Home | History | Annotate | Download | only in smooth
      1 /***************************************************************************/
      2 /*                                                                         */
      3 /*  ftgrays.c                                                              */
      4 /*                                                                         */
      5 /*    A new `perfect' anti-aliasing renderer (body).                       */
      6 /*                                                                         */
      7 /*  Copyright 2000-2017 by                                                 */
      8 /*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
      9 /*                                                                         */
     10 /*  This file is part of the FreeType project, and may only be used,       */
     11 /*  modified, and distributed under the terms of the FreeType project      */
     12 /*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
     13 /*  this file you indicate that you have read the license and              */
     14 /*  understand and accept it fully.                                        */
     15 /*                                                                         */
     16 /***************************************************************************/
     17 
     18   /*************************************************************************/
     19   /*                                                                       */
     20   /* This file can be compiled without the rest of the FreeType engine, by */
     21   /* defining the STANDALONE_ macro when compiling it.  You also need to   */
     22   /* put the files `ftgrays.h' and `ftimage.h' into the current            */
     23   /* compilation directory.  Typically, you could do something like        */
     24   /*                                                                       */
     25   /* - copy `src/smooth/ftgrays.c' (this file) to your current directory   */
     26   /*                                                                       */
     27   /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */
     28   /*   same directory                                                      */
     29   /*                                                                       */
     30   /* - compile `ftgrays' with the STANDALONE_ macro defined, as in         */
     31   /*                                                                       */
     32   /*     cc -c -DSTANDALONE_ ftgrays.c                                     */
     33   /*                                                                       */
     34   /* The renderer can be initialized with a call to                        */
     35   /* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated  */
     36   /* with a call to `ft_gray_raster.raster_render'.                        */
     37   /*                                                                       */
     38   /* See the comments and documentation in the file `ftimage.h' for more   */
     39   /* details on how the raster works.                                      */
     40   /*                                                                       */
     41   /*************************************************************************/
     42 
     43   /*************************************************************************/
     44   /*                                                                       */
     45   /* This is a new anti-aliasing scan-converter for FreeType 2.  The       */
     46   /* algorithm used here is _very_ different from the one in the standard  */
     47   /* `ftraster' module.  Actually, `ftgrays' computes the _exact_          */
     48   /* coverage of the outline on each pixel cell.                           */
     49   /*                                                                       */
     50   /* It is based on ideas that I initially found in Raph Levien's          */
     51   /* excellent LibArt graphics library (see http://www.levien.com/libart   */
     52   /* for more information, though the web pages do not tell anything       */
     53   /* about the renderer; you'll have to dive into the source code to       */
     54   /* understand how it works).                                             */
     55   /*                                                                       */
     56   /* Note, however, that this is a _very_ different implementation         */
     57   /* compared to Raph's.  Coverage information is stored in a very         */
     58   /* different way, and I don't use sorted vector paths.  Also, it doesn't */
     59   /* use floating point values.                                            */
     60   /*                                                                       */
     61   /* This renderer has the following advantages:                           */
     62   /*                                                                       */
     63   /* - It doesn't need an intermediate bitmap.  Instead, one can supply a  */
     64   /*   callback function that will be called by the renderer to draw gray  */
     65   /*   spans on any target surface.  You can thus do direct composition on */
     66   /*   any kind of bitmap, provided that you give the renderer the right   */
     67   /*   callback.                                                           */
     68   /*                                                                       */
     69   /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on   */
     70   /*   each pixel cell.                                                    */
     71   /*                                                                       */
     72   /* - It performs a single pass on the outline (the `standard' FT2        */
     73   /*   renderer makes two passes).                                         */
     74   /*                                                                       */
     75   /* - It can easily be modified to render to _any_ number of gray levels  */
     76   /*   cheaply.                                                            */
     77   /*                                                                       */
     78   /* - For small (< 20) pixel sizes, it is faster than the standard        */
     79   /*   renderer.                                                           */
     80   /*                                                                       */
     81   /*************************************************************************/
     82 
     83 
     84   /*************************************************************************/
     85   /*                                                                       */
     86   /* The macro FT_COMPONENT is used in trace mode.  It is an implicit      */
     87   /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log  */
     88   /* messages during execution.                                            */
     89   /*                                                                       */
     90 #undef  FT_COMPONENT
     91 #define FT_COMPONENT  trace_smooth
     92 
     93 
     94 #ifdef STANDALONE_
     95 
     96 
     97   /* The size in bytes of the render pool used by the scan-line converter  */
     98   /* to do all of its work.                                                */
     99 #define FT_RENDER_POOL_SIZE  16384L
    100 
    101 
    102   /* Auxiliary macros for token concatenation. */
    103 #define FT_ERR_XCAT( x, y )  x ## y
    104 #define FT_ERR_CAT( x, y )   FT_ERR_XCAT( x, y )
    105 
    106 #define FT_BEGIN_STMNT  do {
    107 #define FT_END_STMNT    } while ( 0 )
    108 
    109 #define FT_MIN( a, b )  ( (a) < (b) ? (a) : (b) )
    110 #define FT_MAX( a, b )  ( (a) > (b) ? (a) : (b) )
    111 #define FT_ABS( a )     ( (a) < 0 ? -(a) : (a) )
    112 
    113 
    114   /*
    115    *  Approximate sqrt(x*x+y*y) using the `alpha max plus beta min'
    116    *  algorithm.  We use alpha = 1, beta = 3/8, giving us results with a
    117    *  largest error less than 7% compared to the exact value.
    118    */
    119 #define FT_HYPOT( x, y )                 \
    120           ( x = FT_ABS( x ),             \
    121             y = FT_ABS( y ),             \
    122             x > y ? x + ( 3 * y >> 3 )   \
    123                   : y + ( 3 * x >> 3 ) )
    124 
    125 
    126   /* define this to dump debugging information */
    127 /* #define FT_DEBUG_LEVEL_TRACE */
    128 
    129 
    130 #ifdef FT_DEBUG_LEVEL_TRACE
    131 #include <stdio.h>
    132 #include <stdarg.h>
    133 #endif
    134 
    135 #include <stddef.h>
    136 #include <string.h>
    137 #include <setjmp.h>
    138 #include <limits.h>
    139 #define FT_CHAR_BIT   CHAR_BIT
    140 #define FT_UINT_MAX   UINT_MAX
    141 #define FT_INT_MAX    INT_MAX
    142 #define FT_ULONG_MAX  ULONG_MAX
    143 
    144 #define ft_memset   memset
    145 
    146 #define ft_setjmp   setjmp
    147 #define ft_longjmp  longjmp
    148 #define ft_jmp_buf  jmp_buf
    149 
    150 typedef ptrdiff_t  FT_PtrDist;
    151 
    152 
    153 #define ErrRaster_Invalid_Mode      -2
    154 #define ErrRaster_Invalid_Outline   -1
    155 #define ErrRaster_Invalid_Argument  -3
    156 #define ErrRaster_Memory_Overflow   -4
    157 
    158 #define FT_BEGIN_HEADER
    159 #define FT_END_HEADER
    160 
    161 #include "ftimage.h"
    162 #include "ftgrays.h"
    163 
    164 
    165   /* This macro is used to indicate that a function parameter is unused. */
    166   /* Its purpose is simply to reduce compiler warnings.  Note also that  */
    167   /* simply defining it as `(void)x' doesn't avoid warnings with certain */
    168   /* ANSI compilers (e.g. LCC).                                          */
    169 #define FT_UNUSED( x )  (x) = (x)
    170 
    171 
    172   /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
    173 
    174 #ifdef FT_DEBUG_LEVEL_TRACE
    175 
    176   void
    177   FT_Message( const char*  fmt,
    178               ... )
    179   {
    180     va_list  ap;
    181 
    182 
    183     va_start( ap, fmt );
    184     vfprintf( stderr, fmt, ap );
    185     va_end( ap );
    186   }
    187 
    188 
    189   /* empty function useful for setting a breakpoint to catch errors */
    190   int
    191   FT_Throw( int          error,
    192             int          line,
    193             const char*  file )
    194   {
    195     FT_UNUSED( error );
    196     FT_UNUSED( line );
    197     FT_UNUSED( file );
    198 
    199     return 0;
    200   }
    201 
    202 
    203   /* we don't handle tracing levels in stand-alone mode; */
    204 #ifndef FT_TRACE5
    205 #define FT_TRACE5( varformat )  FT_Message varformat
    206 #endif
    207 #ifndef FT_TRACE7
    208 #define FT_TRACE7( varformat )  FT_Message varformat
    209 #endif
    210 #ifndef FT_ERROR
    211 #define FT_ERROR( varformat )   FT_Message varformat
    212 #endif
    213 
    214 #define FT_THROW( e )                               \
    215           ( FT_Throw( FT_ERR_CAT( ErrRaster, e ),   \
    216                       __LINE__,                     \
    217                       __FILE__ )                  | \
    218             FT_ERR_CAT( ErrRaster, e )            )
    219 
    220 #else /* !FT_DEBUG_LEVEL_TRACE */
    221 
    222 #define FT_TRACE5( x )  do { } while ( 0 )     /* nothing */
    223 #define FT_TRACE7( x )  do { } while ( 0 )     /* nothing */
    224 #define FT_ERROR( x )   do { } while ( 0 )     /* nothing */
    225 #define FT_THROW( e )   FT_ERR_CAT( ErrRaster_, e )
    226 
    227 
    228 #endif /* !FT_DEBUG_LEVEL_TRACE */
    229 
    230 
    231 #define FT_DEFINE_OUTLINE_FUNCS( class_,               \
    232                                  move_to_, line_to_,   \
    233                                  conic_to_, cubic_to_, \
    234                                  shift_, delta_ )      \
    235           static const FT_Outline_Funcs class_ =       \
    236           {                                            \
    237             move_to_,                                  \
    238             line_to_,                                  \
    239             conic_to_,                                 \
    240             cubic_to_,                                 \
    241             shift_,                                    \
    242             delta_                                     \
    243          };
    244 
    245 #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_,            \
    246                                 raster_new_, raster_reset_,       \
    247                                 raster_set_mode_, raster_render_, \
    248                                 raster_done_ )                    \
    249           const FT_Raster_Funcs class_ =                          \
    250           {                                                       \
    251             glyph_format_,                                        \
    252             raster_new_,                                          \
    253             raster_reset_,                                        \
    254             raster_set_mode_,                                     \
    255             raster_render_,                                       \
    256             raster_done_                                          \
    257          };
    258 
    259 
    260 #else /* !STANDALONE_ */
    261 
    262 
    263 #include <ft2build.h>
    264 #include "ftgrays.h"
    265 #include FT_INTERNAL_OBJECTS_H
    266 #include FT_INTERNAL_DEBUG_H
    267 #include FT_OUTLINE_H
    268 
    269 #include "ftsmerrs.h"
    270 
    271 #include "ftspic.h"
    272 
    273 #define Smooth_Err_Invalid_Mode     Smooth_Err_Cannot_Render_Glyph
    274 #define Smooth_Err_Memory_Overflow  Smooth_Err_Out_Of_Memory
    275 #define ErrRaster_Memory_Overflow   Smooth_Err_Out_Of_Memory
    276 
    277 
    278 #endif /* !STANDALONE_ */
    279 
    280 
    281 #ifndef FT_MEM_SET
    282 #define FT_MEM_SET( d, s, c )  ft_memset( d, s, c )
    283 #endif
    284 
    285 #ifndef FT_MEM_ZERO
    286 #define FT_MEM_ZERO( dest, count )  FT_MEM_SET( dest, 0, count )
    287 #endif
    288 
    289 #ifndef FT_ZERO
    290 #define FT_ZERO( p )  FT_MEM_ZERO( p, sizeof ( *(p) ) )
    291 #endif
    292 
    293   /* as usual, for the speed hungry :-) */
    294 
    295 #undef RAS_ARG
    296 #undef RAS_ARG_
    297 #undef RAS_VAR
    298 #undef RAS_VAR_
    299 
    300 #ifndef FT_STATIC_RASTER
    301 
    302 #define RAS_ARG   gray_PWorker  worker
    303 #define RAS_ARG_  gray_PWorker  worker,
    304 
    305 #define RAS_VAR   worker
    306 #define RAS_VAR_  worker,
    307 
    308 #else /* FT_STATIC_RASTER */
    309 
    310 #define RAS_ARG   void
    311 #define RAS_ARG_  /* empty */
    312 #define RAS_VAR   /* empty */
    313 #define RAS_VAR_  /* empty */
    314 
    315 #endif /* FT_STATIC_RASTER */
    316 
    317 
    318   /* must be at least 6 bits! */
    319 #define PIXEL_BITS  8
    320 
    321 #undef FLOOR
    322 #undef CEILING
    323 #undef TRUNC
    324 #undef SCALED
    325 
    326 #define ONE_PIXEL       ( 1 << PIXEL_BITS )
    327 #define TRUNC( x )      ( (TCoord)( (x) >> PIXEL_BITS ) )
    328 #define SUBPIXELS( x )  ( (TPos)(x) * ONE_PIXEL )
    329 #define FLOOR( x )      ( (x) & -ONE_PIXEL )
    330 #define CEILING( x )    ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
    331 #define ROUND( x )      ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
    332 
    333 #if PIXEL_BITS >= 6
    334 #define UPSCALE( x )    ( (x) * ( ONE_PIXEL >> 6 ) )
    335 #define DOWNSCALE( x )  ( (x) >> ( PIXEL_BITS - 6 ) )
    336 #else
    337 #define UPSCALE( x )    ( (x) >> ( 6 - PIXEL_BITS ) )
    338 #define DOWNSCALE( x )  ( (x) * ( 64 >> PIXEL_BITS ) )
    339 #endif
    340 
    341 
    342   /* Compute `dividend / divisor' and return both its quotient and     */
    343   /* remainder, cast to a specific type.  This macro also ensures that */
    344   /* the remainder is always positive.  We use the remainder to keep   */
    345   /* track of accumulating errors and compensate for them.             */
    346 #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
    347   FT_BEGIN_STMNT                                                   \
    348     (quotient)  = (type)( (dividend) / (divisor) );                \
    349     (remainder) = (type)( (dividend) % (divisor) );                \
    350     if ( (remainder) < 0 )                                         \
    351     {                                                              \
    352       (quotient)--;                                                \
    353       (remainder) += (type)(divisor);                              \
    354     }                                                              \
    355   FT_END_STMNT
    356 
    357 #ifdef  __arm__
    358   /* Work around a bug specific to GCC which make the compiler fail to */
    359   /* optimize a division and modulo operation on the same parameters   */
    360   /* into a single call to `__aeabi_idivmod'.  See                     */
    361   /*                                                                   */
    362   /*  http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721                */
    363 #undef FT_DIV_MOD
    364 #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
    365   FT_BEGIN_STMNT                                                   \
    366     (quotient)  = (type)( (dividend) / (divisor) );                \
    367     (remainder) = (type)( (dividend) - (quotient) * (divisor) );   \
    368     if ( (remainder) < 0 )                                         \
    369     {                                                              \
    370       (quotient)--;                                                \
    371       (remainder) += (type)(divisor);                              \
    372     }                                                              \
    373   FT_END_STMNT
    374 #endif /* __arm__ */
    375 
    376 
    377   /* These macros speed up repetitive divisions by replacing them */
    378   /* with multiplications and right shifts.                       */
    379 #define FT_UDIVPREP( c, b )                                        \
    380   long  b ## _r = c ? (long)( FT_ULONG_MAX >> PIXEL_BITS ) / ( b ) \
    381                     : 0
    382 #define FT_UDIV( a, b )                                        \
    383   ( ( (unsigned long)( a ) * (unsigned long)( b ## _r ) ) >>   \
    384     ( sizeof( long ) * FT_CHAR_BIT - PIXEL_BITS ) )
    385 
    386 
    387   /*************************************************************************/
    388   /*                                                                       */
    389   /*   TYPE DEFINITIONS                                                    */
    390   /*                                                                       */
    391 
    392   /* don't change the following types to FT_Int or FT_Pos, since we might */
    393   /* need to define them to "float" or "double" when experimenting with   */
    394   /* new algorithms                                                       */
    395 
    396   typedef long  TPos;     /* sub-pixel coordinate              */
    397   typedef int   TCoord;   /* integer scanline/pixel coordinate */
    398   typedef int   TArea;    /* cell areas, coordinate products   */
    399 
    400 
    401   typedef struct TCell_*  PCell;
    402 
    403   typedef struct  TCell_
    404   {
    405     TCoord  x;     /* same with gray_TWorker.ex    */
    406     TCoord  cover; /* same with gray_TWorker.cover */
    407     TArea   area;
    408     PCell   next;
    409 
    410   } TCell;
    411 
    412   typedef struct TPixmap_
    413   {
    414     unsigned char*  origin;  /* pixmap origin at the bottom-left */
    415     int             pitch;   /* pitch to go down one row */
    416 
    417   } TPixmap;
    418 
    419   /* maximum number of gray cells in the buffer */
    420 #if FT_RENDER_POOL_SIZE > 2048
    421 #define FT_MAX_GRAY_POOL  ( FT_RENDER_POOL_SIZE / sizeof ( TCell ) )
    422 #else
    423 #define FT_MAX_GRAY_POOL  ( 2048 / sizeof ( TCell ) )
    424 #endif
    425 
    426 
    427 #if defined( _MSC_VER )      /* Visual C++ (and Intel C++) */
    428   /* We disable the warning `structure was padded due to   */
    429   /* __declspec(align())' in order to compile cleanly with */
    430   /* the maximum level of warnings.                        */
    431 #pragma warning( push )
    432 #pragma warning( disable : 4324 )
    433 #endif /* _MSC_VER */
    434 
    435   typedef struct  gray_TWorker_
    436   {
    437     ft_jmp_buf  jump_buffer;
    438 
    439     TCoord  ex, ey;
    440     TCoord  min_ex, max_ex;
    441     TCoord  min_ey, max_ey;
    442 
    443     TArea   area;
    444     TCoord  cover;
    445     int     invalid;
    446 
    447     PCell*      ycells;
    448     PCell       cells;
    449     FT_PtrDist  max_cells;
    450     FT_PtrDist  num_cells;
    451 
    452     TPos    x,  y;
    453 
    454     FT_Outline  outline;
    455     TPixmap     target;
    456 
    457     FT_Raster_Span_Func  render_span;
    458     void*                render_span_data;
    459 
    460   } gray_TWorker, *gray_PWorker;
    461 
    462 #if defined( _MSC_VER )
    463 #pragma warning( pop )
    464 #endif
    465 
    466 
    467 #ifndef FT_STATIC_RASTER
    468 #define ras  (*worker)
    469 #else
    470   static gray_TWorker  ras;
    471 #endif
    472 
    473 
    474   typedef struct gray_TRaster_
    475   {
    476     void*         memory;
    477 
    478   } gray_TRaster, *gray_PRaster;
    479 
    480 
    481 #ifdef FT_DEBUG_LEVEL_TRACE
    482 
    483   /* to be called while in the debugger --                                */
    484   /* this function causes a compiler warning since it is unused otherwise */
    485   static void
    486   gray_dump_cells( RAS_ARG )
    487   {
    488     int  y;
    489 
    490 
    491     for ( y = ras.min_ey; y < ras.max_ey; y++ )
    492     {
    493       PCell  cell = ras.ycells[y - ras.min_ey];
    494 
    495 
    496       printf( "%3d:", y );
    497 
    498       for ( ; cell != NULL; cell = cell->next )
    499         printf( " (%3d, c:%4d, a:%6d)",
    500                 cell->x, cell->cover, cell->area );
    501       printf( "\n" );
    502     }
    503   }
    504 
    505 #endif /* FT_DEBUG_LEVEL_TRACE */
    506 
    507 
    508   /*************************************************************************/
    509   /*                                                                       */
    510   /* Record the current cell in the table.                                 */
    511   /*                                                                       */
    512   static void
    513   gray_record_cell( RAS_ARG )
    514   {
    515     PCell  *pcell, cell;
    516     TCoord  x = ras.ex;
    517 
    518 
    519     pcell = &ras.ycells[ras.ey - ras.min_ey];
    520     for (;;)
    521     {
    522       cell = *pcell;
    523       if ( !cell || cell->x > x )
    524         break;
    525 
    526       if ( cell->x == x )
    527         goto Found;
    528 
    529       pcell = &cell->next;
    530     }
    531 
    532     if ( ras.num_cells >= ras.max_cells )
    533       ft_longjmp( ras.jump_buffer, 1 );
    534 
    535     /* insert new cell */
    536     cell        = ras.cells + ras.num_cells++;
    537     cell->x     = x;
    538     cell->area  = ras.area;
    539     cell->cover = ras.cover;
    540 
    541     cell->next  = *pcell;
    542     *pcell      = cell;
    543 
    544     return;
    545 
    546   Found:
    547     /* update old cell */
    548     cell->area  += ras.area;
    549     cell->cover += ras.cover;
    550   }
    551 
    552 
    553   /*************************************************************************/
    554   /*                                                                       */
    555   /* Set the current cell to a new position.                               */
    556   /*                                                                       */
    557   static void
    558   gray_set_cell( RAS_ARG_ TCoord  ex,
    559                           TCoord  ey )
    560   {
    561     /* Move the cell pointer to a new position.  We set the `invalid'      */
    562     /* flag to indicate that the cell isn't part of those we're interested */
    563     /* in during the render phase.  This means that:                       */
    564     /*                                                                     */
    565     /* . the new vertical position must be within min_ey..max_ey-1.        */
    566     /* . the new horizontal position must be strictly less than max_ex     */
    567     /*                                                                     */
    568     /* Note that if a cell is to the left of the clipping region, it is    */
    569     /* actually set to the (min_ex-1) horizontal position.                 */
    570 
    571     if ( ex < ras.min_ex )
    572       ex = ras.min_ex - 1;
    573 
    574     /* record the current one if it is valid */
    575     if ( !ras.invalid )
    576       gray_record_cell( RAS_VAR );
    577 
    578     ras.area  = 0;
    579     ras.cover = 0;
    580     ras.ex    = ex;
    581     ras.ey    = ey;
    582 
    583     ras.invalid = ( ey >= ras.max_ey || ey < ras.min_ey ||
    584                     ex >= ras.max_ex );
    585   }
    586 
    587 
    588 #ifndef FT_LONG64
    589 
    590   /*************************************************************************/
    591   /*                                                                       */
    592   /* Render a scanline as one or more cells.                               */
    593   /*                                                                       */
    594   static void
    595   gray_render_scanline( RAS_ARG_ TCoord  ey,
    596                                  TPos    x1,
    597                                  TCoord  y1,
    598                                  TPos    x2,
    599                                  TCoord  y2 )
    600   {
    601     TCoord  ex1, ex2, fx1, fx2, first, dy, delta, mod;
    602     TPos    p, dx;
    603     int     incr;
    604 
    605 
    606     ex1 = TRUNC( x1 );
    607     ex2 = TRUNC( x2 );
    608 
    609     /* trivial case.  Happens often */
    610     if ( y1 == y2 )
    611     {
    612       gray_set_cell( RAS_VAR_ ex2, ey );
    613       return;
    614     }
    615 
    616     fx1   = (TCoord)( x1 - SUBPIXELS( ex1 ) );
    617     fx2   = (TCoord)( x2 - SUBPIXELS( ex2 ) );
    618 
    619     /* everything is located in a single cell.  That is easy! */
    620     /*                                                        */
    621     if ( ex1 == ex2 )
    622       goto End;
    623 
    624     /* ok, we'll have to render a run of adjacent cells on the same */
    625     /* scanline...                                                  */
    626     /*                                                              */
    627     dx = x2 - x1;
    628     dy = y2 - y1;
    629 
    630     if ( dx > 0 )
    631     {
    632       p     = ( ONE_PIXEL - fx1 ) * dy;
    633       first = ONE_PIXEL;
    634       incr  = 1;
    635     }
    636     else
    637     {
    638       p     = fx1 * dy;
    639       first = 0;
    640       incr  = -1;
    641       dx    = -dx;
    642     }
    643 
    644     FT_DIV_MOD( TCoord, p, dx, delta, mod );
    645 
    646     ras.area  += (TArea)( ( fx1 + first ) * delta );
    647     ras.cover += delta;
    648     y1        += delta;
    649     ex1       += incr;
    650     gray_set_cell( RAS_VAR_ ex1, ey );
    651 
    652     if ( ex1 != ex2 )
    653     {
    654       TCoord  lift, rem;
    655 
    656 
    657       p = ONE_PIXEL * dy;
    658       FT_DIV_MOD( TCoord, p, dx, lift, rem );
    659 
    660       do
    661       {
    662         delta = lift;
    663         mod  += rem;
    664         if ( mod >= (TCoord)dx )
    665         {
    666           mod -= (TCoord)dx;
    667           delta++;
    668         }
    669 
    670         ras.area  += (TArea)( ONE_PIXEL * delta );
    671         ras.cover += delta;
    672         y1        += delta;
    673         ex1       += incr;
    674         gray_set_cell( RAS_VAR_ ex1, ey );
    675       } while ( ex1 != ex2 );
    676     }
    677 
    678     fx1 = ONE_PIXEL - first;
    679 
    680   End:
    681     dy = y2 - y1;
    682 
    683     ras.area  += (TArea)( ( fx1 + fx2 ) * dy );
    684     ras.cover += dy;
    685   }
    686 
    687 
    688   /*************************************************************************/
    689   /*                                                                       */
    690   /* Render a given line as a series of scanlines.                         */
    691   /*                                                                       */
    692   static void
    693   gray_render_line( RAS_ARG_ TPos  to_x,
    694                              TPos  to_y )
    695   {
    696     TCoord  ey1, ey2, fy1, fy2, first, delta, mod;
    697     TPos    p, dx, dy, x, x2;
    698     int     incr;
    699 
    700 
    701     ey1 = TRUNC( ras.y );
    702     ey2 = TRUNC( to_y );     /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
    703 
    704     /* perform vertical clipping */
    705     if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
    706          ( ey1 <  ras.min_ey && ey2 <  ras.min_ey ) )
    707       goto End;
    708 
    709     fy1 = (TCoord)( ras.y - SUBPIXELS( ey1 ) );
    710     fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
    711 
    712     /* everything is on a single scanline */
    713     if ( ey1 == ey2 )
    714     {
    715       gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
    716       goto End;
    717     }
    718 
    719     dx = to_x - ras.x;
    720     dy = to_y - ras.y;
    721 
    722     /* vertical line - avoid calling gray_render_scanline */
    723     if ( dx == 0 )
    724     {
    725       TCoord  ex     = TRUNC( ras.x );
    726       TCoord  two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
    727       TArea   area;
    728 
    729 
    730       if ( dy > 0)
    731       {
    732         first = ONE_PIXEL;
    733         incr  = 1;
    734       }
    735       else
    736       {
    737         first = 0;
    738         incr  = -1;
    739       }
    740 
    741       delta      = first - fy1;
    742       ras.area  += (TArea)two_fx * delta;
    743       ras.cover += delta;
    744       ey1       += incr;
    745 
    746       gray_set_cell( RAS_VAR_ ex, ey1 );
    747 
    748       delta = first + first - ONE_PIXEL;
    749       area  = (TArea)two_fx * delta;
    750       while ( ey1 != ey2 )
    751       {
    752         ras.area  += area;
    753         ras.cover += delta;
    754         ey1       += incr;
    755 
    756         gray_set_cell( RAS_VAR_ ex, ey1 );
    757       }
    758 
    759       delta      = fy2 - ONE_PIXEL + first;
    760       ras.area  += (TArea)two_fx * delta;
    761       ras.cover += delta;
    762 
    763       goto End;
    764     }
    765 
    766     /* ok, we have to render several scanlines */
    767     if ( dy > 0)
    768     {
    769       p     = ( ONE_PIXEL - fy1 ) * dx;
    770       first = ONE_PIXEL;
    771       incr  = 1;
    772     }
    773     else
    774     {
    775       p     = fy1 * dx;
    776       first = 0;
    777       incr  = -1;
    778       dy    = -dy;
    779     }
    780 
    781     FT_DIV_MOD( TCoord, p, dy, delta, mod );
    782 
    783     x = ras.x + delta;
    784     gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first );
    785 
    786     ey1 += incr;
    787     gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
    788 
    789     if ( ey1 != ey2 )
    790     {
    791       TCoord  lift, rem;
    792 
    793 
    794       p    = ONE_PIXEL * dx;
    795       FT_DIV_MOD( TCoord, p, dy, lift, rem );
    796 
    797       do
    798       {
    799         delta = lift;
    800         mod  += rem;
    801         if ( mod >= (TCoord)dy )
    802         {
    803           mod -= (TCoord)dy;
    804           delta++;
    805         }
    806 
    807         x2 = x + delta;
    808         gray_render_scanline( RAS_VAR_ ey1,
    809                                        x, ONE_PIXEL - first,
    810                                        x2, first );
    811         x = x2;
    812 
    813         ey1 += incr;
    814         gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
    815       } while ( ey1 != ey2 );
    816     }
    817 
    818     gray_render_scanline( RAS_VAR_ ey1,
    819                                    x, ONE_PIXEL - first,
    820                                    to_x, fy2 );
    821 
    822   End:
    823     ras.x       = to_x;
    824     ras.y       = to_y;
    825   }
    826 
    827 #else
    828 
    829   /*************************************************************************/
    830   /*                                                                       */
    831   /* Render a straight line across multiple cells in any direction.        */
    832   /*                                                                       */
    833   static void
    834   gray_render_line( RAS_ARG_ TPos  to_x,
    835                              TPos  to_y )
    836   {
    837     TPos    dx, dy, fx1, fy1, fx2, fy2;
    838     TCoord  ex1, ex2, ey1, ey2;
    839 
    840 
    841     ey1 = TRUNC( ras.y );
    842     ey2 = TRUNC( to_y );
    843 
    844     /* perform vertical clipping */
    845     if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
    846          ( ey1 <  ras.min_ey && ey2 <  ras.min_ey ) )
    847       goto End;
    848 
    849     ex1 = TRUNC( ras.x );
    850     ex2 = TRUNC( to_x );
    851 
    852     fx1 = ras.x - SUBPIXELS( ex1 );
    853     fy1 = ras.y - SUBPIXELS( ey1 );
    854 
    855     dx = to_x - ras.x;
    856     dy = to_y - ras.y;
    857 
    858     if ( ex1 == ex2 && ey1 == ey2 )       /* inside one cell */
    859       ;
    860     else if ( dy == 0 ) /* ex1 != ex2 */  /* any horizontal line */
    861     {
    862       ex1 = ex2;
    863       gray_set_cell( RAS_VAR_ ex1, ey1 );
    864     }
    865     else if ( dx == 0 )
    866     {
    867       if ( dy > 0 )                       /* vertical line up */
    868         do
    869         {
    870           fy2 = ONE_PIXEL;
    871           ras.cover += ( fy2 - fy1 );
    872           ras.area  += ( fy2 - fy1 ) * fx1 * 2;
    873           fy1 = 0;
    874           ey1++;
    875           gray_set_cell( RAS_VAR_ ex1, ey1 );
    876         } while ( ey1 != ey2 );
    877       else                                /* vertical line down */
    878         do
    879         {
    880           fy2 = 0;
    881           ras.cover += ( fy2 - fy1 );
    882           ras.area  += ( fy2 - fy1 ) * fx1 * 2;
    883           fy1 = ONE_PIXEL;
    884           ey1--;
    885           gray_set_cell( RAS_VAR_ ex1, ey1 );
    886         } while ( ey1 != ey2 );
    887     }
    888     else                                  /* any other line */
    889     {
    890       TPos  prod = dx * fy1 - dy * fx1;
    891       FT_UDIVPREP( ex1 != ex2, dx );
    892       FT_UDIVPREP( ey1 != ey2, dy );
    893 
    894 
    895       /* The fundamental value `prod' determines which side and the  */
    896       /* exact coordinate where the line exits current cell.  It is  */
    897       /* also easily updated when moving from one cell to the next.  */
    898       do
    899       {
    900         if      ( prod                                   <= 0 &&
    901                   prod - dx * ONE_PIXEL                  >  0 ) /* left */
    902         {
    903           fx2 = 0;
    904           fy2 = (TPos)FT_UDIV( -prod, -dx );
    905           prod -= dy * ONE_PIXEL;
    906           ras.cover += ( fy2 - fy1 );
    907           ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
    908           fx1 = ONE_PIXEL;
    909           fy1 = fy2;
    910           ex1--;
    911         }
    912         else if ( prod - dx * ONE_PIXEL                  <= 0 &&
    913                   prod - dx * ONE_PIXEL + dy * ONE_PIXEL >  0 ) /* up */
    914         {
    915           prod -= dx * ONE_PIXEL;
    916           fx2 = (TPos)FT_UDIV( -prod, dy );
    917           fy2 = ONE_PIXEL;
    918           ras.cover += ( fy2 - fy1 );
    919           ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
    920           fx1 = fx2;
    921           fy1 = 0;
    922           ey1++;
    923         }
    924         else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 &&
    925                   prod                  + dy * ONE_PIXEL >= 0 ) /* right */
    926         {
    927           prod += dy * ONE_PIXEL;
    928           fx2 = ONE_PIXEL;
    929           fy2 = (TPos)FT_UDIV( prod, dx );
    930           ras.cover += ( fy2 - fy1 );
    931           ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
    932           fx1 = 0;
    933           fy1 = fy2;
    934           ex1++;
    935         }
    936         else /* ( prod                  + dy * ONE_PIXEL <  0 &&
    937                   prod                                   >  0 )    down */
    938         {
    939           fx2 = (TPos)FT_UDIV( prod, -dy );
    940           fy2 = 0;
    941           prod += dx * ONE_PIXEL;
    942           ras.cover += ( fy2 - fy1 );
    943           ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
    944           fx1 = fx2;
    945           fy1 = ONE_PIXEL;
    946           ey1--;
    947         }
    948 
    949         gray_set_cell( RAS_VAR_ ex1, ey1 );
    950       } while ( ex1 != ex2 || ey1 != ey2 );
    951     }
    952 
    953     fx2 = to_x - SUBPIXELS( ex2 );
    954     fy2 = to_y - SUBPIXELS( ey2 );
    955 
    956     ras.cover += ( fy2 - fy1 );
    957     ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
    958 
    959   End:
    960     ras.x       = to_x;
    961     ras.y       = to_y;
    962   }
    963 
    964 #endif
    965 
    966   static void
    967   gray_split_conic( FT_Vector*  base )
    968   {
    969     TPos  a, b;
    970 
    971 
    972     base[4].x = base[2].x;
    973     b = base[1].x;
    974     a = base[3].x = ( base[2].x + b ) / 2;
    975     b = base[1].x = ( base[0].x + b ) / 2;
    976     base[2].x = ( a + b ) / 2;
    977 
    978     base[4].y = base[2].y;
    979     b = base[1].y;
    980     a = base[3].y = ( base[2].y + b ) / 2;
    981     b = base[1].y = ( base[0].y + b ) / 2;
    982     base[2].y = ( a + b ) / 2;
    983   }
    984 
    985 
    986   static void
    987   gray_render_conic( RAS_ARG_ const FT_Vector*  control,
    988                               const FT_Vector*  to )
    989   {
    990     FT_Vector   bez_stack[16 * 2 + 1];  /* enough to accommodate bisections */
    991     FT_Vector*  arc = bez_stack;
    992     TPos        dx, dy;
    993     int         draw, split;
    994 
    995 
    996     arc[0].x = UPSCALE( to->x );
    997     arc[0].y = UPSCALE( to->y );
    998     arc[1].x = UPSCALE( control->x );
    999     arc[1].y = UPSCALE( control->y );
   1000     arc[2].x = ras.x;
   1001     arc[2].y = ras.y;
   1002 
   1003     /* short-cut the arc that crosses the current band */
   1004     if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
   1005            TRUNC( arc[1].y ) >= ras.max_ey &&
   1006            TRUNC( arc[2].y ) >= ras.max_ey ) ||
   1007          ( TRUNC( arc[0].y ) <  ras.min_ey &&
   1008            TRUNC( arc[1].y ) <  ras.min_ey &&
   1009            TRUNC( arc[2].y ) <  ras.min_ey ) )
   1010     {
   1011       ras.x = arc[0].x;
   1012       ras.y = arc[0].y;
   1013       return;
   1014     }
   1015 
   1016     dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
   1017     dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
   1018     if ( dx < dy )
   1019       dx = dy;
   1020 
   1021     /* We can calculate the number of necessary bisections because  */
   1022     /* each bisection predictably reduces deviation exactly 4-fold. */
   1023     /* Even 32-bit deviation would vanish after 16 bisections.      */
   1024     draw = 1;
   1025     while ( dx > ONE_PIXEL / 4 )
   1026     {
   1027       dx   >>= 2;
   1028       draw <<= 1;
   1029     }
   1030 
   1031     /* We use decrement counter to count the total number of segments */
   1032     /* to draw starting from 2^level. Before each draw we split as    */
   1033     /* many times as there are trailing zeros in the counter.         */
   1034     do
   1035     {
   1036       split = 1;
   1037       while ( ( draw & split ) == 0 )
   1038       {
   1039         gray_split_conic( arc );
   1040         arc += 2;
   1041         split <<= 1;
   1042       }
   1043 
   1044       gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
   1045       arc -= 2;
   1046 
   1047     } while ( --draw );
   1048   }
   1049 
   1050 
   1051   static void
   1052   gray_split_cubic( FT_Vector*  base )
   1053   {
   1054     TPos  a, b, c, d;
   1055 
   1056 
   1057     base[6].x = base[3].x;
   1058     c = base[1].x;
   1059     d = base[2].x;
   1060     base[1].x = a = ( base[0].x + c ) / 2;
   1061     base[5].x = b = ( base[3].x + d ) / 2;
   1062     c = ( c + d ) / 2;
   1063     base[2].x = a = ( a + c ) / 2;
   1064     base[4].x = b = ( b + c ) / 2;
   1065     base[3].x = ( a + b ) / 2;
   1066 
   1067     base[6].y = base[3].y;
   1068     c = base[1].y;
   1069     d = base[2].y;
   1070     base[1].y = a = ( base[0].y + c ) / 2;
   1071     base[5].y = b = ( base[3].y + d ) / 2;
   1072     c = ( c + d ) / 2;
   1073     base[2].y = a = ( a + c ) / 2;
   1074     base[4].y = b = ( b + c ) / 2;
   1075     base[3].y = ( a + b ) / 2;
   1076   }
   1077 
   1078 
   1079   static void
   1080   gray_render_cubic( RAS_ARG_ const FT_Vector*  control1,
   1081                               const FT_Vector*  control2,
   1082                               const FT_Vector*  to )
   1083   {
   1084     FT_Vector   bez_stack[16 * 3 + 1];  /* enough to accommodate bisections */
   1085     FT_Vector*  arc = bez_stack;
   1086     TPos        dx, dy, dx_, dy_;
   1087     TPos        dx1, dy1, dx2, dy2;
   1088     TPos        L, s, s_limit;
   1089 
   1090 
   1091     arc[0].x = UPSCALE( to->x );
   1092     arc[0].y = UPSCALE( to->y );
   1093     arc[1].x = UPSCALE( control2->x );
   1094     arc[1].y = UPSCALE( control2->y );
   1095     arc[2].x = UPSCALE( control1->x );
   1096     arc[2].y = UPSCALE( control1->y );
   1097     arc[3].x = ras.x;
   1098     arc[3].y = ras.y;
   1099 
   1100     /* short-cut the arc that crosses the current band */
   1101     if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
   1102            TRUNC( arc[1].y ) >= ras.max_ey &&
   1103            TRUNC( arc[2].y ) >= ras.max_ey &&
   1104            TRUNC( arc[3].y ) >= ras.max_ey ) ||
   1105          ( TRUNC( arc[0].y ) <  ras.min_ey &&
   1106            TRUNC( arc[1].y ) <  ras.min_ey &&
   1107            TRUNC( arc[2].y ) <  ras.min_ey &&
   1108            TRUNC( arc[3].y ) <  ras.min_ey ) )
   1109     {
   1110       ras.x = arc[0].x;
   1111       ras.y = arc[0].y;
   1112       return;
   1113     }
   1114 
   1115     for (;;)
   1116     {
   1117       /* Decide whether to split or draw. See `Rapid Termination          */
   1118       /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */
   1119       /* F. Hain, at                                                      */
   1120       /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */
   1121 
   1122       /* dx and dy are x and y components of the P0-P3 chord vector. */
   1123       dx = dx_ = arc[3].x - arc[0].x;
   1124       dy = dy_ = arc[3].y - arc[0].y;
   1125 
   1126       L = FT_HYPOT( dx_, dy_ );
   1127 
   1128       /* Avoid possible arithmetic overflow below by splitting. */
   1129       if ( L > 32767 )
   1130         goto Split;
   1131 
   1132       /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */
   1133       s_limit = L * (TPos)( ONE_PIXEL / 6 );
   1134 
   1135       /* s is L * the perpendicular distance from P1 to the line P0-P3. */
   1136       dx1 = arc[1].x - arc[0].x;
   1137       dy1 = arc[1].y - arc[0].y;
   1138       s = FT_ABS( dy * dx1 - dx * dy1 );
   1139 
   1140       if ( s > s_limit )
   1141         goto Split;
   1142 
   1143       /* s is L * the perpendicular distance from P2 to the line P0-P3. */
   1144       dx2 = arc[2].x - arc[0].x;
   1145       dy2 = arc[2].y - arc[0].y;
   1146       s = FT_ABS( dy * dx2 - dx * dy2 );
   1147 
   1148       if ( s > s_limit )
   1149         goto Split;
   1150 
   1151       /* Split super curvy segments where the off points are so far
   1152          from the chord that the angles P0-P1-P3 or P0-P2-P3 become
   1153          acute as detected by appropriate dot products. */
   1154       if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 ||
   1155            dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 )
   1156         goto Split;
   1157 
   1158       gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
   1159 
   1160       if ( arc == bez_stack )
   1161         return;
   1162 
   1163       arc -= 3;
   1164       continue;
   1165 
   1166     Split:
   1167       gray_split_cubic( arc );
   1168       arc += 3;
   1169     }
   1170   }
   1171 
   1172 
   1173   static int
   1174   gray_move_to( const FT_Vector*  to,
   1175                 gray_PWorker      worker )
   1176   {
   1177     TPos  x, y;
   1178 
   1179 
   1180     /* start to a new position */
   1181     x = UPSCALE( to->x );
   1182     y = UPSCALE( to->y );
   1183 
   1184     gray_set_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
   1185 
   1186     ras.x = x;
   1187     ras.y = y;
   1188     return 0;
   1189   }
   1190 
   1191 
   1192   static int
   1193   gray_line_to( const FT_Vector*  to,
   1194                 gray_PWorker      worker )
   1195   {
   1196     gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
   1197     return 0;
   1198   }
   1199 
   1200 
   1201   static int
   1202   gray_conic_to( const FT_Vector*  control,
   1203                  const FT_Vector*  to,
   1204                  gray_PWorker      worker )
   1205   {
   1206     gray_render_conic( RAS_VAR_ control, to );
   1207     return 0;
   1208   }
   1209 
   1210 
   1211   static int
   1212   gray_cubic_to( const FT_Vector*  control1,
   1213                  const FT_Vector*  control2,
   1214                  const FT_Vector*  to,
   1215                  gray_PWorker      worker )
   1216   {
   1217     gray_render_cubic( RAS_VAR_ control1, control2, to );
   1218     return 0;
   1219   }
   1220 
   1221 
   1222   static void
   1223   gray_hline( RAS_ARG_ TCoord  x,
   1224                        TCoord  y,
   1225                        TArea   area,
   1226                        TCoord  acount )
   1227   {
   1228     int      coverage;
   1229     FT_Span  span;
   1230 
   1231 
   1232     /* compute the coverage line's coverage, depending on the    */
   1233     /* outline fill rule                                         */
   1234     /*                                                           */
   1235     /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
   1236     /*                                                           */
   1237     coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) );
   1238                                                     /* use range 0..256 */
   1239     if ( coverage < 0 )
   1240       coverage = -coverage;
   1241 
   1242     if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL )
   1243     {
   1244       coverage &= 511;
   1245 
   1246       if ( coverage > 256 )
   1247         coverage = 512 - coverage;
   1248       else if ( coverage == 256 )
   1249         coverage = 255;
   1250     }
   1251     else
   1252     {
   1253       /* normal non-zero winding rule */
   1254       if ( coverage >= 256 )
   1255         coverage = 255;
   1256     }
   1257 
   1258     if ( ras.render_span )  /* for FT_RASTER_FLAG_DIRECT only */
   1259     {
   1260       span.x        = (short)x;
   1261       span.len      = (unsigned short)acount;
   1262       span.coverage = (unsigned char)coverage;
   1263 
   1264       ras.render_span( y, 1, &span, ras.render_span_data );
   1265     }
   1266     else
   1267     {
   1268       unsigned char*  q = ras.target.origin - ras.target.pitch * y + x;
   1269       unsigned char   c = (unsigned char)coverage;
   1270 
   1271 
   1272       /* For small-spans it is faster to do it by ourselves than
   1273        * calling `memset'.  This is mainly due to the cost of the
   1274        * function call.
   1275        */
   1276       switch ( acount )
   1277       {
   1278       case 7: *q++ = c;
   1279       case 6: *q++ = c;
   1280       case 5: *q++ = c;
   1281       case 4: *q++ = c;
   1282       case 3: *q++ = c;
   1283       case 2: *q++ = c;
   1284       case 1: *q   = c;
   1285       case 0: break;
   1286       default:
   1287         FT_MEM_SET( q, c, acount );
   1288       }
   1289     }
   1290   }
   1291 
   1292 
   1293   static void
   1294   gray_sweep( RAS_ARG )
   1295   {
   1296     int  y;
   1297 
   1298 
   1299     FT_TRACE7(( "gray_sweep: start\n" ));
   1300 
   1301     for ( y = ras.min_ey; y < ras.max_ey; y++ )
   1302     {
   1303       PCell   cell  = ras.ycells[y - ras.min_ey];
   1304       TCoord  x     = ras.min_ex;
   1305       TArea   cover = 0;
   1306       TArea   area;
   1307 
   1308 
   1309       for ( ; cell != NULL; cell = cell->next )
   1310       {
   1311         if ( cover != 0 && cell->x > x )
   1312           gray_hline( RAS_VAR_ x, y, cover, cell->x - x );
   1313 
   1314         cover += (TArea)cell->cover * ( ONE_PIXEL * 2 );
   1315         area   = cover - cell->area;
   1316 
   1317         if ( area != 0 && cell->x >= ras.min_ex )
   1318           gray_hline( RAS_VAR_ cell->x, y, area, 1 );
   1319 
   1320         x = cell->x + 1;
   1321       }
   1322 
   1323       if ( cover != 0 )
   1324         gray_hline( RAS_VAR_ x, y, cover, ras.max_ex - x );
   1325     }
   1326 
   1327     FT_TRACE7(( "gray_sweep: end\n" ));
   1328   }
   1329 
   1330 
   1331 #ifdef STANDALONE_
   1332 
   1333   /*************************************************************************/
   1334   /*                                                                       */
   1335   /*  The following functions should only compile in stand-alone mode,     */
   1336   /*  i.e., when building this component without the rest of FreeType.     */
   1337   /*                                                                       */
   1338   /*************************************************************************/
   1339 
   1340   /*************************************************************************/
   1341   /*                                                                       */
   1342   /* <Function>                                                            */
   1343   /*    FT_Outline_Decompose                                               */
   1344   /*                                                                       */
   1345   /* <Description>                                                         */
   1346   /*    Walk over an outline's structure to decompose it into individual   */
   1347   /*    segments and Bzier arcs.  This function is also able to emit      */
   1348   /*    `move to' and `close to' operations to indicate the start and end  */
   1349   /*    of new contours in the outline.                                    */
   1350   /*                                                                       */
   1351   /* <Input>                                                               */
   1352   /*    outline        :: A pointer to the source target.                  */
   1353   /*                                                                       */
   1354   /*    func_interface :: A table of `emitters', i.e., function pointers   */
   1355   /*                      called during decomposition to indicate path     */
   1356   /*                      operations.                                      */
   1357   /*                                                                       */
   1358   /* <InOut>                                                               */
   1359   /*    user           :: A typeless pointer which is passed to each       */
   1360   /*                      emitter during the decomposition.  It can be     */
   1361   /*                      used to store the state during the               */
   1362   /*                      decomposition.                                   */
   1363   /*                                                                       */
   1364   /* <Return>                                                              */
   1365   /*    Error code.  0 means success.                                      */
   1366   /*                                                                       */
   1367   static int
   1368   FT_Outline_Decompose( const FT_Outline*        outline,
   1369                         const FT_Outline_Funcs*  func_interface,
   1370                         void*                    user )
   1371   {
   1372 #undef SCALED
   1373 #define SCALED( x )  ( ( (x) << shift ) - delta )
   1374 
   1375     FT_Vector   v_last;
   1376     FT_Vector   v_control;
   1377     FT_Vector   v_start;
   1378 
   1379     FT_Vector*  point;
   1380     FT_Vector*  limit;
   1381     char*       tags;
   1382 
   1383     int         error;
   1384 
   1385     int   n;         /* index of contour in outline     */
   1386     int   first;     /* index of first point in contour */
   1387     char  tag;       /* current point's state           */
   1388 
   1389     int   shift;
   1390     TPos  delta;
   1391 
   1392 
   1393     if ( !outline )
   1394       return FT_THROW( Invalid_Outline );
   1395 
   1396     if ( !func_interface )
   1397       return FT_THROW( Invalid_Argument );
   1398 
   1399     shift = func_interface->shift;
   1400     delta = func_interface->delta;
   1401     first = 0;
   1402 
   1403     for ( n = 0; n < outline->n_contours; n++ )
   1404     {
   1405       int  last;  /* index of last point in contour */
   1406 
   1407 
   1408       FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
   1409 
   1410       last  = outline->contours[n];
   1411       if ( last < 0 )
   1412         goto Invalid_Outline;
   1413       limit = outline->points + last;
   1414 
   1415       v_start   = outline->points[first];
   1416       v_start.x = SCALED( v_start.x );
   1417       v_start.y = SCALED( v_start.y );
   1418 
   1419       v_last   = outline->points[last];
   1420       v_last.x = SCALED( v_last.x );
   1421       v_last.y = SCALED( v_last.y );
   1422 
   1423       v_control = v_start;
   1424 
   1425       point = outline->points + first;
   1426       tags  = outline->tags   + first;
   1427       tag   = FT_CURVE_TAG( tags[0] );
   1428 
   1429       /* A contour cannot start with a cubic control point! */
   1430       if ( tag == FT_CURVE_TAG_CUBIC )
   1431         goto Invalid_Outline;
   1432 
   1433       /* check first point to determine origin */
   1434       if ( tag == FT_CURVE_TAG_CONIC )
   1435       {
   1436         /* first point is conic control.  Yes, this happens. */
   1437         if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
   1438         {
   1439           /* start at last point if it is on the curve */
   1440           v_start = v_last;
   1441           limit--;
   1442         }
   1443         else
   1444         {
   1445           /* if both first and last points are conic,         */
   1446           /* start at their middle and record its position    */
   1447           /* for closure                                      */
   1448           v_start.x = ( v_start.x + v_last.x ) / 2;
   1449           v_start.y = ( v_start.y + v_last.y ) / 2;
   1450 
   1451           v_last = v_start;
   1452         }
   1453         point--;
   1454         tags--;
   1455       }
   1456 
   1457       FT_TRACE5(( "  move to (%.2f, %.2f)\n",
   1458                   v_start.x / 64.0, v_start.y / 64.0 ));
   1459       error = func_interface->move_to( &v_start, user );
   1460       if ( error )
   1461         goto Exit;
   1462 
   1463       while ( point < limit )
   1464       {
   1465         point++;
   1466         tags++;
   1467 
   1468         tag = FT_CURVE_TAG( tags[0] );
   1469         switch ( tag )
   1470         {
   1471         case FT_CURVE_TAG_ON:  /* emit a single line_to */
   1472           {
   1473             FT_Vector  vec;
   1474 
   1475 
   1476             vec.x = SCALED( point->x );
   1477             vec.y = SCALED( point->y );
   1478 
   1479             FT_TRACE5(( "  line to (%.2f, %.2f)\n",
   1480                         vec.x / 64.0, vec.y / 64.0 ));
   1481             error = func_interface->line_to( &vec, user );
   1482             if ( error )
   1483               goto Exit;
   1484             continue;
   1485           }
   1486 
   1487         case FT_CURVE_TAG_CONIC:  /* consume conic arcs */
   1488           v_control.x = SCALED( point->x );
   1489           v_control.y = SCALED( point->y );
   1490 
   1491         Do_Conic:
   1492           if ( point < limit )
   1493           {
   1494             FT_Vector  vec;
   1495             FT_Vector  v_middle;
   1496 
   1497 
   1498             point++;
   1499             tags++;
   1500             tag = FT_CURVE_TAG( tags[0] );
   1501 
   1502             vec.x = SCALED( point->x );
   1503             vec.y = SCALED( point->y );
   1504 
   1505             if ( tag == FT_CURVE_TAG_ON )
   1506             {
   1507               FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1508                           " with control (%.2f, %.2f)\n",
   1509                           vec.x / 64.0, vec.y / 64.0,
   1510                           v_control.x / 64.0, v_control.y / 64.0 ));
   1511               error = func_interface->conic_to( &v_control, &vec, user );
   1512               if ( error )
   1513                 goto Exit;
   1514               continue;
   1515             }
   1516 
   1517             if ( tag != FT_CURVE_TAG_CONIC )
   1518               goto Invalid_Outline;
   1519 
   1520             v_middle.x = ( v_control.x + vec.x ) / 2;
   1521             v_middle.y = ( v_control.y + vec.y ) / 2;
   1522 
   1523             FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1524                         " with control (%.2f, %.2f)\n",
   1525                         v_middle.x / 64.0, v_middle.y / 64.0,
   1526                         v_control.x / 64.0, v_control.y / 64.0 ));
   1527             error = func_interface->conic_to( &v_control, &v_middle, user );
   1528             if ( error )
   1529               goto Exit;
   1530 
   1531             v_control = vec;
   1532             goto Do_Conic;
   1533           }
   1534 
   1535           FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1536                       " with control (%.2f, %.2f)\n",
   1537                       v_start.x / 64.0, v_start.y / 64.0,
   1538                       v_control.x / 64.0, v_control.y / 64.0 ));
   1539           error = func_interface->conic_to( &v_control, &v_start, user );
   1540           goto Close;
   1541 
   1542         default:  /* FT_CURVE_TAG_CUBIC */
   1543           {
   1544             FT_Vector  vec1, vec2;
   1545 
   1546 
   1547             if ( point + 1 > limit                             ||
   1548                  FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
   1549               goto Invalid_Outline;
   1550 
   1551             point += 2;
   1552             tags  += 2;
   1553 
   1554             vec1.x = SCALED( point[-2].x );
   1555             vec1.y = SCALED( point[-2].y );
   1556 
   1557             vec2.x = SCALED( point[-1].x );
   1558             vec2.y = SCALED( point[-1].y );
   1559 
   1560             if ( point <= limit )
   1561             {
   1562               FT_Vector  vec;
   1563 
   1564 
   1565               vec.x = SCALED( point->x );
   1566               vec.y = SCALED( point->y );
   1567 
   1568               FT_TRACE5(( "  cubic to (%.2f, %.2f)"
   1569                           " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
   1570                           vec.x / 64.0, vec.y / 64.0,
   1571                           vec1.x / 64.0, vec1.y / 64.0,
   1572                           vec2.x / 64.0, vec2.y / 64.0 ));
   1573               error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
   1574               if ( error )
   1575                 goto Exit;
   1576               continue;
   1577             }
   1578 
   1579             FT_TRACE5(( "  cubic to (%.2f, %.2f)"
   1580                         " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
   1581                         v_start.x / 64.0, v_start.y / 64.0,
   1582                         vec1.x / 64.0, vec1.y / 64.0,
   1583                         vec2.x / 64.0, vec2.y / 64.0 ));
   1584             error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
   1585             goto Close;
   1586           }
   1587         }
   1588       }
   1589 
   1590       /* close the contour with a line segment */
   1591       FT_TRACE5(( "  line to (%.2f, %.2f)\n",
   1592                   v_start.x / 64.0, v_start.y / 64.0 ));
   1593       error = func_interface->line_to( &v_start, user );
   1594 
   1595    Close:
   1596       if ( error )
   1597         goto Exit;
   1598 
   1599       first = last + 1;
   1600     }
   1601 
   1602     FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
   1603     return 0;
   1604 
   1605   Exit:
   1606     FT_TRACE5(( "FT_Outline_Decompose: Error 0x%x\n", error ));
   1607     return error;
   1608 
   1609   Invalid_Outline:
   1610     return FT_THROW( Invalid_Outline );
   1611   }
   1612 
   1613 
   1614   /*************************************************************************/
   1615   /*                                                                       */
   1616   /* <Function>                                                            */
   1617   /*    FT_Outline_Get_CBox                                                */
   1618   /*                                                                       */
   1619   /* <Description>                                                         */
   1620   /*    Return an outline's `control box'.  The control box encloses all   */
   1621   /*    the outline's points, including Bzier control points.  Though it  */
   1622   /*    coincides with the exact bounding box for most glyphs, it can be   */
   1623   /*    slightly larger in some situations (like when rotating an outline  */
   1624   /*    that contains Bzier outside arcs).                                */
   1625   /*                                                                       */
   1626   /*    Computing the control box is very fast, while getting the bounding */
   1627   /*    box can take much more time as it needs to walk over all segments  */
   1628   /*    and arcs in the outline.  To get the latter, you can use the       */
   1629   /*    `ftbbox' component, which is dedicated to this single task.        */
   1630   /*                                                                       */
   1631   /* <Input>                                                               */
   1632   /*    outline :: A pointer to the source outline descriptor.             */
   1633   /*                                                                       */
   1634   /* <Output>                                                              */
   1635   /*    acbox   :: The outline's control box.                              */
   1636   /*                                                                       */
   1637   /* <Note>                                                                */
   1638   /*    See @FT_Glyph_Get_CBox for a discussion of tricky fonts.           */
   1639   /*                                                                       */
   1640 
   1641   static void
   1642   FT_Outline_Get_CBox( const FT_Outline*  outline,
   1643                        FT_BBox           *acbox )
   1644   {
   1645     TPos  xMin, yMin, xMax, yMax;
   1646 
   1647 
   1648     if ( outline && acbox )
   1649     {
   1650       if ( outline->n_points == 0 )
   1651       {
   1652         xMin = 0;
   1653         yMin = 0;
   1654         xMax = 0;
   1655         yMax = 0;
   1656       }
   1657       else
   1658       {
   1659         FT_Vector*  vec   = outline->points;
   1660         FT_Vector*  limit = vec + outline->n_points;
   1661 
   1662 
   1663         xMin = xMax = vec->x;
   1664         yMin = yMax = vec->y;
   1665         vec++;
   1666 
   1667         for ( ; vec < limit; vec++ )
   1668         {
   1669           TPos  x, y;
   1670 
   1671 
   1672           x = vec->x;
   1673           if ( x < xMin ) xMin = x;
   1674           if ( x > xMax ) xMax = x;
   1675 
   1676           y = vec->y;
   1677           if ( y < yMin ) yMin = y;
   1678           if ( y > yMax ) yMax = y;
   1679         }
   1680       }
   1681       acbox->xMin = xMin;
   1682       acbox->xMax = xMax;
   1683       acbox->yMin = yMin;
   1684       acbox->yMax = yMax;
   1685     }
   1686   }
   1687 
   1688 #endif /* STANDALONE_ */
   1689 
   1690 
   1691   FT_DEFINE_OUTLINE_FUNCS(
   1692     func_interface,
   1693 
   1694     (FT_Outline_MoveTo_Func) gray_move_to,   /* move_to  */
   1695     (FT_Outline_LineTo_Func) gray_line_to,   /* line_to  */
   1696     (FT_Outline_ConicTo_Func)gray_conic_to,  /* conic_to */
   1697     (FT_Outline_CubicTo_Func)gray_cubic_to,  /* cubic_to */
   1698 
   1699     0,                                       /* shift    */
   1700     0                                        /* delta    */
   1701   )
   1702 
   1703 
   1704   static int
   1705   gray_convert_glyph_inner( RAS_ARG )
   1706   {
   1707 
   1708     volatile int  error = 0;
   1709 
   1710 #ifdef FT_CONFIG_OPTION_PIC
   1711       FT_Outline_Funcs func_interface;
   1712       Init_Class_func_interface(&func_interface);
   1713 #endif
   1714 
   1715     if ( ft_setjmp( ras.jump_buffer ) == 0 )
   1716     {
   1717       error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
   1718       if ( !ras.invalid )
   1719         gray_record_cell( RAS_VAR );
   1720 
   1721       FT_TRACE7(( "band [%d..%d]: %d cells\n",
   1722                   ras.min_ey, ras.max_ey, ras.num_cells ));
   1723     }
   1724     else
   1725     {
   1726       error = FT_THROW( Memory_Overflow );
   1727 
   1728       FT_TRACE7(( "band [%d..%d]: to be bisected\n",
   1729                   ras.min_ey, ras.max_ey ));
   1730     }
   1731 
   1732     return error;
   1733   }
   1734 
   1735 
   1736   static int
   1737   gray_convert_glyph( RAS_ARG )
   1738   {
   1739     TCell    buffer[FT_MAX_GRAY_POOL];
   1740     TCoord   band_size = FT_MAX_GRAY_POOL / 8;
   1741     TCoord   count = ras.max_ey - ras.min_ey;
   1742     int      num_bands;
   1743     TCoord   min, max, max_y;
   1744     TCoord   bands[32];  /* enough to accommodate bisections */
   1745     TCoord*  band;
   1746 
   1747 
   1748     /* set up vertical bands */
   1749     if ( count > band_size )
   1750     {
   1751       /* two divisions rounded up */
   1752       num_bands = (int)( ( count + band_size - 1) / band_size );
   1753       band_size = ( count + num_bands - 1 ) / num_bands;
   1754     }
   1755 
   1756     min   = ras.min_ey;
   1757     max_y = ras.max_ey;
   1758 
   1759     for ( ; min < max_y; min = max )
   1760     {
   1761       max = min + band_size;
   1762       if ( max > max_y )
   1763         max = max_y;
   1764 
   1765       band    = bands;
   1766       band[1] = min;
   1767       band[0] = max;
   1768 
   1769       do
   1770       {
   1771         TCoord  width = band[0] - band[1];
   1772         int     error;
   1773 
   1774 
   1775         /* memory management */
   1776         {
   1777           size_t  ycount = (size_t)width;
   1778           size_t  cell_start;
   1779 
   1780 
   1781           cell_start = ( ycount * sizeof ( PCell ) + sizeof ( TCell ) - 1 ) /
   1782                        sizeof ( TCell );
   1783 
   1784           ras.cells     = buffer + cell_start;
   1785           ras.max_cells = (FT_PtrDist)( FT_MAX_GRAY_POOL - cell_start );
   1786           ras.num_cells = 0;
   1787 
   1788           ras.ycells = (PCell*)buffer;
   1789           while ( ycount )
   1790             ras.ycells[--ycount] = NULL;
   1791         }
   1792 
   1793         ras.invalid   = 1;
   1794         ras.min_ey    = band[1];
   1795         ras.max_ey    = band[0];
   1796 
   1797         error = gray_convert_glyph_inner( RAS_VAR );
   1798 
   1799         if ( !error )
   1800         {
   1801           gray_sweep( RAS_VAR );
   1802           band--;
   1803           continue;
   1804         }
   1805         else if ( error != ErrRaster_Memory_Overflow )
   1806           return 1;
   1807 
   1808         /* render pool overflow; we will reduce the render band by half */
   1809         width >>= 1;
   1810 
   1811         /* This is too complex for a single scanline; there must */
   1812         /* be some problems.                                     */
   1813         if ( width == 0 )
   1814         {
   1815           FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
   1816           return 1;
   1817         }
   1818 
   1819         band++;
   1820         band[1]  = band[0];
   1821         band[0] += width;
   1822       } while ( band >= bands );
   1823     }
   1824 
   1825     return 0;
   1826   }
   1827 
   1828 
   1829   static int
   1830   gray_raster_render( FT_Raster                raster,
   1831                       const FT_Raster_Params*  params )
   1832   {
   1833     const FT_Outline*  outline    = (const FT_Outline*)params->source;
   1834     const FT_Bitmap*   target_map = params->target;
   1835     FT_BBox            cbox, clip;
   1836 
   1837 #ifndef FT_STATIC_RASTER
   1838     gray_TWorker  worker[1];
   1839 #endif
   1840 
   1841 
   1842     if ( !raster )
   1843       return FT_THROW( Invalid_Argument );
   1844 
   1845     /* this version does not support monochrome rendering */
   1846     if ( !( params->flags & FT_RASTER_FLAG_AA ) )
   1847       return FT_THROW( Invalid_Mode );
   1848 
   1849     if ( !outline )
   1850       return FT_THROW( Invalid_Outline );
   1851 
   1852     /* return immediately if the outline is empty */
   1853     if ( outline->n_points == 0 || outline->n_contours <= 0 )
   1854       return 0;
   1855 
   1856     if ( !outline->contours || !outline->points )
   1857       return FT_THROW( Invalid_Outline );
   1858 
   1859     if ( outline->n_points !=
   1860            outline->contours[outline->n_contours - 1] + 1 )
   1861       return FT_THROW( Invalid_Outline );
   1862 
   1863     ras.outline = *outline;
   1864 
   1865     if ( params->flags & FT_RASTER_FLAG_DIRECT )
   1866     {
   1867       if ( !params->gray_spans )
   1868         return 0;
   1869 
   1870       ras.render_span      = (FT_Raster_Span_Func)params->gray_spans;
   1871       ras.render_span_data = params->user;
   1872     }
   1873     else
   1874     {
   1875       /* if direct mode is not set, we must have a target bitmap */
   1876       if ( !target_map )
   1877         return FT_THROW( Invalid_Argument );
   1878 
   1879       /* nothing to do */
   1880       if ( !target_map->width || !target_map->rows )
   1881         return 0;
   1882 
   1883       if ( !target_map->buffer )
   1884         return FT_THROW( Invalid_Argument );
   1885 
   1886       if ( target_map->pitch < 0 )
   1887         ras.target.origin = target_map->buffer;
   1888       else
   1889         ras.target.origin = target_map->buffer
   1890               + ( target_map->rows - 1 ) * (unsigned int)target_map->pitch;
   1891 
   1892       ras.target.pitch = target_map->pitch;
   1893 
   1894       ras.render_span      = (FT_Raster_Span_Func)NULL;
   1895       ras.render_span_data = NULL;
   1896     }
   1897 
   1898     FT_Outline_Get_CBox( outline, &cbox );
   1899 
   1900     /* reject too large outline coordinates */
   1901     if ( cbox.xMin < -0x1000000L || cbox.xMax > 0x1000000L ||
   1902          cbox.yMin < -0x1000000L || cbox.yMax > 0x1000000L )
   1903       return FT_THROW( Invalid_Outline );
   1904 
   1905     /* truncate the bounding box to integer pixels */
   1906     cbox.xMin = cbox.xMin >> 6;
   1907     cbox.yMin = cbox.yMin >> 6;
   1908     cbox.xMax = ( cbox.xMax + 63 ) >> 6;
   1909     cbox.yMax = ( cbox.yMax + 63 ) >> 6;
   1910 
   1911     /* compute clipping box */
   1912     if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
   1913     {
   1914       /* compute clip box from target pixmap */
   1915       clip.xMin = 0;
   1916       clip.yMin = 0;
   1917       clip.xMax = (FT_Pos)target_map->width;
   1918       clip.yMax = (FT_Pos)target_map->rows;
   1919     }
   1920     else if ( params->flags & FT_RASTER_FLAG_CLIP )
   1921       clip = params->clip_box;
   1922     else
   1923     {
   1924       clip.xMin = -32768L;
   1925       clip.yMin = -32768L;
   1926       clip.xMax =  32767L;
   1927       clip.yMax =  32767L;
   1928     }
   1929 
   1930     /* clip to target bitmap, exit if nothing to do */
   1931     ras.min_ex = FT_MAX( cbox.xMin, clip.xMin );
   1932     ras.min_ey = FT_MAX( cbox.yMin, clip.yMin );
   1933     ras.max_ex = FT_MIN( cbox.xMax, clip.xMax );
   1934     ras.max_ey = FT_MIN( cbox.yMax, clip.yMax );
   1935 
   1936     if ( ras.max_ex <= ras.min_ex || ras.max_ey <= ras.min_ey )
   1937       return 0;
   1938 
   1939     return gray_convert_glyph( RAS_VAR );
   1940   }
   1941 
   1942 
   1943   /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
   1944   /****                         a static object.                   *****/
   1945 
   1946 #ifdef STANDALONE_
   1947 
   1948   static int
   1949   gray_raster_new( void*       memory,
   1950                    FT_Raster*  araster )
   1951   {
   1952     static gray_TRaster  the_raster;
   1953 
   1954     FT_UNUSED( memory );
   1955 
   1956 
   1957     *araster = (FT_Raster)&the_raster;
   1958     FT_ZERO( &the_raster );
   1959 
   1960     return 0;
   1961   }
   1962 
   1963 
   1964   static void
   1965   gray_raster_done( FT_Raster  raster )
   1966   {
   1967     /* nothing */
   1968     FT_UNUSED( raster );
   1969   }
   1970 
   1971 #else /* !STANDALONE_ */
   1972 
   1973   static int
   1974   gray_raster_new( FT_Memory   memory,
   1975                    FT_Raster*  araster )
   1976   {
   1977     FT_Error      error;
   1978     gray_PRaster  raster = NULL;
   1979 
   1980 
   1981     *araster = 0;
   1982     if ( !FT_ALLOC( raster, sizeof ( gray_TRaster ) ) )
   1983     {
   1984       raster->memory = memory;
   1985       *araster       = (FT_Raster)raster;
   1986     }
   1987 
   1988     return error;
   1989   }
   1990 
   1991 
   1992   static void
   1993   gray_raster_done( FT_Raster  raster )
   1994   {
   1995     FT_Memory  memory = (FT_Memory)((gray_PRaster)raster)->memory;
   1996 
   1997 
   1998     FT_FREE( raster );
   1999   }
   2000 
   2001 #endif /* !STANDALONE_ */
   2002 
   2003 
   2004   static void
   2005   gray_raster_reset( FT_Raster       raster,
   2006                      unsigned char*  pool_base,
   2007                      unsigned long   pool_size )
   2008   {
   2009     FT_UNUSED( raster );
   2010     FT_UNUSED( pool_base );
   2011     FT_UNUSED( pool_size );
   2012   }
   2013 
   2014 
   2015   static int
   2016   gray_raster_set_mode( FT_Raster      raster,
   2017                         unsigned long  mode,
   2018                         void*          args )
   2019   {
   2020     FT_UNUSED( raster );
   2021     FT_UNUSED( mode );
   2022     FT_UNUSED( args );
   2023 
   2024 
   2025     return 0; /* nothing to do */
   2026   }
   2027 
   2028 
   2029   FT_DEFINE_RASTER_FUNCS(
   2030     ft_grays_raster,
   2031 
   2032     FT_GLYPH_FORMAT_OUTLINE,
   2033 
   2034     (FT_Raster_New_Func)     gray_raster_new,       /* raster_new      */
   2035     (FT_Raster_Reset_Func)   gray_raster_reset,     /* raster_reset    */
   2036     (FT_Raster_Set_Mode_Func)gray_raster_set_mode,  /* raster_set_mode */
   2037     (FT_Raster_Render_Func)  gray_raster_render,    /* raster_render   */
   2038     (FT_Raster_Done_Func)    gray_raster_done       /* raster_done     */
   2039   )
   2040 
   2041 
   2042 /* END */
   2043 
   2044 
   2045 /* Local Variables: */
   2046 /* coding: utf-8    */
   2047 /* End:             */
   2048