Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 #include <Eigen/QR>
     12 
     13 template<typename Derived1, typename Derived2>
     14 bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision())
     15 {
     16   return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon
     17                           * (std::max)(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff()));
     18 }
     19 
     20 template<typename MatrixType> void product(const MatrixType& m)
     21 {
     22   /* this test covers the following files:
     23      Identity.h Product.h
     24   */
     25   typedef typename MatrixType::Scalar Scalar;
     26   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
     27   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
     28   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
     29   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
     30   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
     31                          MatrixType::Flags&RowMajorBit?ColMajor:RowMajor> OtherMajorMatrixType;
     32 
     33   Index rows = m.rows();
     34   Index cols = m.cols();
     35 
     36   // this test relies a lot on Random.h, and there's not much more that we can do
     37   // to test it, hence I consider that we will have tested Random.h
     38   MatrixType m1 = MatrixType::Random(rows, cols),
     39              m2 = MatrixType::Random(rows, cols),
     40              m3(rows, cols);
     41   RowSquareMatrixType
     42              identity = RowSquareMatrixType::Identity(rows, rows),
     43              square = RowSquareMatrixType::Random(rows, rows),
     44              res = RowSquareMatrixType::Random(rows, rows);
     45   ColSquareMatrixType
     46              square2 = ColSquareMatrixType::Random(cols, cols),
     47              res2 = ColSquareMatrixType::Random(cols, cols);
     48   RowVectorType v1 = RowVectorType::Random(rows);
     49   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
     50   OtherMajorMatrixType tm1 = m1;
     51 
     52   Scalar s1 = internal::random<Scalar>();
     53 
     54   Index r  = internal::random<Index>(0, rows-1),
     55         c  = internal::random<Index>(0, cols-1),
     56         c2 = internal::random<Index>(0, cols-1);
     57 
     58   // begin testing Product.h: only associativity for now
     59   // (we use Transpose.h but this doesn't count as a test for it)
     60   VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
     61   m3 = m1;
     62   m3 *= m1.transpose() * m2;
     63   VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2));
     64   VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2));
     65 
     66   // continue testing Product.h: distributivity
     67   VERIFY_IS_APPROX(square*(m1 + m2),        square*m1+square*m2);
     68   VERIFY_IS_APPROX(square*(m1 - m2),        square*m1-square*m2);
     69 
     70   // continue testing Product.h: compatibility with ScalarMultiple.h
     71   VERIFY_IS_APPROX(s1*(square*m1),          (s1*square)*m1);
     72   VERIFY_IS_APPROX(s1*(square*m1),          square*(m1*s1));
     73 
     74   // test Product.h together with Identity.h
     75   VERIFY_IS_APPROX(v1,                      identity*v1);
     76   VERIFY_IS_APPROX(v1.transpose(),          v1.transpose() * identity);
     77   // again, test operator() to check const-qualification
     78   VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
     79 
     80   if (rows!=cols)
     81      VERIFY_RAISES_ASSERT(m3 = m1*m1);
     82 
     83   // test the previous tests were not screwed up because operator* returns 0
     84   // (we use the more accurate default epsilon)
     85   if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
     86   {
     87     VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
     88   }
     89 
     90   // test optimized operator+= path
     91   res = square;
     92   res.noalias() += m1 * m2.transpose();
     93   VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
     94   if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
     95   {
     96     VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
     97   }
     98   vcres = vc2;
     99   vcres.noalias() += m1.transpose() * v1;
    100   VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
    101 
    102   // test optimized operator-= path
    103   res = square;
    104   res.noalias() -= m1 * m2.transpose();
    105   VERIFY_IS_APPROX(res, square - (m1 * m2.transpose()));
    106   if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
    107   {
    108     VERIFY(areNotApprox(res,square - m2 * m1.transpose()));
    109   }
    110   vcres = vc2;
    111   vcres.noalias() -= m1.transpose() * v1;
    112   VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1);
    113 
    114   // test d ?= a+b*c rules
    115   res.noalias() = square + m1 * m2.transpose();
    116   VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
    117   res.noalias() += square + m1 * m2.transpose();
    118   VERIFY_IS_APPROX(res, 2*(square + m1 * m2.transpose()));
    119   res.noalias() -= square + m1 * m2.transpose();
    120   VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
    121 
    122   // test d ?= a-b*c rules
    123   res.noalias() = square - m1 * m2.transpose();
    124   VERIFY_IS_APPROX(res, square - m1 * m2.transpose());
    125   res.noalias() += square - m1 * m2.transpose();
    126   VERIFY_IS_APPROX(res, 2*(square - m1 * m2.transpose()));
    127   res.noalias() -= square - m1 * m2.transpose();
    128   VERIFY_IS_APPROX(res, square - m1 * m2.transpose());
    129 
    130 
    131   tm1 = m1;
    132   VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
    133   VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
    134 
    135   // test submatrix and matrix/vector product
    136   for (int i=0; i<rows; ++i)
    137     res.row(i) = m1.row(i) * m2.transpose();
    138   VERIFY_IS_APPROX(res, m1 * m2.transpose());
    139   // the other way round:
    140   for (int i=0; i<rows; ++i)
    141     res.col(i) = m1 * m2.transpose().col(i);
    142   VERIFY_IS_APPROX(res, m1 * m2.transpose());
    143 
    144   res2 = square2;
    145   res2.noalias() += m1.transpose() * m2;
    146   VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
    147   if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
    148   {
    149     VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
    150   }
    151 
    152   VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval());
    153   VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval());
    154 
    155   // vector at runtime (see bug 1166)
    156   {
    157     RowSquareMatrixType ref(square);
    158     ColSquareMatrixType ref2(square2);
    159     ref = res = square;
    160     VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square.transpose(),            (ref.row(0) = m1.col(0).transpose() * square.transpose()));
    161     VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square.transpose(), (ref.row(0) = m1.col(0).transpose() * square.transpose()));
    162     VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square,                        (ref.row(0) = m1.col(0).transpose() * square));
    163     VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square,             (ref.row(0) = m1.col(0).transpose() * square));
    164     ref2 = res2 = square2;
    165     VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2.transpose(),                      (ref2.row(0) = m1.row(0) * square2.transpose()));
    166     VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2.transpose(),           (ref2.row(0) = m1.row(0) * square2.transpose()));
    167     VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2,                                  (ref2.row(0) = m1.row(0) * square2));
    168     VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2,                       (ref2.row(0) = m1.row(0) * square2));
    169   }
    170 
    171   // vector.block() (see bug 1283)
    172   {
    173     RowVectorType w1(rows);
    174     VERIFY_IS_APPROX(square * v1.block(0,0,rows,1), square * v1);
    175     VERIFY_IS_APPROX(w1.noalias() = square * v1.block(0,0,rows,1), square * v1);
    176     VERIFY_IS_APPROX(w1.block(0,0,rows,1).noalias() = square * v1.block(0,0,rows,1), square * v1);
    177 
    178     Matrix<Scalar,1,MatrixType::ColsAtCompileTime> w2(cols);
    179     VERIFY_IS_APPROX(vc2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
    180     VERIFY_IS_APPROX(w2.noalias() = vc2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
    181     VERIFY_IS_APPROX(w2.block(0,0,1,cols).noalias() = vc2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
    182 
    183     vc2 = square2.block(0,0,1,cols).transpose();
    184     VERIFY_IS_APPROX(square2.block(0,0,1,cols) * square2, vc2.transpose() * square2);
    185     VERIFY_IS_APPROX(w2.noalias() = square2.block(0,0,1,cols) * square2, vc2.transpose() * square2);
    186     VERIFY_IS_APPROX(w2.block(0,0,1,cols).noalias() = square2.block(0,0,1,cols) * square2, vc2.transpose() * square2);
    187 
    188     vc2 = square2.block(0,0,cols,1);
    189     VERIFY_IS_APPROX(square2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
    190     VERIFY_IS_APPROX(w2.noalias() = square2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
    191     VERIFY_IS_APPROX(w2.block(0,0,1,cols).noalias() = square2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
    192   }
    193 
    194   // inner product
    195   {
    196     Scalar x = square2.row(c) * square2.col(c2);
    197     VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
    198   }
    199 
    200   // outer product
    201   {
    202     VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
    203     VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), m1.block(r,0,1,cols).transpose() * m1.block(0,c,rows,1).transpose());
    204     VERIFY_IS_APPROX(m1.block(0,c,rows,1) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
    205     VERIFY_IS_APPROX(m1.col(c) * m1.block(r,0,1,cols), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
    206     VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0,0,rows,1) * m1.block(r,0,1,cols));
    207     VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols));
    208   }
    209 
    210   // Aliasing
    211   {
    212     ColVectorType x(cols); x.setRandom();
    213     ColVectorType z(x);
    214     ColVectorType y(cols); y.setZero();
    215     ColSquareMatrixType A(cols,cols); A.setRandom();
    216     // CwiseBinaryOp
    217     VERIFY_IS_APPROX(x = y + A*x, A*z);
    218     x = z;
    219     // CwiseUnaryOp
    220     VERIFY_IS_APPROX(x = Scalar(1.)*(A*x), A*z);
    221   }
    222 
    223   // regression for blas_trais
    224   {
    225     VERIFY_IS_APPROX(square * (square*square).transpose(), square * square.transpose() * square.transpose());
    226     VERIFY_IS_APPROX(square * (-(square*square)), -square * square * square);
    227     VERIFY_IS_APPROX(square * (s1*(square*square)), s1 * square * square * square);
    228     VERIFY_IS_APPROX(square * (square*square).conjugate(), square * square.conjugate() * square.conjugate());
    229   }
    230 
    231 }
    232