Home | History | Annotate | Download | only in SPQRSupport
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam (at) inria.fr>
      5 // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_SUITESPARSEQRSUPPORT_H
     12 #define EIGEN_SUITESPARSEQRSUPPORT_H
     13 
     14 namespace Eigen {
     15 
     16   template<typename MatrixType> class SPQR;
     17   template<typename SPQRType> struct SPQRMatrixQReturnType;
     18   template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;
     19   template <typename SPQRType, typename Derived> struct SPQR_QProduct;
     20   namespace internal {
     21     template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
     22     {
     23       typedef typename SPQRType::MatrixType ReturnType;
     24     };
     25     template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
     26     {
     27       typedef typename SPQRType::MatrixType ReturnType;
     28     };
     29     template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
     30     {
     31       typedef typename Derived::PlainObject ReturnType;
     32     };
     33   } // End namespace internal
     34 
     35 /**
     36   * \ingroup SPQRSupport_Module
     37   * \class SPQR
     38   * \brief Sparse QR factorization based on SuiteSparseQR library
     39   *
     40   * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition
     41   * of sparse matrices. The result is then used to solve linear leasts_square systems.
     42   * Clearly, a QR factorization is returned such that A*P = Q*R where :
     43   *
     44   * P is the column permutation. Use colsPermutation() to get it.
     45   *
     46   * Q is the orthogonal matrix represented as Householder reflectors.
     47   * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
     48   * You can then apply it to a vector.
     49   *
     50   * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
     51   * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index
     52   *
     53   * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
     54   *
     55   * \implsparsesolverconcept
     56   *
     57   *
     58   */
     59 template<typename _MatrixType>
     60 class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
     61 {
     62   protected:
     63     typedef SparseSolverBase<SPQR<_MatrixType> > Base;
     64     using Base::m_isInitialized;
     65   public:
     66     typedef typename _MatrixType::Scalar Scalar;
     67     typedef typename _MatrixType::RealScalar RealScalar;
     68     typedef SuiteSparse_long StorageIndex ;
     69     typedef SparseMatrix<Scalar, ColMajor, StorageIndex> MatrixType;
     70     typedef Map<PermutationMatrix<Dynamic, Dynamic, StorageIndex> > PermutationType;
     71     enum {
     72       ColsAtCompileTime = Dynamic,
     73       MaxColsAtCompileTime = Dynamic
     74     };
     75   public:
     76     SPQR()
     77       : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
     78     {
     79       cholmod_l_start(&m_cc);
     80     }
     81 
     82     explicit SPQR(const _MatrixType& matrix)
     83     : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
     84     {
     85       cholmod_l_start(&m_cc);
     86       compute(matrix);
     87     }
     88 
     89     ~SPQR()
     90     {
     91       SPQR_free();
     92       cholmod_l_finish(&m_cc);
     93     }
     94     void SPQR_free()
     95     {
     96       cholmod_l_free_sparse(&m_H, &m_cc);
     97       cholmod_l_free_sparse(&m_cR, &m_cc);
     98       cholmod_l_free_dense(&m_HTau, &m_cc);
     99       std::free(m_E);
    100       std::free(m_HPinv);
    101     }
    102 
    103     void compute(const _MatrixType& matrix)
    104     {
    105       if(m_isInitialized) SPQR_free();
    106 
    107       MatrixType mat(matrix);
    108 
    109       /* Compute the default threshold as in MatLab, see:
    110        * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
    111        * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
    112        */
    113       RealScalar pivotThreshold = m_tolerance;
    114       if(m_useDefaultThreshold)
    115       {
    116         RealScalar max2Norm = 0.0;
    117         for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm());
    118         if(max2Norm==RealScalar(0))
    119           max2Norm = RealScalar(1);
    120         pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
    121       }
    122       cholmod_sparse A;
    123       A = viewAsCholmod(mat);
    124       m_rows = matrix.rows();
    125       Index col = matrix.cols();
    126       m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,
    127                              &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
    128 
    129       if (!m_cR)
    130       {
    131         m_info = NumericalIssue;
    132         m_isInitialized = false;
    133         return;
    134       }
    135       m_info = Success;
    136       m_isInitialized = true;
    137       m_isRUpToDate = false;
    138     }
    139     /**
    140      * Get the number of rows of the input matrix and the Q matrix
    141      */
    142     inline Index rows() const {return m_rows; }
    143 
    144     /**
    145      * Get the number of columns of the input matrix.
    146      */
    147     inline Index cols() const { return m_cR->ncol; }
    148 
    149     template<typename Rhs, typename Dest>
    150     void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
    151     {
    152       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
    153       eigen_assert(b.cols()==1 && "This method is for vectors only");
    154 
    155       //Compute Q^T * b
    156       typename Dest::PlainObject y, y2;
    157       y = matrixQ().transpose() * b;
    158 
    159       // Solves with the triangular matrix R
    160       Index rk = this->rank();
    161       y2 = y;
    162       y.resize((std::max)(cols(),Index(y.rows())),y.cols());
    163       y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
    164 
    165       // Apply the column permutation
    166       // colsPermutation() performs a copy of the permutation,
    167       // so let's apply it manually:
    168       for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
    169       for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
    170 
    171 //       y.bottomRows(y.rows()-rk).setZero();
    172 //       dest = colsPermutation() * y.topRows(cols());
    173 
    174       m_info = Success;
    175     }
    176 
    177     /** \returns the sparse triangular factor R. It is a sparse matrix
    178      */
    179     const MatrixType matrixR() const
    180     {
    181       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
    182       if(!m_isRUpToDate) {
    183         m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::StorageIndex>(*m_cR);
    184         m_isRUpToDate = true;
    185       }
    186       return m_R;
    187     }
    188     /// Get an expression of the matrix Q
    189     SPQRMatrixQReturnType<SPQR> matrixQ() const
    190     {
    191       return SPQRMatrixQReturnType<SPQR>(*this);
    192     }
    193     /// Get the permutation that was applied to columns of A
    194     PermutationType colsPermutation() const
    195     {
    196       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
    197       return PermutationType(m_E, m_cR->ncol);
    198     }
    199     /**
    200      * Gets the rank of the matrix.
    201      * It should be equal to matrixQR().cols if the matrix is full-rank
    202      */
    203     Index rank() const
    204     {
    205       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
    206       return m_cc.SPQR_istat[4];
    207     }
    208     /// Set the fill-reducing ordering method to be used
    209     void setSPQROrdering(int ord) { m_ordering = ord;}
    210     /// Set the tolerance tol to treat columns with 2-norm < =tol as zero
    211     void setPivotThreshold(const RealScalar& tol)
    212     {
    213       m_useDefaultThreshold = false;
    214       m_tolerance = tol;
    215     }
    216 
    217     /** \returns a pointer to the SPQR workspace */
    218     cholmod_common *cholmodCommon() const { return &m_cc; }
    219 
    220 
    221     /** \brief Reports whether previous computation was successful.
    222       *
    223       * \returns \c Success if computation was succesful,
    224       *          \c NumericalIssue if the sparse QR can not be computed
    225       */
    226     ComputationInfo info() const
    227     {
    228       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
    229       return m_info;
    230     }
    231   protected:
    232     bool m_analysisIsOk;
    233     bool m_factorizationIsOk;
    234     mutable bool m_isRUpToDate;
    235     mutable ComputationInfo m_info;
    236     int m_ordering; // Ordering method to use, see SPQR's manual
    237     int m_allow_tol; // Allow to use some tolerance during numerical factorization.
    238     RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
    239     mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
    240     mutable MatrixType m_R; // The sparse matrix R in Eigen format
    241     mutable StorageIndex *m_E; // The permutation applied to columns
    242     mutable cholmod_sparse *m_H;  //The householder vectors
    243     mutable StorageIndex *m_HPinv; // The row permutation of H
    244     mutable cholmod_dense *m_HTau; // The Householder coefficients
    245     mutable Index m_rank; // The rank of the matrix
    246     mutable cholmod_common m_cc; // Workspace and parameters
    247     bool m_useDefaultThreshold;     // Use default threshold
    248     Index m_rows;
    249     template<typename ,typename > friend struct SPQR_QProduct;
    250 };
    251 
    252 template <typename SPQRType, typename Derived>
    253 struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
    254 {
    255   typedef typename SPQRType::Scalar Scalar;
    256   typedef typename SPQRType::StorageIndex StorageIndex;
    257   //Define the constructor to get reference to argument types
    258   SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
    259 
    260   inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
    261   inline Index cols() const { return m_other.cols(); }
    262   // Assign to a vector
    263   template<typename ResType>
    264   void evalTo(ResType& res) const
    265   {
    266     cholmod_dense y_cd;
    267     cholmod_dense *x_cd;
    268     int method = m_transpose ? SPQR_QTX : SPQR_QX;
    269     cholmod_common *cc = m_spqr.cholmodCommon();
    270     y_cd = viewAsCholmod(m_other.const_cast_derived());
    271     x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
    272     res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
    273     cholmod_l_free_dense(&x_cd, cc);
    274   }
    275   const SPQRType& m_spqr;
    276   const Derived& m_other;
    277   bool m_transpose;
    278 
    279 };
    280 template<typename SPQRType>
    281 struct SPQRMatrixQReturnType{
    282 
    283   SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
    284   template<typename Derived>
    285   SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
    286   {
    287     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
    288   }
    289   SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
    290   {
    291     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
    292   }
    293   // To use for operations with the transpose of Q
    294   SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
    295   {
    296     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
    297   }
    298   const SPQRType& m_spqr;
    299 };
    300 
    301 template<typename SPQRType>
    302 struct SPQRMatrixQTransposeReturnType{
    303   SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
    304   template<typename Derived>
    305   SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
    306   {
    307     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
    308   }
    309   const SPQRType& m_spqr;
    310 };
    311 
    312 }// End namespace Eigen
    313 #endif
    314