Home | History | Annotate | Download | only in IterativeSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2012 Dsir Nuentsa-Wakam <desire.nuentsa_wakam (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_DGMRES_H
     11 #define EIGEN_DGMRES_H
     12 
     13 #include <Eigen/Eigenvalues>
     14 
     15 namespace Eigen {
     16 
     17 template< typename _MatrixType,
     18           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
     19 class DGMRES;
     20 
     21 namespace internal {
     22 
     23 template< typename _MatrixType, typename _Preconditioner>
     24 struct traits<DGMRES<_MatrixType,_Preconditioner> >
     25 {
     26   typedef _MatrixType MatrixType;
     27   typedef _Preconditioner Preconditioner;
     28 };
     29 
     30 /** \brief Computes a permutation vector to have a sorted sequence
     31   * \param vec The vector to reorder.
     32   * \param perm gives the sorted sequence on output. Must be initialized with 0..n-1
     33   * \param ncut Put  the ncut smallest elements at the end of the vector
     34   * WARNING This is an expensive sort, so should be used only
     35   * for small size vectors
     36   * TODO Use modified QuickSplit or std::nth_element to get the smallest values
     37   */
     38 template <typename VectorType, typename IndexType>
     39 void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut)
     40 {
     41   eigen_assert(vec.size() == perm.size());
     42   typedef typename IndexType::Scalar Index;
     43   bool flag;
     44   for (Index k  = 0; k < ncut; k++)
     45   {
     46     flag = false;
     47     for (Index j = 0; j < vec.size()-1; j++)
     48     {
     49       if ( vec(perm(j)) < vec(perm(j+1)) )
     50       {
     51         std::swap(perm(j),perm(j+1));
     52         flag = true;
     53       }
     54       if (!flag) break; // The vector is in sorted order
     55     }
     56   }
     57 }
     58 
     59 }
     60 /**
     61  * \ingroup IterativeLInearSolvers_Module
     62  * \brief A Restarted GMRES with deflation.
     63  * This class implements a modification of the GMRES solver for
     64  * sparse linear systems. The basis is built with modified
     65  * Gram-Schmidt. At each restart, a few approximated eigenvectors
     66  * corresponding to the smallest eigenvalues are used to build a
     67  * preconditioner for the next cycle. This preconditioner
     68  * for deflation can be combined with any other preconditioner,
     69  * the IncompleteLUT for instance. The preconditioner is applied
     70  * at right of the matrix and the combination is multiplicative.
     71  *
     72  * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
     73  * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
     74  * Typical usage :
     75  * \code
     76  * SparseMatrix<double> A;
     77  * VectorXd x, b;
     78  * //Fill A and b ...
     79  * DGMRES<SparseMatrix<double> > solver;
     80  * solver.set_restart(30); // Set restarting value
     81  * solver.setEigenv(1); // Set the number of eigenvalues to deflate
     82  * solver.compute(A);
     83  * x = solver.solve(b);
     84  * \endcode
     85  *
     86  * DGMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
     87  *
     88  * References :
     89  * [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid
     90  *  Algebraic Solvers for Linear Systems Arising from Compressible
     91  *  Flows, Computers and Fluids, In Press,
     92  *  http://dx.doi.org/10.1016/j.compfluid.2012.03.023
     93  * [2] K. Burrage and J. Erhel, On the performance of various
     94  * adaptive preconditioned GMRES strategies, 5(1998), 101-121.
     95  * [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES
     96  *  preconditioned by deflation,J. Computational and Applied
     97  *  Mathematics, 69(1996), 303-318.
     98 
     99  *
    100  */
    101 template< typename _MatrixType, typename _Preconditioner>
    102 class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
    103 {
    104     typedef IterativeSolverBase<DGMRES> Base;
    105     using Base::matrix;
    106     using Base::m_error;
    107     using Base::m_iterations;
    108     using Base::m_info;
    109     using Base::m_isInitialized;
    110     using Base::m_tolerance;
    111   public:
    112     using Base::_solve_impl;
    113     typedef _MatrixType MatrixType;
    114     typedef typename MatrixType::Scalar Scalar;
    115     typedef typename MatrixType::Index Index;
    116     typedef typename MatrixType::StorageIndex StorageIndex;
    117     typedef typename MatrixType::RealScalar RealScalar;
    118     typedef _Preconditioner Preconditioner;
    119     typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    120     typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix;
    121     typedef Matrix<Scalar,Dynamic,1> DenseVector;
    122     typedef Matrix<RealScalar,Dynamic,1> DenseRealVector;
    123     typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector;
    124 
    125 
    126   /** Default constructor. */
    127   DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
    128 
    129   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    130     *
    131     * This constructor is a shortcut for the default constructor followed
    132     * by a call to compute().
    133     *
    134     * \warning this class stores a reference to the matrix A as well as some
    135     * precomputed values that depend on it. Therefore, if \a A is changed
    136     * this class becomes invalid. Call compute() to update it with the new
    137     * matrix A, or modify a copy of A.
    138     */
    139   template<typename MatrixDerived>
    140   explicit DGMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
    141 
    142   ~DGMRES() {}
    143 
    144   /** \internal */
    145   template<typename Rhs,typename Dest>
    146   void _solve_with_guess_impl(const Rhs& b, Dest& x) const
    147   {
    148     bool failed = false;
    149     for(int j=0; j<b.cols(); ++j)
    150     {
    151       m_iterations = Base::maxIterations();
    152       m_error = Base::m_tolerance;
    153 
    154       typename Dest::ColXpr xj(x,j);
    155       dgmres(matrix(), b.col(j), xj, Base::m_preconditioner);
    156     }
    157     m_info = failed ? NumericalIssue
    158            : m_error <= Base::m_tolerance ? Success
    159            : NoConvergence;
    160     m_isInitialized = true;
    161   }
    162 
    163   /** \internal */
    164   template<typename Rhs,typename Dest>
    165   void _solve_impl(const Rhs& b, MatrixBase<Dest>& x) const
    166   {
    167     x = b;
    168     _solve_with_guess_impl(b,x.derived());
    169   }
    170   /**
    171    * Get the restart value
    172     */
    173   int restart() { return m_restart; }
    174 
    175   /**
    176    * Set the restart value (default is 30)
    177    */
    178   void set_restart(const int restart) { m_restart=restart; }
    179 
    180   /**
    181    * Set the number of eigenvalues to deflate at each restart
    182    */
    183   void setEigenv(const int neig)
    184   {
    185     m_neig = neig;
    186     if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates
    187   }
    188 
    189   /**
    190    * Get the size of the deflation subspace size
    191    */
    192   int deflSize() {return m_r; }
    193 
    194   /**
    195    * Set the maximum size of the deflation subspace
    196    */
    197   void setMaxEigenv(const int maxNeig) { m_maxNeig = maxNeig; }
    198 
    199   protected:
    200     // DGMRES algorithm
    201     template<typename Rhs, typename Dest>
    202     void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
    203     // Perform one cycle of GMRES
    204     template<typename Dest>
    205     int dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const;
    206     // Compute data to use for deflation
    207     int dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const;
    208     // Apply deflation to a vector
    209     template<typename RhsType, typename DestType>
    210     int dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
    211     ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const;
    212     ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const;
    213     // Init data for deflation
    214     void dgmresInitDeflation(Index& rows) const;
    215     mutable DenseMatrix m_V; // Krylov basis vectors
    216     mutable DenseMatrix m_H; // Hessenberg matrix
    217     mutable DenseMatrix m_Hes; // Initial hessenberg matrix wihout Givens rotations applied
    218     mutable Index m_restart; // Maximum size of the Krylov subspace
    219     mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace
    220     mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
    221     mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
    222     mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
    223     mutable StorageIndex m_neig; //Number of eigenvalues to extract at each restart
    224     mutable int m_r; // Current number of deflated eigenvalues, size of m_U
    225     mutable int m_maxNeig; // Maximum number of eigenvalues to deflate
    226     mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A
    227     mutable bool m_isDeflAllocated;
    228     mutable bool m_isDeflInitialized;
    229 
    230     //Adaptive strategy
    231     mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed
    232     mutable bool m_force; // Force the use of deflation at each restart
    233 
    234 };
    235 /**
    236  * \brief Perform several cycles of restarted GMRES with modified Gram Schmidt,
    237  *
    238  * A right preconditioner is used combined with deflation.
    239  *
    240  */
    241 template< typename _MatrixType, typename _Preconditioner>
    242 template<typename Rhs, typename Dest>
    243 void DGMRES<_MatrixType, _Preconditioner>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x,
    244               const Preconditioner& precond) const
    245 {
    246   //Initialization
    247   int n = mat.rows();
    248   DenseVector r0(n);
    249   int nbIts = 0;
    250   m_H.resize(m_restart+1, m_restart);
    251   m_Hes.resize(m_restart, m_restart);
    252   m_V.resize(n,m_restart+1);
    253   //Initial residual vector and intial norm
    254   x = precond.solve(x);
    255   r0 = rhs - mat * x;
    256   RealScalar beta = r0.norm();
    257   RealScalar normRhs = rhs.norm();
    258   m_error = beta/normRhs;
    259   if(m_error < m_tolerance)
    260     m_info = Success;
    261   else
    262     m_info = NoConvergence;
    263 
    264   // Iterative process
    265   while (nbIts < m_iterations && m_info == NoConvergence)
    266   {
    267     dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts);
    268 
    269     // Compute the new residual vector for the restart
    270     if (nbIts < m_iterations && m_info == NoConvergence)
    271       r0 = rhs - mat * x;
    272   }
    273 }
    274 
    275 /**
    276  * \brief Perform one restart cycle of DGMRES
    277  * \param mat The coefficient matrix
    278  * \param precond The preconditioner
    279  * \param x the new approximated solution
    280  * \param r0 The initial residual vector
    281  * \param beta The norm of the residual computed so far
    282  * \param normRhs The norm of the right hand side vector
    283  * \param nbIts The number of iterations
    284  */
    285 template< typename _MatrixType, typename _Preconditioner>
    286 template<typename Dest>
    287 int DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const
    288 {
    289   //Initialization
    290   DenseVector g(m_restart+1); // Right hand side of the least square problem
    291   g.setZero();
    292   g(0) = Scalar(beta);
    293   m_V.col(0) = r0/beta;
    294   m_info = NoConvergence;
    295   std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations
    296   int it = 0; // Number of inner iterations
    297   int n = mat.rows();
    298   DenseVector tv1(n), tv2(n);  //Temporary vectors
    299   while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations)
    300   {
    301     // Apply preconditioner(s) at right
    302     if (m_isDeflInitialized )
    303     {
    304       dgmresApplyDeflation(m_V.col(it), tv1); // Deflation
    305       tv2 = precond.solve(tv1);
    306     }
    307     else
    308     {
    309       tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner
    310     }
    311     tv1 = mat * tv2;
    312 
    313     // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt
    314     Scalar coef;
    315     for (int i = 0; i <= it; ++i)
    316     {
    317       coef = tv1.dot(m_V.col(i));
    318       tv1 = tv1 - coef * m_V.col(i);
    319       m_H(i,it) = coef;
    320       m_Hes(i,it) = coef;
    321     }
    322     // Normalize the vector
    323     coef = tv1.norm();
    324     m_V.col(it+1) = tv1/coef;
    325     m_H(it+1, it) = coef;
    326 //     m_Hes(it+1,it) = coef;
    327 
    328     // FIXME Check for happy breakdown
    329 
    330     // Update Hessenberg matrix with Givens rotations
    331     for (int i = 1; i <= it; ++i)
    332     {
    333       m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint());
    334     }
    335     // Compute the new plane rotation
    336     gr[it].makeGivens(m_H(it, it), m_H(it+1,it));
    337     // Apply the new rotation
    338     m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint());
    339     g.applyOnTheLeft(it,it+1, gr[it].adjoint());
    340 
    341     beta = std::abs(g(it+1));
    342     m_error = beta/normRhs;
    343     // std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
    344     it++; nbIts++;
    345 
    346     if (m_error < m_tolerance)
    347     {
    348       // The method has converged
    349       m_info = Success;
    350       break;
    351     }
    352   }
    353 
    354   // Compute the new coefficients by solving the least square problem
    355 //   it++;
    356   //FIXME  Check first if the matrix is singular ... zero diagonal
    357   DenseVector nrs(m_restart);
    358   nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it));
    359 
    360   // Form the new solution
    361   if (m_isDeflInitialized)
    362   {
    363     tv1 = m_V.leftCols(it) * nrs;
    364     dgmresApplyDeflation(tv1, tv2);
    365     x = x + precond.solve(tv2);
    366   }
    367   else
    368     x = x + precond.solve(m_V.leftCols(it) * nrs);
    369 
    370   // Go for a new cycle and compute data for deflation
    371   if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig)
    372     dgmresComputeDeflationData(mat, precond, it, m_neig);
    373   return 0;
    374 
    375 }
    376 
    377 
    378 template< typename _MatrixType, typename _Preconditioner>
    379 void DGMRES<_MatrixType, _Preconditioner>::dgmresInitDeflation(Index& rows) const
    380 {
    381   m_U.resize(rows, m_maxNeig);
    382   m_MU.resize(rows, m_maxNeig);
    383   m_T.resize(m_maxNeig, m_maxNeig);
    384   m_lambdaN = 0.0;
    385   m_isDeflAllocated = true;
    386 }
    387 
    388 template< typename _MatrixType, typename _Preconditioner>
    389 inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const
    390 {
    391   return schurofH.matrixT().diagonal();
    392 }
    393 
    394 template< typename _MatrixType, typename _Preconditioner>
    395 inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const RealSchur<DenseMatrix>& schurofH) const
    396 {
    397   typedef typename MatrixType::Index Index;
    398   const DenseMatrix& T = schurofH.matrixT();
    399   Index it = T.rows();
    400   ComplexVector eig(it);
    401   Index j = 0;
    402   while (j < it-1)
    403   {
    404     if (T(j+1,j) ==Scalar(0))
    405     {
    406       eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
    407       j++;
    408     }
    409     else
    410     {
    411       eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j));
    412       eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1));
    413       j++;
    414     }
    415   }
    416   if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
    417   return eig;
    418 }
    419 
    420 template< typename _MatrixType, typename _Preconditioner>
    421 int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const
    422 {
    423   // First, find the Schur form of the Hessenberg matrix H
    424   typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH;
    425   bool computeU = true;
    426   DenseMatrix matrixQ(it,it);
    427   matrixQ.setIdentity();
    428   schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU);
    429 
    430   ComplexVector eig(it);
    431   Matrix<StorageIndex,Dynamic,1>perm(it);
    432   eig = this->schurValues(schurofH);
    433 
    434   // Reorder the absolute values of Schur values
    435   DenseRealVector modulEig(it);
    436   for (int j=0; j<it; ++j) modulEig(j) = std::abs(eig(j));
    437   perm.setLinSpaced(it,0,it-1);
    438   internal::sortWithPermutation(modulEig, perm, neig);
    439 
    440   if (!m_lambdaN)
    441   {
    442     m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN);
    443   }
    444   //Count the real number of extracted eigenvalues (with complex conjugates)
    445   int nbrEig = 0;
    446   while (nbrEig < neig)
    447   {
    448     if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++;
    449     else nbrEig += 2;
    450   }
    451   // Extract the  Schur vectors corresponding to the smallest Ritz values
    452   DenseMatrix Sr(it, nbrEig);
    453   Sr.setZero();
    454   for (int j = 0; j < nbrEig; j++)
    455   {
    456     Sr.col(j) = schurofH.matrixU().col(perm(it-j-1));
    457   }
    458 
    459   // Form the Schur vectors of the initial matrix using the Krylov basis
    460   DenseMatrix X;
    461   X = m_V.leftCols(it) * Sr;
    462   if (m_r)
    463   {
    464    // Orthogonalize X against m_U using modified Gram-Schmidt
    465    for (int j = 0; j < nbrEig; j++)
    466      for (int k =0; k < m_r; k++)
    467       X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k);
    468   }
    469 
    470   // Compute m_MX = A * M^-1 * X
    471   Index m = m_V.rows();
    472   if (!m_isDeflAllocated)
    473     dgmresInitDeflation(m);
    474   DenseMatrix MX(m, nbrEig);
    475   DenseVector tv1(m);
    476   for (int j = 0; j < nbrEig; j++)
    477   {
    478     tv1 = mat * X.col(j);
    479     MX.col(j) = precond.solve(tv1);
    480   }
    481 
    482   //Update m_T = [U'MU U'MX; X'MU X'MX]
    483   m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX;
    484   if(m_r)
    485   {
    486     m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX;
    487     m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
    488   }
    489 
    490   // Save X into m_U and m_MX in m_MU
    491   for (int j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j);
    492   for (int j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j);
    493   // Increase the size of the invariant subspace
    494   m_r += nbrEig;
    495 
    496   // Factorize m_T into m_luT
    497   m_luT.compute(m_T.topLeftCorner(m_r, m_r));
    498 
    499   //FIXME CHeck if the factorization was correctly done (nonsingular matrix)
    500   m_isDeflInitialized = true;
    501   return 0;
    502 }
    503 template<typename _MatrixType, typename _Preconditioner>
    504 template<typename RhsType, typename DestType>
    505 int DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x, DestType &y) const
    506 {
    507   DenseVector x1 = m_U.leftCols(m_r).transpose() * x;
    508   y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1);
    509   return 0;
    510 }
    511 
    512 } // end namespace Eigen
    513 #endif
    514