Home | History | Annotate | Download | only in ec
      1 /* Originally written by Bodo Moeller for the OpenSSL project.
      2  * ====================================================================
      3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  *
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in
     14  *    the documentation and/or other materials provided with the
     15  *    distribution.
     16  *
     17  * 3. All advertising materials mentioning features or use of this
     18  *    software must display the following acknowledgment:
     19  *    "This product includes software developed by the OpenSSL Project
     20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     21  *
     22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     23  *    endorse or promote products derived from this software without
     24  *    prior written permission. For written permission, please contact
     25  *    openssl-core (at) openssl.org.
     26  *
     27  * 5. Products derived from this software may not be called "OpenSSL"
     28  *    nor may "OpenSSL" appear in their names without prior written
     29  *    permission of the OpenSSL Project.
     30  *
     31  * 6. Redistributions of any form whatsoever must retain the following
     32  *    acknowledgment:
     33  *    "This product includes software developed by the OpenSSL Project
     34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     47  * OF THE POSSIBILITY OF SUCH DAMAGE.
     48  * ====================================================================
     49  *
     50  * This product includes cryptographic software written by Eric Young
     51  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     52  * Hudson (tjh (at) cryptsoft.com).
     53  *
     54  */
     55 /* ====================================================================
     56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
     57  *
     58  * Portions of the attached software ("Contribution") are developed by
     59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
     60  *
     61  * The Contribution is licensed pursuant to the OpenSSL open source
     62  * license provided above.
     63  *
     64  * The elliptic curve binary polynomial software is originally written by
     65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
     66  * Laboratories. */
     67 
     68 #include <openssl/ec.h>
     69 
     70 #include <string.h>
     71 
     72 #include <openssl/bn.h>
     73 #include <openssl/err.h>
     74 #include <openssl/mem.h>
     75 #include <openssl/thread.h>
     76 
     77 #include "internal.h"
     78 #include "../../internal.h"
     79 
     80 
     81 /* This file implements the wNAF-based interleaving multi-exponentiation method
     82  * at:
     83  *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
     84  *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf */
     85 
     86 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
     87  * This is an array  r[]  of values that are either zero or odd with an
     88  * absolute value less than  2^w  satisfying
     89  *     scalar = \sum_j r[j]*2^j
     90  * where at most one of any  w+1  consecutive digits is non-zero
     91  * with the exception that the most significant digit may be only
     92  * w-1 zeros away from that next non-zero digit.
     93  */
     94 static int8_t *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
     95   int window_val;
     96   int ok = 0;
     97   int8_t *r = NULL;
     98   int sign = 1;
     99   int bit, next_bit, mask;
    100   size_t len = 0, j;
    101 
    102   if (BN_is_zero(scalar)) {
    103     r = OPENSSL_malloc(1);
    104     if (!r) {
    105       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    106       goto err;
    107     }
    108     r[0] = 0;
    109     *ret_len = 1;
    110     return r;
    111   }
    112 
    113   /* 'int8_t' can represent integers with absolute values less than 2^7. */
    114   if (w <= 0 || w > 7) {
    115     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    116     goto err;
    117   }
    118   bit = 1 << w;        /* at most 128 */
    119   next_bit = bit << 1; /* at most 256 */
    120   mask = next_bit - 1; /* at most 255 */
    121 
    122   if (BN_is_negative(scalar)) {
    123     sign = -1;
    124   }
    125 
    126   if (scalar->d == NULL || scalar->top == 0) {
    127     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    128     goto err;
    129   }
    130 
    131   len = BN_num_bits(scalar);
    132   /* The modified wNAF may be one digit longer than binary representation
    133    * (*ret_len will be set to the actual length, i.e. at most
    134    * BN_num_bits(scalar) + 1). */
    135   r = OPENSSL_malloc(len + 1);
    136   if (r == NULL) {
    137     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    138     goto err;
    139   }
    140   window_val = scalar->d[0] & mask;
    141   j = 0;
    142   /* If j+w+1 >= len, window_val will not increase. */
    143   while (window_val != 0 || j + w + 1 < len) {
    144     int digit = 0;
    145 
    146     /* 0 <= window_val <= 2^(w+1) */
    147 
    148     if (window_val & 1) {
    149       /* 0 < window_val < 2^(w+1) */
    150 
    151       if (window_val & bit) {
    152         digit = window_val - next_bit; /* -2^w < digit < 0 */
    153 
    154 #if 1 /* modified wNAF */
    155         if (j + w + 1 >= len) {
    156           /* special case for generating modified wNAFs:
    157            * no new bits will be added into window_val,
    158            * so using a positive digit here will decrease
    159            * the total length of the representation */
    160 
    161           digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
    162         }
    163 #endif
    164       } else {
    165         digit = window_val; /* 0 < digit < 2^w */
    166       }
    167 
    168       if (digit <= -bit || digit >= bit || !(digit & 1)) {
    169         OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    170         goto err;
    171       }
    172 
    173       window_val -= digit;
    174 
    175       /* Now window_val is 0 or 2^(w+1) in standard wNAF generation;
    176        * for modified window NAFs, it may also be 2^w. */
    177       if (window_val != 0 && window_val != next_bit && window_val != bit) {
    178         OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    179         goto err;
    180       }
    181     }
    182 
    183     r[j++] = sign * digit;
    184 
    185     window_val >>= 1;
    186     window_val += bit * BN_is_bit_set(scalar, j + w);
    187 
    188     if (window_val > next_bit) {
    189       OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    190       goto err;
    191     }
    192   }
    193 
    194   if (j > len + 1) {
    195     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    196     goto err;
    197   }
    198   len = j;
    199   ok = 1;
    200 
    201 err:
    202   if (!ok) {
    203     OPENSSL_free(r);
    204     r = NULL;
    205   }
    206   if (ok) {
    207     *ret_len = len;
    208   }
    209   return r;
    210 }
    211 
    212 
    213 /* TODO: table should be optimised for the wNAF-based implementation,
    214  *       sometimes smaller windows will give better performance
    215  *       (thus the boundaries should be increased)
    216  */
    217 static size_t window_bits_for_scalar_size(size_t b) {
    218   if (b >= 2000) {
    219     return 6;
    220   }
    221 
    222   if (b >= 800) {
    223     return 5;
    224   }
    225 
    226   if (b >= 300) {
    227     return 4;
    228   }
    229 
    230   if (b >= 70) {
    231     return 3;
    232   }
    233 
    234   if (b >= 20) {
    235     return 2;
    236   }
    237 
    238   return 1;
    239 }
    240 
    241 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
    242                 const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
    243   BN_CTX *new_ctx = NULL;
    244   const EC_POINT *generator = NULL;
    245   EC_POINT *tmp = NULL;
    246   size_t total_num = 0;
    247   size_t i, j;
    248   int k;
    249   int r_is_inverted = 0;
    250   int r_is_at_infinity = 1;
    251   size_t *wsize = NULL;      /* individual window sizes */
    252   int8_t **wNAF = NULL; /* individual wNAFs */
    253   size_t *wNAF_len = NULL;
    254   size_t max_len = 0;
    255   size_t num_val = 0;
    256   EC_POINT **val = NULL; /* precomputation */
    257   EC_POINT **v;
    258   EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
    259   int ret = 0;
    260 
    261   if (ctx == NULL) {
    262     ctx = new_ctx = BN_CTX_new();
    263     if (ctx == NULL) {
    264       goto err;
    265     }
    266   }
    267 
    268   /* TODO: This function used to take |points| and |scalars| as arrays of
    269    * |num| elements. The code below should be simplified to work in terms of |p|
    270    * and |p_scalar|. */
    271   size_t num = p != NULL ? 1 : 0;
    272   const EC_POINT **points = p != NULL ? &p : NULL;
    273   const BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
    274 
    275   total_num = num;
    276 
    277   if (g_scalar != NULL) {
    278     generator = EC_GROUP_get0_generator(group);
    279     if (generator == NULL) {
    280       OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
    281       goto err;
    282     }
    283 
    284     ++total_num; /* treat 'g_scalar' like 'num'-th element of 'scalars' */
    285   }
    286 
    287 
    288   wsize = OPENSSL_malloc(total_num * sizeof(wsize[0]));
    289   wNAF_len = OPENSSL_malloc(total_num * sizeof(wNAF_len[0]));
    290   wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0]));
    291   val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0]));
    292 
    293   /* Ensure wNAF is initialised in case we end up going to err. */
    294   if (wNAF != NULL) {
    295     OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0]));
    296   }
    297 
    298   if (!wsize || !wNAF_len || !wNAF || !val_sub) {
    299     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    300     goto err;
    301   }
    302 
    303   /* num_val will be the total number of temporarily precomputed points */
    304   num_val = 0;
    305 
    306   for (i = 0; i < total_num; i++) {
    307     size_t bits;
    308 
    309     bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
    310     wsize[i] = window_bits_for_scalar_size(bits);
    311     num_val += (size_t)1 << (wsize[i] - 1);
    312     wNAF[i] =
    313         compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
    314     if (wNAF[i] == NULL) {
    315       goto err;
    316     }
    317     if (wNAF_len[i] > max_len) {
    318       max_len = wNAF_len[i];
    319     }
    320   }
    321 
    322   /* All points we precompute now go into a single array 'val'. 'val_sub[i]' is
    323    * a pointer to the subarray for the i-th point. */
    324   val = OPENSSL_malloc(num_val * sizeof(val[0]));
    325   if (val == NULL) {
    326     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    327     goto err;
    328   }
    329   OPENSSL_memset(val, 0, num_val * sizeof(val[0]));
    330 
    331   /* allocate points for precomputation */
    332   v = val;
    333   for (i = 0; i < total_num; i++) {
    334     val_sub[i] = v;
    335     for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
    336       *v = EC_POINT_new(group);
    337       if (*v == NULL) {
    338         goto err;
    339       }
    340       v++;
    341     }
    342   }
    343   if (!(v == val + num_val)) {
    344     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    345     goto err;
    346   }
    347 
    348   if (!(tmp = EC_POINT_new(group))) {
    349     goto err;
    350   }
    351 
    352   /* prepare precomputed values:
    353    *    val_sub[i][0] :=     points[i]
    354    *    val_sub[i][1] := 3 * points[i]
    355    *    val_sub[i][2] := 5 * points[i]
    356    *    ...
    357    */
    358   for (i = 0; i < total_num; i++) {
    359     if (i < num) {
    360       if (!EC_POINT_copy(val_sub[i][0], points[i])) {
    361         goto err;
    362       }
    363     } else if (!EC_POINT_copy(val_sub[i][0], generator)) {
    364       goto err;
    365     }
    366 
    367     if (wsize[i] > 1) {
    368       if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
    369         goto err;
    370       }
    371       for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
    372         if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
    373           goto err;
    374         }
    375       }
    376     }
    377   }
    378 
    379 #if 1 /* optional; window_bits_for_scalar_size assumes we do this step */
    380   if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
    381     goto err;
    382   }
    383 #endif
    384 
    385   r_is_at_infinity = 1;
    386 
    387   for (k = max_len - 1; k >= 0; k--) {
    388     if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
    389       goto err;
    390     }
    391 
    392     for (i = 0; i < total_num; i++) {
    393       if (wNAF_len[i] > (size_t)k) {
    394         int digit = wNAF[i][k];
    395         int is_neg;
    396 
    397         if (digit) {
    398           is_neg = digit < 0;
    399 
    400           if (is_neg) {
    401             digit = -digit;
    402           }
    403 
    404           if (is_neg != r_is_inverted) {
    405             if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
    406               goto err;
    407             }
    408             r_is_inverted = !r_is_inverted;
    409           }
    410 
    411           /* digit > 0 */
    412 
    413           if (r_is_at_infinity) {
    414             if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
    415               goto err;
    416             }
    417             r_is_at_infinity = 0;
    418           } else {
    419             if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
    420               goto err;
    421             }
    422           }
    423         }
    424       }
    425     }
    426   }
    427 
    428   if (r_is_at_infinity) {
    429     if (!EC_POINT_set_to_infinity(group, r)) {
    430       goto err;
    431     }
    432   } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
    433     goto err;
    434   }
    435 
    436   ret = 1;
    437 
    438 err:
    439   BN_CTX_free(new_ctx);
    440   EC_POINT_free(tmp);
    441   OPENSSL_free(wsize);
    442   OPENSSL_free(wNAF_len);
    443   if (wNAF != NULL) {
    444     for (i = 0; i < total_num; i++) {
    445       OPENSSL_free(wNAF[i]);
    446     }
    447 
    448     OPENSSL_free(wNAF);
    449   }
    450   if (val != NULL) {
    451     for (i = 0; i < num_val; i++) {
    452       EC_POINT_clear_free(val[i]);
    453     }
    454 
    455     OPENSSL_free(val);
    456   }
    457   OPENSSL_free(val_sub);
    458   return ret;
    459 }
    460