduce(ftmp2, tmp);
    824 
    825   /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
    826   p224_felem_mul(tmp, ftmp4, ftmp5);
    827   /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
    828 
    829   /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
    830   p224_felem_square(tmp2, ftmp3);
    831   /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
    832 
    833   /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
    834   p224_felem_diff_128_64(tmp2, ftmp5);
    835   /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
    836 
    837   /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
    838   p224_felem_assign(ftmp5, ftmp2);
    839   p224_felem_scalar(ftmp5, 2);
    840   /* ftmp5[i] < 2 * 2^57 = 2^58 */
    841 
    842   /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
    843      2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
    844   p224_felem_diff_128_64(tmp2, ftmp5);
    845   /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
    846   p224_felem_reduce(x_out, tmp2);
    847 
    848   /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
    849   p224_felem_diff(ftmp2, x_out);
    850   /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
    851 
    852   /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
    853   p224_felem_mul(tmp2, ftmp3, ftmp2);
    854   /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
    855 
    856   /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
    857      z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
    858   p224_widefelem_diff(tmp2, tmp);
    859   /* tmp2[i] < 2^118 + 2^120 < 2^121 */
    860   p224_felem_reduce(y_out, tmp2);
    861 
    862   /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
    863    * the point at infinity, so we need to check for this separately */
    864 
    865   /* if point 1 is at infinity, copy point 2 to output, and vice versa */
    866   p224_copy_conditional(x_out, x2, z1_is_zero);
    867   p224_copy_conditional(x_out, x1, z2_is_zero);
    868   p224_copy_conditional(y_out, y2, z1_is_zero);
    869   p224_copy_conditional(y_out, y1, z2_is_zero);
    870   p224_copy_conditional(z_out, z2, z1_is_zero);
    871   p224_copy_conditional(z_out, z1, z2_is_zero);
    872   p224_felem_assign(x3, x_out);
    873   p224_felem_assign(y3, y_out);
    874   p224_felem_assign(z3, z_out);
    875 }
    876 
    877 /* p224_select_point selects the |idx|th point from a precomputation table and
    878  * copies it to out. */
    879 static void p224_select_point(const uint64_t idx, size_t size,
    880                               const p224_felem pre_comp[/*size*/][3],
    881                               p224_felem out[3]) {
    882   p224_limb *outlimbs = &out[0][0];
    883   OPENSSL_memset(outlimbs, 0, 3 * sizeof(p224_felem));
    884 
    885   for (size_t i = 0; i < size; i++) {
    886     const p224_limb *inlimbs = &pre_comp[i][0][0];
    887     uint64_t mask = i ^ idx;
    888     mask |= mask >> 4;
    889     mask |= mask >> 2;
    890     mask |= mask >> 1;
    891     mask &= 1;
    892     mask--;
    893     for (size_t j = 0; j < 4 * 3; j++) {
    894       outlimbs[j] |= inlimbs[j] & mask;
    895     }
    896   }
    897 }
    898 
    899 /* p224_get_bit returns the |i|th bit in |in| */
    900 static char p224_get_bit(const p224_felem_bytearray in, size_t i) {
    901   if (i >= 224) {
    902     return 0;
    903   }
    904   return (in[i >> 3] >> (i & 7)) & 1;
    905 }
    906 
    907 /* Interleaved point multiplication using precomputed point multiples:
    908  * The small point multiples 0*P, 1*P, ..., 16*P are in p_pre_comp, the scalars
    909  * in p_scalar, if non-NULL. If g_scalar is non-NULL, we also add this multiple
    910  * of the generator, using certain (large) precomputed multiples in
    911  * g_p224_pre_comp. Output point (X, Y, Z) is stored in x_out, y_out, z_out */
    912 static void p224_batch_mul(p224_felem x_out, p224_felem y_out, p224_felem z_out,
    913                            const uint8_t *p_scalar, const uint8_t *g_scalar,
    914                            const p224_felem p_pre_comp[17][3]) {
    915   p224_felem nq[3], tmp[4];
    916   uint64_t bits;
    917   uint8_t sign, digit;
    918 
    919   /* set nq to the point at infinity */
    920   OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
    921 
    922   /* Loop over both scalars msb-to-lsb, interleaving additions of multiples of
    923    * the generator (two in each of the last 28 rounds) and additions of p (every
    924    * 5th round). */
    925   int skip = 1; /* save two point operations in the first round */
    926   size_t i = p_scalar != NULL ? 220 : 27;
    927   for (;;) {
    928     /* double */
    929     if (!skip) {
    930       p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
    931     }
    932 
    933     /* add multiples of the generator */
    934     if (g_scalar != NULL && i <= 27) {
    935       /* first, look 28 bits upwards */
    936       bits = p224_get_bit(g_scalar, i + 196) << 3;
    937       bits |= p224_get_bit(g_scalar, i + 140) << 2;
    938       bits |= p224_get_bit(g_scalar, i + 84) << 1;
    939       bits |= p224_get_bit(g_scalar, i + 28);
    940       /* select the point to add, in constant time */
    941       p224_select_point(bits, 16, g_p224_pre_comp[1], tmp);
    942 
    943       if (!skip) {
    944         p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
    945                   tmp[0], tmp[1], tmp[2]);
    946       } else {
    947         OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
    948         skip = 0;
    949       }
    950 
    951       /* second, look at the current position */
    952       bits = p224_get_bit(g_scalar, i + 168) << 3;
    953       bits |= p224_get_bit(g_scalar, i + 112) << 2;
    954       bits |= p224_get_bit(g_scalar, i + 56) << 1;
    955       bits |= p224_get_bit(g_scalar, i);
    956       /* select the point to add, in constant time */
    957       p224_select_point(bits, 16, g_p224_pre_comp[0], tmp);
    958       p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
    959                      tmp[0], tmp[1], tmp[2]);
    960     }
    961 
    962     /* do other additions every 5 doublings */
    963     if (p_scalar != NULL && i % 5 == 0) {
    964       bits = p224_get_bit(p_scalar, i + 4) << 5;
    965       bits |= p224_get_bit(p_scalar, i + 3) << 4;
    966       bits |= p224_get_bit(p_scalar, i + 2) << 3;
    967       bits |= p224_get_bit(p_scalar, i + 1) << 2;
    968       bits |= p224_get_bit(p_scalar, i) << 1;
    969       bits |= p224_get_bit(p_scalar, i - 1);
    970       ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
    971 
    972       /* select the point to add or subtract */
    973       p224_select_point(digit, 17, p_pre_comp, tmp);
    974       p224_felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
    975       p224_copy_conditional(tmp[1], tmp[3], sign);
    976 
    977       if (!skip) {
    978         p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
    979                   tmp[0], tmp[1], tmp[2]);
    980       } else {
    981         OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
    982         skip = 0;
    983       }
    984     }
    985 
    986     if (i == 0) {
    987       break;
    988     }
    989     --i;
    990   }
    991   p224_felem_assign(x_out, nq[0]);
    992   p224_felem_assign(y_out, nq[1]);
    993   p224_felem_assign(z_out, nq[2]);
    994 }
    995 
    996 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
    997  * (X', Y') = (X/Z^2, Y/Z^3) */
    998 static int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
    999                                                         const EC_POINT *point,
   1000                                                         BIGNUM *x, BIGNUM *y,
   1001                                                         BN_CTX *ctx) {
   1002   p224_felem z1, z2, x_in, y_in, x_out, y_out;
   1003   p224_widefelem tmp;
   1004 
   1005   if (EC_POINT_is_at_infinity(group, point)) {
   1006     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
   1007     return 0;
   1008   }
   1009 
   1010   if (!p224_BN_to_felem(x_in, &point->X) ||
   1011       !p224_BN_to_felem(y_in, &point->Y) ||
   1012       !p224_BN_to_felem(z1, &point->Z)) {
   1013     return 0;
   1014   }
   1015 
   1016   p224_felem_inv(z2, z1);
   1017   p224_felem_square(tmp, z2);
   1018   p224_felem_reduce(z1, tmp);
   1019   p224_felem_mul(tmp, x_in, z1);
   1020   p224_felem_reduce(x_in, tmp);
   1021   p224_felem_contract(x_out, x_in);
   1022   if (x != NULL && !p224_felem_to_BN(x, x_out)) {
   1023     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1024     return 0;
   1025   }
   1026 
   1027   p224_felem_mul(tmp, z1, z2);
   1028   p224_felem_reduce(z1, tmp);
   1029   p224_felem_mul(tmp, y_in, z1);
   1030   p224_felem_reduce(y_in, tmp);
   1031   p224_felem_contract(y_out, y_in);
   1032   if (y != NULL && !p224_felem_to_BN(y, y_out)) {
   1033     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1034     return 0;
   1035   }
   1036 
   1037   return 1;
   1038 }
   1039 
   1040 static int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
   1041                                       const BIGNUM *g_scalar, const EC_POINT *p,
   1042                                       const BIGNUM *p_scalar, BN_CTX *ctx) {
   1043   int ret = 0;
   1044   BN_CTX *new_ctx = NULL;
   1045   BIGNUM *x, *y, *z, *tmp_scalar;
   1046   p224_felem_bytearray g_secret, p_secret;
   1047   p224_felem p_pre_comp[17][3];
   1048   p224_felem_bytearray tmp;
   1049   p224_felem x_in, y_in, z_in, x_out, y_out, z_out;
   1050 
   1051   if (ctx == NULL) {
   1052     ctx = BN_CTX_new();
   1053     new_ctx = ctx;
   1054     if (ctx == NULL) {
   1055       return 0;
   1056     }
   1057   }
   1058 
   1059   BN_CTX_start(ctx);
   1060   if ((x = BN_CTX_get(ctx)) == NULL ||
   1061       (y = BN_CTX_get(ctx)) == NULL ||
   1062       (z = BN_CTX_get(ctx)) == NULL ||
   1063       (tmp_scalar = BN_CTX_get(ctx)) == NULL) {
   1064     goto err;
   1065   }
   1066 
   1067   if (p != NULL && p_scalar != NULL) {
   1068     /* We treat NULL scalars as 0, and NULL points as points at infinity, i.e.,
   1069      * they contribute nothing to the linear combination. */
   1070     OPENSSL_memset(&p_secret, 0, sizeof(p_secret));
   1071     OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
   1072     size_t num_bytes;
   1073     /* reduce g_scalar to 0 <= g_scalar < 2^224 */
   1074     if (BN_num_bits(p_scalar) > 224 || BN_is_negative(p_scalar)) {
   1075       /* this is an unusual input, and we don't guarantee
   1076        * constant-timeness */
   1077       if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) {
   1078         OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1079         goto err;
   1080       }
   1081       num_bytes = BN_bn2bin(tmp_scalar, tmp);
   1082     } else {
   1083       num_bytes = BN_bn2bin(p_scalar, tmp);
   1084     }
   1085 
   1086     p224_flip_endian(p_secret, tmp, num_bytes);
   1087     /* precompute multiples */
   1088     if (!p224_BN_to_felem(x_out, &p->X) ||
   1089         !p224_BN_to_felem(y_out, &p->Y) ||
   1090         !p224_BN_to_felem(z_out, &p->Z)) {
   1091       goto err;
   1092     }
   1093 
   1094     p224_felem_assign(p_pre_comp[1][0], x_out);
   1095     p224_felem_assign(p_pre_comp[1][1], y_out);
   1096     p224_felem_assign(p_pre_comp[1][2], z_out);
   1097 
   1098     for (size_t j = 2; j <= 16; ++j) {
   1099       if (j & 1) {
   1100         p224_point_add(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2],
   1101                   p_pre_comp[1][0], p_pre_comp[1][1], p_pre_comp[1][2],
   1102                   0, p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
   1103                   p_pre_comp[j - 1][2]);
   1104       } else {
   1105         p224_point_double(p_pre_comp[j][0], p_pre_comp[j][1],
   1106                      p_pre_comp[j][2], p_pre_comp[j / 2][0],
   1107                      p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
   1108       }
   1109     }
   1110   }
   1111 
   1112   if (g_scalar != NULL) {
   1113     OPENSSL_memset(g_secret, 0, sizeof(g_secret));
   1114     size_t num_bytes;
   1115     /* reduce g_scalar to 0 <= g_scalar < 2^224 */
   1116     if (BN_num_bits(g_scalar) > 224 || BN_is_negative(g_scalar)) {
   1117       /* this is an unusual input, and we don't guarantee constant-timeness */
   1118       if (!BN_nnmod(tmp_scalar, g_scalar, &group->order, ctx)) {
   1119         OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1120         goto err;
   1121       }
   1122       num_bytes = BN_bn2bin(tmp_scalar, tmp);
   1123     } else {
   1124       num_bytes = BN_bn2bin(g_scalar, tmp);
   1125     }
   1126 
   1127     p224_flip_endian(g_secret, tmp, num_bytes);
   1128   }
   1129   p224_batch_mul(
   1130       x_out, y_out, z_out, (p != NULL && p_scalar != NULL) ? p_secret : NULL,
   1131       g_scalar != NULL ? g_secret : NULL, (const p224_felem(*)[3])p_pre_comp);
   1132 
   1133   /* reduce the output to its unique minimal representation */
   1134   p224_felem_contract(x_in, x_out);
   1135   p224_felem_contract(y_in, y_out);
   1136   p224_felem_contract(z_in, z_out);
   1137   if (!p224_felem_to_BN(x, x_in) ||
   1138       !p224_felem_to_BN(y, y_in) ||
   1139       !p224_felem_to_BN(z, z_in)) {
   1140     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1141     goto err;
   1142   }
   1143   ret = ec_point_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
   1144 
   1145 err:
   1146   BN_CTX_end(ctx);
   1147   BN_CTX_free(new_ctx);
   1148   return ret;
   1149 }
   1150 
   1151 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp224_method) {
   1152   out->group_init = ec_GFp_simple_group_init;
   1153   out->group_finish = ec_GFp_simple_group_finish;
   1154   out->group_copy = ec_GFp_simple_group_copy;
   1155   out->group_set_curve = ec_GFp_simple_group_set_curve;
   1156   out->point_get_affine_coordinates =
   1157       ec_GFp_nistp224_point_get_affine_coordinates;
   1158   out->mul = ec_GFp_nistp224_points_mul;
   1159   out->field_mul = ec_GFp_simple_field_mul;
   1160   out->field_sqr = ec_GFp_simple_field_sqr;
   1161   out->field_encode = NULL;
   1162   out->field_decode = NULL;
   1163 };
   1164 
   1165 #endif  /* 64_BIT && !WINDOWS && !SMALL */
   1166