Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2013 Christoph Hertzberg <chtz (at) informatik.uni-bremen.de>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 #include <unsupported/Eigen/AutoDiff>
     12 
     13 /*
     14  * In this file scalar derivations are tested for correctness.
     15  * TODO add more tests!
     16  */
     17 
     18 template<typename Scalar> void check_atan2()
     19 {
     20   typedef Matrix<Scalar, 1, 1> Deriv1;
     21   typedef AutoDiffScalar<Deriv1> AD;
     22 
     23   AD x(internal::random<Scalar>(-3.0, 3.0), Deriv1::UnitX());
     24 
     25   using std::exp;
     26   Scalar r = exp(internal::random<Scalar>(-10, 10));
     27 
     28   AD s = sin(x), c = cos(x);
     29   AD res = atan2(r*s, r*c);
     30 
     31   VERIFY_IS_APPROX(res.value(), x.value());
     32   VERIFY_IS_APPROX(res.derivatives(), x.derivatives());
     33 
     34   res = atan2(r*s+0, r*c+0);
     35   VERIFY_IS_APPROX(res.value(), x.value());
     36   VERIFY_IS_APPROX(res.derivatives(), x.derivatives());
     37 }
     38 
     39 template<typename Scalar> void check_hyperbolic_functions()
     40 {
     41   using std::sinh;
     42   using std::cosh;
     43   using std::tanh;
     44   typedef Matrix<Scalar, 1, 1> Deriv1;
     45   typedef AutoDiffScalar<Deriv1> AD;
     46   Deriv1 p = Deriv1::Random();
     47   AD val(p.x(),Deriv1::UnitX());
     48 
     49   Scalar cosh_px = std::cosh(p.x());
     50   AD res1 = tanh(val);
     51   VERIFY_IS_APPROX(res1.value(), std::tanh(p.x()));
     52   VERIFY_IS_APPROX(res1.derivatives().x(), Scalar(1.0) / (cosh_px * cosh_px));
     53 
     54   AD res2 = sinh(val);
     55   VERIFY_IS_APPROX(res2.value(), std::sinh(p.x()));
     56   VERIFY_IS_APPROX(res2.derivatives().x(), cosh_px);
     57 
     58   AD res3 = cosh(val);
     59   VERIFY_IS_APPROX(res3.value(), cosh_px);
     60   VERIFY_IS_APPROX(res3.derivatives().x(), std::sinh(p.x()));
     61 
     62   // Check constant values.
     63   const Scalar sample_point = Scalar(1) / Scalar(3);
     64   val = AD(sample_point,Deriv1::UnitX());
     65   res1 = tanh(val);
     66   VERIFY_IS_APPROX(res1.derivatives().x(), Scalar(0.896629559604914));
     67 
     68   res2 = sinh(val);
     69   VERIFY_IS_APPROX(res2.derivatives().x(), Scalar(1.056071867829939));
     70 
     71   res3 = cosh(val);
     72   VERIFY_IS_APPROX(res3.derivatives().x(), Scalar(0.339540557256150));
     73 }
     74 
     75 template <typename Scalar>
     76 void check_limits_specialization()
     77 {
     78   typedef Eigen::Matrix<Scalar, 1, 1> Deriv;
     79   typedef Eigen::AutoDiffScalar<Deriv> AD;
     80 
     81   typedef std::numeric_limits<AD> A;
     82   typedef std::numeric_limits<Scalar> B;
     83 
     84 #if EIGEN_HAS_CXX11
     85   VERIFY(bool(std::is_base_of<B, A>::value));
     86 #endif
     87 }
     88 
     89 void test_autodiff_scalar()
     90 {
     91   for(int i = 0; i < g_repeat; i++) {
     92     CALL_SUBTEST_1( check_atan2<float>() );
     93     CALL_SUBTEST_2( check_atan2<double>() );
     94     CALL_SUBTEST_3( check_hyperbolic_functions<float>() );
     95     CALL_SUBTEST_4( check_hyperbolic_functions<double>() );
     96     CALL_SUBTEST_5( check_limits_specialization<double>());
     97   }
     98 }
     99