Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog (a] gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #define EIGEN_TEST_NO_LONGDOUBLE
     11 #define EIGEN_TEST_NO_COMPLEX
     12 #define EIGEN_TEST_FUNC cxx11_tensor_cast_float16_cuda
     13 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
     14 #define EIGEN_USE_GPU
     15 
     16 #if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500
     17 #include <cuda_fp16.h>
     18 #endif
     19 #include "main.h"
     20 #include <unsupported/Eigen/CXX11/Tensor>
     21 
     22 using Eigen::Tensor;
     23 
     24 void test_cuda_conversion() {
     25   Eigen::CudaStreamDevice stream;
     26   Eigen::GpuDevice gpu_device(&stream);
     27   int num_elem = 101;
     28 
     29   Tensor<float, 1> floats(num_elem);
     30   floats.setRandom();
     31 
     32   float* d_float = (float*)gpu_device.allocate(num_elem * sizeof(float));
     33   Eigen::half* d_half = (Eigen::half*)gpu_device.allocate(num_elem * sizeof(Eigen::half));
     34   float* d_conv = (float*)gpu_device.allocate(num_elem * sizeof(float));
     35 
     36   Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_float(
     37       d_float, num_elem);
     38   Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_half(
     39       d_half, num_elem);
     40   Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_conv(
     41       d_conv, num_elem);
     42 
     43   gpu_device.memcpyHostToDevice(d_float, floats.data(), num_elem*sizeof(float));
     44 
     45   gpu_half.device(gpu_device) = gpu_float.cast<Eigen::half>();
     46   gpu_conv.device(gpu_device) = gpu_half.cast<float>();
     47 
     48   Tensor<float, 1> initial(num_elem);
     49   Tensor<float, 1> final(num_elem);
     50   gpu_device.memcpyDeviceToHost(initial.data(), d_float, num_elem*sizeof(float));
     51   gpu_device.memcpyDeviceToHost(final.data(), d_conv, num_elem*sizeof(float));
     52   gpu_device.synchronize();
     53 
     54   for (int i = 0; i < num_elem; ++i) {
     55     VERIFY_IS_APPROX(initial(i), final(i));
     56   }
     57 
     58   gpu_device.deallocate(d_float);
     59   gpu_device.deallocate(d_half);
     60   gpu_device.deallocate(d_conv);
     61 }
     62 
     63 
     64 void test_fallback_conversion() {
     65   int num_elem = 101;
     66   Tensor<float, 1> floats(num_elem);
     67   floats.setRandom();
     68 
     69   Eigen::Tensor<Eigen::half, 1> halfs = floats.cast<Eigen::half>();
     70   Eigen::Tensor<float, 1> conv = halfs.cast<float>();
     71 
     72   for (int i = 0; i < num_elem; ++i) {
     73     VERIFY_IS_APPROX(floats(i), conv(i));
     74   }
     75 }
     76 
     77 
     78 void test_cxx11_tensor_cast_float16_cuda()
     79 {
     80   CALL_SUBTEST(test_cuda_conversion());
     81   CALL_SUBTEST(test_fallback_conversion());
     82 }
     83