Home | History | Annotate | Download | only in Eigenvalues
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2010,2012 Jitse Niesen <jitse (at) maths.leeds.ac.uk>
      6 // Copyright (C) 2016 Tobias Wood <tobias (at) spinicist.org.uk>
      7 //
      8 // This Source Code Form is subject to the terms of the Mozilla
      9 // Public License v. 2.0. If a copy of the MPL was not distributed
     10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     11 
     12 #ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
     13 #define EIGEN_GENERALIZEDEIGENSOLVER_H
     14 
     15 #include "./RealQZ.h"
     16 
     17 namespace Eigen {
     18 
     19 /** \eigenvalues_module \ingroup Eigenvalues_Module
     20   *
     21   *
     22   * \class GeneralizedEigenSolver
     23   *
     24   * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
     25   *
     26   * \tparam _MatrixType the type of the matrices of which we are computing the
     27   * eigen-decomposition; this is expected to be an instantiation of the Matrix
     28   * class template. Currently, only real matrices are supported.
     29   *
     30   * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
     31   * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$.  If
     32   * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
     33   * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
     34   * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
     35   * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
     36   *
     37   * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
     38   * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
     39   * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
     40   * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
     41   * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
     42   * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A  = u_i^T B \f$ where \f$ u_i \f$ is
     43   * called the left eigenvector.
     44   *
     45   * Call the function compute() to compute the generalized eigenvalues and eigenvectors of
     46   * a given matrix pair. Alternatively, you can use the
     47   * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
     48   * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
     49   * eigenvectors are computed, they can be retrieved with the eigenvalues() and
     50   * eigenvectors() functions.
     51   *
     52   * Here is an usage example of this class:
     53   * Example: \include GeneralizedEigenSolver.cpp
     54   * Output: \verbinclude GeneralizedEigenSolver.out
     55   *
     56   * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
     57   */
     58 template<typename _MatrixType> class GeneralizedEigenSolver
     59 {
     60   public:
     61 
     62     /** \brief Synonym for the template parameter \p _MatrixType. */
     63     typedef _MatrixType MatrixType;
     64 
     65     enum {
     66       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     67       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     68       Options = MatrixType::Options,
     69       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     70       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
     71     };
     72 
     73     /** \brief Scalar type for matrices of type #MatrixType. */
     74     typedef typename MatrixType::Scalar Scalar;
     75     typedef typename NumTraits<Scalar>::Real RealScalar;
     76     typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
     77 
     78     /** \brief Complex scalar type for #MatrixType.
     79       *
     80       * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
     81       * \c float or \c double) and just \c Scalar if #Scalar is
     82       * complex.
     83       */
     84     typedef std::complex<RealScalar> ComplexScalar;
     85 
     86     /** \brief Type for vector of real scalar values eigenvalues as returned by betas().
     87       *
     88       * This is a column vector with entries of type #Scalar.
     89       * The length of the vector is the size of #MatrixType.
     90       */
     91     typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
     92 
     93     /** \brief Type for vector of complex scalar values eigenvalues as returned by alphas().
     94       *
     95       * This is a column vector with entries of type #ComplexScalar.
     96       * The length of the vector is the size of #MatrixType.
     97       */
     98     typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
     99 
    100     /** \brief Expression type for the eigenvalues as returned by eigenvalues().
    101       */
    102     typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
    103 
    104     /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
    105       *
    106       * This is a square matrix with entries of type #ComplexScalar.
    107       * The size is the same as the size of #MatrixType.
    108       */
    109     typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
    110 
    111     /** \brief Default constructor.
    112       *
    113       * The default constructor is useful in cases in which the user intends to
    114       * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
    115       *
    116       * \sa compute() for an example.
    117       */
    118     GeneralizedEigenSolver()
    119       : m_eivec(),
    120         m_alphas(),
    121         m_betas(),
    122         m_valuesOkay(false),
    123         m_vectorsOkay(false),
    124         m_realQZ()
    125     {}
    126 
    127     /** \brief Default constructor with memory preallocation
    128       *
    129       * Like the default constructor but with preallocation of the internal data
    130       * according to the specified problem \a size.
    131       * \sa GeneralizedEigenSolver()
    132       */
    133     explicit GeneralizedEigenSolver(Index size)
    134       : m_eivec(size, size),
    135         m_alphas(size),
    136         m_betas(size),
    137         m_valuesOkay(false),
    138         m_vectorsOkay(false),
    139         m_realQZ(size),
    140         m_tmp(size)
    141     {}
    142 
    143     /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
    144       *
    145       * \param[in]  A  Square matrix whose eigendecomposition is to be computed.
    146       * \param[in]  B  Square matrix whose eigendecomposition is to be computed.
    147       * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
    148       *    eigenvalues are computed; if false, only the eigenvalues are computed.
    149       *
    150       * This constructor calls compute() to compute the generalized eigenvalues
    151       * and eigenvectors.
    152       *
    153       * \sa compute()
    154       */
    155     GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
    156       : m_eivec(A.rows(), A.cols()),
    157         m_alphas(A.cols()),
    158         m_betas(A.cols()),
    159         m_valuesOkay(false),
    160         m_vectorsOkay(false),
    161         m_realQZ(A.cols()),
    162         m_tmp(A.cols())
    163     {
    164       compute(A, B, computeEigenvectors);
    165     }
    166 
    167     /* \brief Returns the computed generalized eigenvectors.
    168       *
    169       * \returns  %Matrix whose columns are the (possibly complex) right eigenvectors.
    170       * i.e. the eigenvectors that solve (A - l*B)x = 0. The ordering matches the eigenvalues.
    171       *
    172       * \pre Either the constructor
    173       * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
    174       * compute(const MatrixType&, const MatrixType& bool) has been called before, and
    175       * \p computeEigenvectors was set to true (the default).
    176       *
    177       * \sa eigenvalues()
    178       */
    179     EigenvectorsType eigenvectors() const {
    180       eigen_assert(m_vectorsOkay && "Eigenvectors for GeneralizedEigenSolver were not calculated.");
    181       return m_eivec;
    182     }
    183 
    184     /** \brief Returns an expression of the computed generalized eigenvalues.
    185       *
    186       * \returns An expression of the column vector containing the eigenvalues.
    187       *
    188       * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
    189       * Not that betas might contain zeros. It is therefore not recommended to use this function,
    190       * but rather directly deal with the alphas and betas vectors.
    191       *
    192       * \pre Either the constructor
    193       * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
    194       * compute(const MatrixType&,const MatrixType&,bool) has been called before.
    195       *
    196       * The eigenvalues are repeated according to their algebraic multiplicity,
    197       * so there are as many eigenvalues as rows in the matrix. The eigenvalues
    198       * are not sorted in any particular order.
    199       *
    200       * \sa alphas(), betas(), eigenvectors()
    201       */
    202     EigenvalueType eigenvalues() const
    203     {
    204       eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
    205       return EigenvalueType(m_alphas,m_betas);
    206     }
    207 
    208     /** \returns A const reference to the vectors containing the alpha values
    209       *
    210       * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
    211       *
    212       * \sa betas(), eigenvalues() */
    213     ComplexVectorType alphas() const
    214     {
    215       eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
    216       return m_alphas;
    217     }
    218 
    219     /** \returns A const reference to the vectors containing the beta values
    220       *
    221       * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
    222       *
    223       * \sa alphas(), eigenvalues() */
    224     VectorType betas() const
    225     {
    226       eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
    227       return m_betas;
    228     }
    229 
    230     /** \brief Computes generalized eigendecomposition of given matrix.
    231       *
    232       * \param[in]  A  Square matrix whose eigendecomposition is to be computed.
    233       * \param[in]  B  Square matrix whose eigendecomposition is to be computed.
    234       * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
    235       *    eigenvalues are computed; if false, only the eigenvalues are
    236       *    computed.
    237       * \returns    Reference to \c *this
    238       *
    239       * This function computes the eigenvalues of the real matrix \p matrix.
    240       * The eigenvalues() function can be used to retrieve them.  If
    241       * \p computeEigenvectors is true, then the eigenvectors are also computed
    242       * and can be retrieved by calling eigenvectors().
    243       *
    244       * The matrix is first reduced to real generalized Schur form using the RealQZ
    245       * class. The generalized Schur decomposition is then used to compute the eigenvalues
    246       * and eigenvectors.
    247       *
    248       * The cost of the computation is dominated by the cost of the
    249       * generalized Schur decomposition.
    250       *
    251       * This method reuses of the allocated data in the GeneralizedEigenSolver object.
    252       */
    253     GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
    254 
    255     ComputationInfo info() const
    256     {
    257       eigen_assert(m_valuesOkay && "EigenSolver is not initialized.");
    258       return m_realQZ.info();
    259     }
    260 
    261     /** Sets the maximal number of iterations allowed.
    262     */
    263     GeneralizedEigenSolver& setMaxIterations(Index maxIters)
    264     {
    265       m_realQZ.setMaxIterations(maxIters);
    266       return *this;
    267     }
    268 
    269   protected:
    270 
    271     static void check_template_parameters()
    272     {
    273       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    274       EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
    275     }
    276 
    277     EigenvectorsType m_eivec;
    278     ComplexVectorType m_alphas;
    279     VectorType m_betas;
    280     bool m_valuesOkay, m_vectorsOkay;
    281     RealQZ<MatrixType> m_realQZ;
    282     ComplexVectorType m_tmp;
    283 };
    284 
    285 template<typename MatrixType>
    286 GeneralizedEigenSolver<MatrixType>&
    287 GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
    288 {
    289   check_template_parameters();
    290 
    291   using std::sqrt;
    292   using std::abs;
    293   eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
    294   Index size = A.cols();
    295   m_valuesOkay = false;
    296   m_vectorsOkay = false;
    297   // Reduce to generalized real Schur form:
    298   // A = Q S Z and B = Q T Z
    299   m_realQZ.compute(A, B, computeEigenvectors);
    300   if (m_realQZ.info() == Success)
    301   {
    302     // Resize storage
    303     m_alphas.resize(size);
    304     m_betas.resize(size);
    305     if (computeEigenvectors)
    306     {
    307       m_eivec.resize(size,size);
    308       m_tmp.resize(size);
    309     }
    310 
    311     // Aliases:
    312     Map<VectorType> v(reinterpret_cast<Scalar*>(m_tmp.data()), size);
    313     ComplexVectorType &cv = m_tmp;
    314     const MatrixType &mZ = m_realQZ.matrixZ();
    315     const MatrixType &mS = m_realQZ.matrixS();
    316     const MatrixType &mT = m_realQZ.matrixT();
    317 
    318     Index i = 0;
    319     while (i < size)
    320     {
    321       if (i == size - 1 || mS.coeff(i+1, i) == Scalar(0))
    322       {
    323         // Real eigenvalue
    324         m_alphas.coeffRef(i) = mS.diagonal().coeff(i);
    325         m_betas.coeffRef(i)  = mT.diagonal().coeff(i);
    326         if (computeEigenvectors)
    327         {
    328           v.setConstant(Scalar(0.0));
    329           v.coeffRef(i) = Scalar(1.0);
    330           // For singular eigenvalues do nothing more
    331           if(abs(m_betas.coeffRef(i)) >= (std::numeric_limits<RealScalar>::min)())
    332           {
    333             // Non-singular eigenvalue
    334             const Scalar alpha = real(m_alphas.coeffRef(i));
    335             const Scalar beta = m_betas.coeffRef(i);
    336             for (Index j = i-1; j >= 0; j--)
    337             {
    338               const Index st = j+1;
    339               const Index sz = i-j;
    340               if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
    341               {
    342                 // 2x2 block
    343                 Matrix<Scalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( v.segment(st,sz) );
    344                 Matrix<Scalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
    345                 v.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
    346                 j--;
    347               }
    348               else
    349               {
    350                 v.coeffRef(j) = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() / (beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j));
    351               }
    352             }
    353           }
    354           m_eivec.col(i).real().noalias() = mZ.transpose() * v;
    355           m_eivec.col(i).real().normalize();
    356           m_eivec.col(i).imag().setConstant(0);
    357         }
    358         ++i;
    359       }
    360       else
    361       {
    362         // We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T
    363         // Then taking beta=T_00*T_11, we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00):
    364 
    365         // T =  [a 0]
    366         //      [0 b]
    367         RealScalar a = mT.diagonal().coeff(i),
    368                    b = mT.diagonal().coeff(i+1);
    369         const RealScalar beta = m_betas.coeffRef(i) = m_betas.coeffRef(i+1) = a*b;
    370 
    371         // ^^ NOTE: using diagonal()(i) instead of coeff(i,i) workarounds a MSVC bug.
    372         Matrix<RealScalar,2,2> S2 = mS.template block<2,2>(i,i) * Matrix<Scalar,2,1>(b,a).asDiagonal();
    373 
    374         Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1));
    375         Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1)));
    376         const ComplexScalar alpha = ComplexScalar(S2.coeff(1,1) + p, (beta > 0) ? z : -z);
    377         m_alphas.coeffRef(i)   = conj(alpha);
    378         m_alphas.coeffRef(i+1) = alpha;
    379 
    380         if (computeEigenvectors) {
    381           // Compute eigenvector in position (i+1) and then position (i) is just the conjugate
    382           cv.setZero();
    383           cv.coeffRef(i+1) = Scalar(1.0);
    384           // here, the "static_cast" workaound expression template issues.
    385           cv.coeffRef(i) = -(static_cast<Scalar>(beta*mS.coeffRef(i,i+1)) - alpha*mT.coeffRef(i,i+1))
    386                           / (static_cast<Scalar>(beta*mS.coeffRef(i,i))   - alpha*mT.coeffRef(i,i));
    387           for (Index j = i-1; j >= 0; j--)
    388           {
    389             const Index st = j+1;
    390             const Index sz = i+1-j;
    391             if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
    392             {
    393               // 2x2 block
    394               Matrix<ComplexScalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( cv.segment(st,sz) );
    395               Matrix<ComplexScalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
    396               cv.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
    397               j--;
    398             } else {
    399               cv.coeffRef(j) =  cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum()
    400                               / (alpha*mT.coeffRef(j,j) - static_cast<Scalar>(beta*mS.coeffRef(j,j)));
    401             }
    402           }
    403           m_eivec.col(i+1).noalias() = (mZ.transpose() * cv);
    404           m_eivec.col(i+1).normalize();
    405           m_eivec.col(i) = m_eivec.col(i+1).conjugate();
    406         }
    407         i += 2;
    408       }
    409     }
    410 
    411     m_valuesOkay = true;
    412     m_vectorsOkay = computeEigenvectors;
    413   }
    414   return *this;
    415 }
    416 
    417 } // end namespace Eigen
    418 
    419 #endif // EIGEN_GENERALIZEDEIGENSOLVER_H
    420