Home | History | Annotate | Download | only in Cholesky
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2009 Keir Mierle <mierle (at) gmail.com>
      6 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      7 // Copyright (C) 2011 Timothy E. Holy <tim.holy (at) gmail.com >
      8 //
      9 // This Source Code Form is subject to the terms of the Mozilla
     10 // Public License v. 2.0. If a copy of the MPL was not distributed
     11 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     12 
     13 #ifndef EIGEN_LDLT_H
     14 #define EIGEN_LDLT_H
     15 
     16 namespace Eigen {
     17 
     18 namespace internal {
     19   template<typename MatrixType, int UpLo> struct LDLT_Traits;
     20 
     21   // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
     22   enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
     23 }
     24 
     25 /** \ingroup Cholesky_Module
     26   *
     27   * \class LDLT
     28   *
     29   * \brief Robust Cholesky decomposition of a matrix with pivoting
     30   *
     31   * \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
     32   * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
     33   *             The other triangular part won't be read.
     34   *
     35   * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
     36   * matrix \f$ A \f$ such that \f$ A =  P^TLDL^*P \f$, where P is a permutation matrix, L
     37   * is lower triangular with a unit diagonal and D is a diagonal matrix.
     38   *
     39   * The decomposition uses pivoting to ensure stability, so that L will have
     40   * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
     41   * on D also stabilizes the computation.
     42   *
     43   * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
     44   * decomposition to determine whether a system of equations has a solution.
     45   *
     46   * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
     47   *
     48   * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT
     49   */
     50 template<typename _MatrixType, int _UpLo> class LDLT
     51 {
     52   public:
     53     typedef _MatrixType MatrixType;
     54     enum {
     55       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     56       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     57       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     58       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
     59       UpLo = _UpLo
     60     };
     61     typedef typename MatrixType::Scalar Scalar;
     62     typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
     63     typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
     64     typedef typename MatrixType::StorageIndex StorageIndex;
     65     typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType;
     66 
     67     typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
     68     typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
     69 
     70     typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
     71 
     72     /** \brief Default Constructor.
     73       *
     74       * The default constructor is useful in cases in which the user intends to
     75       * perform decompositions via LDLT::compute(const MatrixType&).
     76       */
     77     LDLT()
     78       : m_matrix(),
     79         m_transpositions(),
     80         m_sign(internal::ZeroSign),
     81         m_isInitialized(false)
     82     {}
     83 
     84     /** \brief Default Constructor with memory preallocation
     85       *
     86       * Like the default constructor but with preallocation of the internal data
     87       * according to the specified problem \a size.
     88       * \sa LDLT()
     89       */
     90     explicit LDLT(Index size)
     91       : m_matrix(size, size),
     92         m_transpositions(size),
     93         m_temporary(size),
     94         m_sign(internal::ZeroSign),
     95         m_isInitialized(false)
     96     {}
     97 
     98     /** \brief Constructor with decomposition
     99       *
    100       * This calculates the decomposition for the input \a matrix.
    101       *
    102       * \sa LDLT(Index size)
    103       */
    104     template<typename InputType>
    105     explicit LDLT(const EigenBase<InputType>& matrix)
    106       : m_matrix(matrix.rows(), matrix.cols()),
    107         m_transpositions(matrix.rows()),
    108         m_temporary(matrix.rows()),
    109         m_sign(internal::ZeroSign),
    110         m_isInitialized(false)
    111     {
    112       compute(matrix.derived());
    113     }
    114 
    115     /** \brief Constructs a LDLT factorization from a given matrix
    116       *
    117       * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
    118       *
    119       * \sa LDLT(const EigenBase&)
    120       */
    121     template<typename InputType>
    122     explicit LDLT(EigenBase<InputType>& matrix)
    123       : m_matrix(matrix.derived()),
    124         m_transpositions(matrix.rows()),
    125         m_temporary(matrix.rows()),
    126         m_sign(internal::ZeroSign),
    127         m_isInitialized(false)
    128     {
    129       compute(matrix.derived());
    130     }
    131 
    132     /** Clear any existing decomposition
    133      * \sa rankUpdate(w,sigma)
    134      */
    135     void setZero()
    136     {
    137       m_isInitialized = false;
    138     }
    139 
    140     /** \returns a view of the upper triangular matrix U */
    141     inline typename Traits::MatrixU matrixU() const
    142     {
    143       eigen_assert(m_isInitialized && "LDLT is not initialized.");
    144       return Traits::getU(m_matrix);
    145     }
    146 
    147     /** \returns a view of the lower triangular matrix L */
    148     inline typename Traits::MatrixL matrixL() const
    149     {
    150       eigen_assert(m_isInitialized && "LDLT is not initialized.");
    151       return Traits::getL(m_matrix);
    152     }
    153 
    154     /** \returns the permutation matrix P as a transposition sequence.
    155       */
    156     inline const TranspositionType& transpositionsP() const
    157     {
    158       eigen_assert(m_isInitialized && "LDLT is not initialized.");
    159       return m_transpositions;
    160     }
    161 
    162     /** \returns the coefficients of the diagonal matrix D */
    163     inline Diagonal<const MatrixType> vectorD() const
    164     {
    165       eigen_assert(m_isInitialized && "LDLT is not initialized.");
    166       return m_matrix.diagonal();
    167     }
    168 
    169     /** \returns true if the matrix is positive (semidefinite) */
    170     inline bool isPositive() const
    171     {
    172       eigen_assert(m_isInitialized && "LDLT is not initialized.");
    173       return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
    174     }
    175 
    176     /** \returns true if the matrix is negative (semidefinite) */
    177     inline bool isNegative(void) const
    178     {
    179       eigen_assert(m_isInitialized && "LDLT is not initialized.");
    180       return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
    181     }
    182 
    183     /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
    184       *
    185       * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
    186       *
    187       * \note_about_checking_solutions
    188       *
    189       * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
    190       * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
    191       * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
    192       * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
    193       * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
    194       * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
    195       *
    196       * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt()
    197       */
    198     template<typename Rhs>
    199     inline const Solve<LDLT, Rhs>
    200     solve(const MatrixBase<Rhs>& b) const
    201     {
    202       eigen_assert(m_isInitialized && "LDLT is not initialized.");
    203       eigen_assert(m_matrix.rows()==b.rows()
    204                 && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
    205       return Solve<LDLT, Rhs>(*this, b.derived());
    206     }
    207 
    208     template<typename Derived>
    209     bool solveInPlace(MatrixBase<Derived> &bAndX) const;
    210 
    211     template<typename InputType>
    212     LDLT& compute(const EigenBase<InputType>& matrix);
    213 
    214     /** \returns an estimate of the reciprocal condition number of the matrix of
    215      *  which \c *this is the LDLT decomposition.
    216      */
    217     RealScalar rcond() const
    218     {
    219       eigen_assert(m_isInitialized && "LDLT is not initialized.");
    220       return internal::rcond_estimate_helper(m_l1_norm, *this);
    221     }
    222 
    223     template <typename Derived>
    224     LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);
    225 
    226     /** \returns the internal LDLT decomposition matrix
    227       *
    228       * TODO: document the storage layout
    229       */
    230     inline const MatrixType& matrixLDLT() const
    231     {
    232       eigen_assert(m_isInitialized && "LDLT is not initialized.");
    233       return m_matrix;
    234     }
    235 
    236     MatrixType reconstructedMatrix() const;
    237 
    238     /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
    239       *
    240       * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
    241       * \code x = decomposition.adjoint().solve(b) \endcode
    242       */
    243     const LDLT& adjoint() const { return *this; };
    244 
    245     inline Index rows() const { return m_matrix.rows(); }
    246     inline Index cols() const { return m_matrix.cols(); }
    247 
    248     /** \brief Reports whether previous computation was successful.
    249       *
    250       * \returns \c Success if computation was succesful,
    251       *          \c NumericalIssue if the matrix.appears to be negative.
    252       */
    253     ComputationInfo info() const
    254     {
    255       eigen_assert(m_isInitialized && "LDLT is not initialized.");
    256       return m_info;
    257     }
    258 
    259     #ifndef EIGEN_PARSED_BY_DOXYGEN
    260     template<typename RhsType, typename DstType>
    261     EIGEN_DEVICE_FUNC
    262     void _solve_impl(const RhsType &rhs, DstType &dst) const;
    263     #endif
    264 
    265   protected:
    266 
    267     static void check_template_parameters()
    268     {
    269       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    270     }
    271 
    272     /** \internal
    273       * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
    274       * The strict upper part is used during the decomposition, the strict lower
    275       * part correspond to the coefficients of L (its diagonal is equal to 1 and
    276       * is not stored), and the diagonal entries correspond to D.
    277       */
    278     MatrixType m_matrix;
    279     RealScalar m_l1_norm;
    280     TranspositionType m_transpositions;
    281     TmpMatrixType m_temporary;
    282     internal::SignMatrix m_sign;
    283     bool m_isInitialized;
    284     ComputationInfo m_info;
    285 };
    286 
    287 namespace internal {
    288 
    289 template<int UpLo> struct ldlt_inplace;
    290 
    291 template<> struct ldlt_inplace<Lower>
    292 {
    293   template<typename MatrixType, typename TranspositionType, typename Workspace>
    294   static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
    295   {
    296     using std::abs;
    297     typedef typename MatrixType::Scalar Scalar;
    298     typedef typename MatrixType::RealScalar RealScalar;
    299     typedef typename TranspositionType::StorageIndex IndexType;
    300     eigen_assert(mat.rows()==mat.cols());
    301     const Index size = mat.rows();
    302     bool found_zero_pivot = false;
    303     bool ret = true;
    304 
    305     if (size <= 1)
    306     {
    307       transpositions.setIdentity();
    308       if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef;
    309       else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef;
    310       else sign = ZeroSign;
    311       return true;
    312     }
    313 
    314     for (Index k = 0; k < size; ++k)
    315     {
    316       // Find largest diagonal element
    317       Index index_of_biggest_in_corner;
    318       mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
    319       index_of_biggest_in_corner += k;
    320 
    321       transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner);
    322       if(k != index_of_biggest_in_corner)
    323       {
    324         // apply the transposition while taking care to consider only
    325         // the lower triangular part
    326         Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
    327         mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
    328         mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
    329         std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
    330         for(Index i=k+1;i<index_of_biggest_in_corner;++i)
    331         {
    332           Scalar tmp = mat.coeffRef(i,k);
    333           mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
    334           mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
    335         }
    336         if(NumTraits<Scalar>::IsComplex)
    337           mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
    338       }
    339 
    340       // partition the matrix:
    341       //       A00 |  -  |  -
    342       // lu  = A10 | A11 |  -
    343       //       A20 | A21 | A22
    344       Index rs = size - k - 1;
    345       Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
    346       Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
    347       Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
    348 
    349       if(k>0)
    350       {
    351         temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
    352         mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
    353         if(rs>0)
    354           A21.noalias() -= A20 * temp.head(k);
    355       }
    356 
    357       // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
    358       // was smaller than the cutoff value. However, since LDLT is not rank-revealing
    359       // we should only make sure that we do not introduce INF or NaN values.
    360       // Remark that LAPACK also uses 0 as the cutoff value.
    361       RealScalar realAkk = numext::real(mat.coeffRef(k,k));
    362       bool pivot_is_valid = (abs(realAkk) > RealScalar(0));
    363 
    364       if(k==0 && !pivot_is_valid)
    365       {
    366         // The entire diagonal is zero, there is nothing more to do
    367         // except filling the transpositions, and checking whether the matrix is zero.
    368         sign = ZeroSign;
    369         for(Index j = 0; j<size; ++j)
    370         {
    371           transpositions.coeffRef(j) = IndexType(j);
    372           ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all();
    373         }
    374         return ret;
    375       }
    376 
    377       if((rs>0) && pivot_is_valid)
    378         A21 /= realAkk;
    379 
    380       if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed
    381       else if(!pivot_is_valid) found_zero_pivot = true;
    382 
    383       if (sign == PositiveSemiDef) {
    384         if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite;
    385       } else if (sign == NegativeSemiDef) {
    386         if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite;
    387       } else if (sign == ZeroSign) {
    388         if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef;
    389         else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef;
    390       }
    391     }
    392 
    393     return ret;
    394   }
    395 
    396   // Reference for the algorithm: Davis and Hager, "Multiple Rank
    397   // Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
    398   // Trivial rearrangements of their computations (Timothy E. Holy)
    399   // allow their algorithm to work for rank-1 updates even if the
    400   // original matrix is not of full rank.
    401   // Here only rank-1 updates are implemented, to reduce the
    402   // requirement for intermediate storage and improve accuracy
    403   template<typename MatrixType, typename WDerived>
    404   static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
    405   {
    406     using numext::isfinite;
    407     typedef typename MatrixType::Scalar Scalar;
    408     typedef typename MatrixType::RealScalar RealScalar;
    409 
    410     const Index size = mat.rows();
    411     eigen_assert(mat.cols() == size && w.size()==size);
    412 
    413     RealScalar alpha = 1;
    414 
    415     // Apply the update
    416     for (Index j = 0; j < size; j++)
    417     {
    418       // Check for termination due to an original decomposition of low-rank
    419       if (!(isfinite)(alpha))
    420         break;
    421 
    422       // Update the diagonal terms
    423       RealScalar dj = numext::real(mat.coeff(j,j));
    424       Scalar wj = w.coeff(j);
    425       RealScalar swj2 = sigma*numext::abs2(wj);
    426       RealScalar gamma = dj*alpha + swj2;
    427 
    428       mat.coeffRef(j,j) += swj2/alpha;
    429       alpha += swj2/dj;
    430 
    431 
    432       // Update the terms of L
    433       Index rs = size-j-1;
    434       w.tail(rs) -= wj * mat.col(j).tail(rs);
    435       if(gamma != 0)
    436         mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
    437     }
    438     return true;
    439   }
    440 
    441   template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
    442   static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
    443   {
    444     // Apply the permutation to the input w
    445     tmp = transpositions * w;
    446 
    447     return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
    448   }
    449 };
    450 
    451 template<> struct ldlt_inplace<Upper>
    452 {
    453   template<typename MatrixType, typename TranspositionType, typename Workspace>
    454   static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
    455   {
    456     Transpose<MatrixType> matt(mat);
    457     return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
    458   }
    459 
    460   template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
    461   static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
    462   {
    463     Transpose<MatrixType> matt(mat);
    464     return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
    465   }
    466 };
    467 
    468 template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
    469 {
    470   typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
    471   typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
    472   static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
    473   static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
    474 };
    475 
    476 template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
    477 {
    478   typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
    479   typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
    480   static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
    481   static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
    482 };
    483 
    484 } // end namespace internal
    485 
    486 /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
    487   */
    488 template<typename MatrixType, int _UpLo>
    489 template<typename InputType>
    490 LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
    491 {
    492   check_template_parameters();
    493 
    494   eigen_assert(a.rows()==a.cols());
    495   const Index size = a.rows();
    496 
    497   m_matrix = a.derived();
    498 
    499   // Compute matrix L1 norm = max abs column sum.
    500   m_l1_norm = RealScalar(0);
    501   // TODO move this code to SelfAdjointView
    502   for (Index col = 0; col < size; ++col) {
    503     RealScalar abs_col_sum;
    504     if (_UpLo == Lower)
    505       abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
    506     else
    507       abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
    508     if (abs_col_sum > m_l1_norm)
    509       m_l1_norm = abs_col_sum;
    510   }
    511 
    512   m_transpositions.resize(size);
    513   m_isInitialized = false;
    514   m_temporary.resize(size);
    515   m_sign = internal::ZeroSign;
    516 
    517   m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue;
    518 
    519   m_isInitialized = true;
    520   return *this;
    521 }
    522 
    523 /** Update the LDLT decomposition:  given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
    524  * \param w a vector to be incorporated into the decomposition.
    525  * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
    526  * \sa setZero()
    527   */
    528 template<typename MatrixType, int _UpLo>
    529 template<typename Derived>
    530 LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
    531 {
    532   typedef typename TranspositionType::StorageIndex IndexType;
    533   const Index size = w.rows();
    534   if (m_isInitialized)
    535   {
    536     eigen_assert(m_matrix.rows()==size);
    537   }
    538   else
    539   {
    540     m_matrix.resize(size,size);
    541     m_matrix.setZero();
    542     m_transpositions.resize(size);
    543     for (Index i = 0; i < size; i++)
    544       m_transpositions.coeffRef(i) = IndexType(i);
    545     m_temporary.resize(size);
    546     m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
    547     m_isInitialized = true;
    548   }
    549 
    550   internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
    551 
    552   return *this;
    553 }
    554 
    555 #ifndef EIGEN_PARSED_BY_DOXYGEN
    556 template<typename _MatrixType, int _UpLo>
    557 template<typename RhsType, typename DstType>
    558 void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
    559 {
    560   eigen_assert(rhs.rows() == rows());
    561   // dst = P b
    562   dst = m_transpositions * rhs;
    563 
    564   // dst = L^-1 (P b)
    565   matrixL().solveInPlace(dst);
    566 
    567   // dst = D^-1 (L^-1 P b)
    568   // more precisely, use pseudo-inverse of D (see bug 241)
    569   using std::abs;
    570   const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD());
    571   // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
    572   // as motivated by LAPACK's xGELSS:
    573   // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
    574   // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
    575   // diagonal element is not well justified and leads to numerical issues in some cases.
    576   // Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
    577   RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
    578 
    579   for (Index i = 0; i < vecD.size(); ++i)
    580   {
    581     if(abs(vecD(i)) > tolerance)
    582       dst.row(i) /= vecD(i);
    583     else
    584       dst.row(i).setZero();
    585   }
    586 
    587   // dst = L^-T (D^-1 L^-1 P b)
    588   matrixU().solveInPlace(dst);
    589 
    590   // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
    591   dst = m_transpositions.transpose() * dst;
    592 }
    593 #endif
    594 
    595 /** \internal use x = ldlt_object.solve(x);
    596   *
    597   * This is the \em in-place version of solve().
    598   *
    599   * \param bAndX represents both the right-hand side matrix b and result x.
    600   *
    601   * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
    602   *
    603   * This version avoids a copy when the right hand side matrix b is not
    604   * needed anymore.
    605   *
    606   * \sa LDLT::solve(), MatrixBase::ldlt()
    607   */
    608 template<typename MatrixType,int _UpLo>
    609 template<typename Derived>
    610 bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
    611 {
    612   eigen_assert(m_isInitialized && "LDLT is not initialized.");
    613   eigen_assert(m_matrix.rows() == bAndX.rows());
    614 
    615   bAndX = this->solve(bAndX);
    616 
    617   return true;
    618 }
    619 
    620 /** \returns the matrix represented by the decomposition,
    621  * i.e., it returns the product: P^T L D L^* P.
    622  * This function is provided for debug purpose. */
    623 template<typename MatrixType, int _UpLo>
    624 MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
    625 {
    626   eigen_assert(m_isInitialized && "LDLT is not initialized.");
    627   const Index size = m_matrix.rows();
    628   MatrixType res(size,size);
    629 
    630   // P
    631   res.setIdentity();
    632   res = transpositionsP() * res;
    633   // L^* P
    634   res = matrixU() * res;
    635   // D(L^*P)
    636   res = vectorD().real().asDiagonal() * res;
    637   // L(DL^*P)
    638   res = matrixL() * res;
    639   // P^T (LDL^*P)
    640   res = transpositionsP().transpose() * res;
    641 
    642   return res;
    643 }
    644 
    645 /** \cholesky_module
    646   * \returns the Cholesky decomposition with full pivoting without square root of \c *this
    647   * \sa MatrixBase::ldlt()
    648   */
    649 template<typename MatrixType, unsigned int UpLo>
    650 inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
    651 SelfAdjointView<MatrixType, UpLo>::ldlt() const
    652 {
    653   return LDLT<PlainObject,UpLo>(m_matrix);
    654 }
    655 
    656 /** \cholesky_module
    657   * \returns the Cholesky decomposition with full pivoting without square root of \c *this
    658   * \sa SelfAdjointView::ldlt()
    659   */
    660 template<typename Derived>
    661 inline const LDLT<typename MatrixBase<Derived>::PlainObject>
    662 MatrixBase<Derived>::ldlt() const
    663 {
    664   return LDLT<PlainObject>(derived());
    665 }
    666 
    667 } // end namespace Eigen
    668 
    669 #endif // EIGEN_LDLT_H
    670