Home | History | Annotate | Download | only in functors
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_NULLARY_FUNCTORS_H
     11 #define EIGEN_NULLARY_FUNCTORS_H
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 
     17 template<typename Scalar>
     18 struct scalar_constant_op {
     19   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
     20   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
     21   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() () const { return m_other; }
     22   template<typename PacketType>
     23   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packetOp() const { return internal::pset1<PacketType>(m_other); }
     24   const Scalar m_other;
     25 };
     26 template<typename Scalar>
     27 struct functor_traits<scalar_constant_op<Scalar> >
     28 { enum { Cost = 0 /* as the constant value should be loaded in register only once for the whole expression */,
     29          PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
     30 
     31 template<typename Scalar> struct scalar_identity_op {
     32   EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
     33   template<typename IndexType>
     34   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType row, IndexType col) const { return row==col ? Scalar(1) : Scalar(0); }
     35 };
     36 template<typename Scalar>
     37 struct functor_traits<scalar_identity_op<Scalar> >
     38 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
     39 
     40 template <typename Scalar, typename Packet, bool IsInteger> struct linspaced_op_impl;
     41 
     42 template <typename Scalar, typename Packet>
     43 struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/false>
     44 {
     45   linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
     46     m_low(low), m_high(high), m_size1(num_steps==1 ? 1 : num_steps-1), m_step(num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1)),
     47     m_flip(numext::abs(high)<numext::abs(low))
     48   {}
     49 
     50   template<typename IndexType>
     51   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const {
     52     typedef typename NumTraits<Scalar>::Real RealScalar;
     53     if(m_flip)
     54       return (i==0)? m_low : (m_high - RealScalar(m_size1-i)*m_step);
     55     else
     56       return (i==m_size1)? m_high : (m_low + RealScalar(i)*m_step);
     57   }
     58 
     59   template<typename IndexType>
     60   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const
     61   {
     62     // Principle:
     63     // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
     64     if(m_flip)
     65     {
     66       Packet pi = plset<Packet>(Scalar(i-m_size1));
     67       Packet res = padd(pset1<Packet>(m_high), pmul(pset1<Packet>(m_step), pi));
     68       if(i==0)
     69         res = pinsertfirst(res, m_low);
     70       return res;
     71     }
     72     else
     73     {
     74       Packet pi = plset<Packet>(Scalar(i));
     75       Packet res = padd(pset1<Packet>(m_low), pmul(pset1<Packet>(m_step), pi));
     76       if(i==m_size1-unpacket_traits<Packet>::size+1)
     77         res = pinsertlast(res, m_high);
     78       return res;
     79     }
     80   }
     81 
     82   const Scalar m_low;
     83   const Scalar m_high;
     84   const Index m_size1;
     85   const Scalar m_step;
     86   const bool m_flip;
     87 };
     88 
     89 template <typename Scalar, typename Packet>
     90 struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/true>
     91 {
     92   linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
     93     m_low(low),
     94     m_multiplier((high-low)/convert_index<Scalar>(num_steps<=1 ? 1 : num_steps-1)),
     95     m_divisor(convert_index<Scalar>((high>=low?num_steps:-num_steps)+(high-low))/((numext::abs(high-low)+1)==0?1:(numext::abs(high-low)+1))),
     96     m_use_divisor(num_steps>1 && (numext::abs(high-low)+1)<num_steps)
     97   {}
     98 
     99   template<typename IndexType>
    100   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
    101   const Scalar operator() (IndexType i) const
    102   {
    103     if(m_use_divisor) return m_low + convert_index<Scalar>(i)/m_divisor;
    104     else              return m_low + convert_index<Scalar>(i)*m_multiplier;
    105   }
    106 
    107   const Scalar m_low;
    108   const Scalar m_multiplier;
    109   const Scalar m_divisor;
    110   const bool m_use_divisor;
    111 };
    112 
    113 // ----- Linspace functor ----------------------------------------------------------------
    114 
    115 // Forward declaration (we default to random access which does not really give
    116 // us a speed gain when using packet access but it allows to use the functor in
    117 // nested expressions).
    118 template <typename Scalar, typename PacketType> struct linspaced_op;
    119 template <typename Scalar, typename PacketType> struct functor_traits< linspaced_op<Scalar,PacketType> >
    120 {
    121   enum
    122   {
    123     Cost = 1,
    124     PacketAccess =   (!NumTraits<Scalar>::IsInteger) && packet_traits<Scalar>::HasSetLinear && packet_traits<Scalar>::HasBlend,
    125                   /*&& ((!NumTraits<Scalar>::IsInteger) || packet_traits<Scalar>::HasDiv),*/ // <- vectorization for integer is currently disabled
    126     IsRepeatable = true
    127   };
    128 };
    129 template <typename Scalar, typename PacketType> struct linspaced_op
    130 {
    131   linspaced_op(const Scalar& low, const Scalar& high, Index num_steps)
    132     : impl((num_steps==1 ? high : low),high,num_steps)
    133   {}
    134 
    135   template<typename IndexType>
    136   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { return impl(i); }
    137 
    138   template<typename Packet,typename IndexType>
    139   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { return impl.packetOp(i); }
    140 
    141   // This proxy object handles the actual required temporaries and the different
    142   // implementations (integer vs. floating point).
    143   const linspaced_op_impl<Scalar,PacketType,NumTraits<Scalar>::IsInteger> impl;
    144 };
    145 
    146 // Linear access is automatically determined from the operator() prototypes available for the given functor.
    147 // If it exposes an operator()(i,j), then we assume the i and j coefficients are required independently
    148 // and linear access is not possible. In all other cases, linear access is enabled.
    149 // Users should not have to deal with this structure.
    150 template<typename Functor> struct functor_has_linear_access { enum { ret = !has_binary_operator<Functor>::value }; };
    151 
    152 // For unreliable compilers, let's specialize the has_*ary_operator
    153 // helpers so that at least built-in nullary functors work fine.
    154 #if !( (EIGEN_COMP_MSVC>1600) || (EIGEN_GNUC_AT_LEAST(4,8)) || (EIGEN_COMP_ICC>=1600))
    155 template<typename Scalar,typename IndexType>
    156 struct has_nullary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 1}; };
    157 template<typename Scalar,typename IndexType>
    158 struct has_unary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
    159 template<typename Scalar,typename IndexType>
    160 struct has_binary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
    161 
    162 template<typename Scalar,typename IndexType>
    163 struct has_nullary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
    164 template<typename Scalar,typename IndexType>
    165 struct has_unary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
    166 template<typename Scalar,typename IndexType>
    167 struct has_binary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 1}; };
    168 
    169 template<typename Scalar, typename PacketType,typename IndexType>
    170 struct has_nullary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 0}; };
    171 template<typename Scalar, typename PacketType,typename IndexType>
    172 struct has_unary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 1}; };
    173 template<typename Scalar, typename PacketType,typename IndexType>
    174 struct has_binary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 0}; };
    175 
    176 template<typename Scalar,typename IndexType>
    177 struct has_nullary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 1}; };
    178 template<typename Scalar,typename IndexType>
    179 struct has_unary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
    180 template<typename Scalar,typename IndexType>
    181 struct has_binary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
    182 #endif
    183 
    184 } // end namespace internal
    185 
    186 } // end namespace Eigen
    187 
    188 #endif // EIGEN_NULLARY_FUNCTORS_H
    189