Home | History | Annotate | Download | only in i18n
      1 // Copyright (C) 2016 and later: Unicode, Inc. and others.
      2 // License & terms of use: http://www.unicode.org/copyright.html
      3 /*
      4 *******************************************************************************
      5 * Copyright (C) 1997-2015, International Business Machines Corporation and    *
      6 * others. All Rights Reserved.                                                *
      7 *******************************************************************************
      8 *
      9 * File DECIMFMT.CPP
     10 *
     11 * Modification History:
     12 *
     13 *   Date        Name        Description
     14 *   02/19/97    aliu        Converted from java.
     15 *   03/20/97    clhuang     Implemented with new APIs.
     16 *   03/31/97    aliu        Moved isLONG_MIN to DigitList, and fixed it.
     17 *   04/3/97     aliu        Rewrote parsing and formatting completely, and
     18 *                           cleaned up and debugged.  Actually works now.
     19 *                           Implemented NAN and INF handling, for both parsing
     20 *                           and formatting.  Extensive testing & debugging.
     21 *   04/10/97    aliu        Modified to compile on AIX.
     22 *   04/16/97    aliu        Rewrote to use DigitList, which has been resurrected.
     23 *                           Changed DigitCount to int per code review.
     24 *   07/09/97    helena      Made ParsePosition into a class.
     25 *   08/26/97    aliu        Extensive changes to applyPattern; completely
     26 *                           rewritten from the Java.
     27 *   09/09/97    aliu        Ported over support for exponential formats.
     28 *   07/20/98    stephen     JDK 1.2 sync up.
     29 *                             Various instances of '0' replaced with 'NULL'
     30 *                             Check for grouping size in subFormat()
     31 *                             Brought subParse() in line with Java 1.2
     32 *                             Added method appendAffix()
     33 *   08/24/1998  srl         Removed Mutex calls. This is not a thread safe class!
     34 *   02/22/99    stephen     Removed character literals for EBCDIC safety
     35 *   06/24/99    helena      Integrated Alan's NF enhancements and Java2 bug fixes
     36 *   06/28/99    stephen     Fixed bugs in toPattern().
     37 *   06/29/99    stephen     Fixed operator= to copy fFormatWidth, fPad,
     38 *                             fPadPosition
     39 ********************************************************************************
     40 */
     41 
     42 #include "unicode/utypes.h"
     43 
     44 #if !UCONFIG_NO_FORMATTING
     45 
     46 #include "unicode/uniset.h"
     47 #include "unicode/currpinf.h"
     48 #include "unicode/plurrule.h"
     49 #include "unicode/utf16.h"
     50 #include "unicode/numsys.h"
     51 #include "unicode/localpointer.h"
     52 #include "uresimp.h"
     53 #include "ucurrimp.h"
     54 #include "charstr.h"
     55 #include "patternprops.h"
     56 #include "cstring.h"
     57 #include "uassert.h"
     58 #include "hash.h"
     59 #include "decfmtst.h"
     60 #include "plurrule_impl.h"
     61 #include "decimalformatpattern.h"
     62 #include "fmtableimp.h"
     63 #include "decimfmtimpl.h"
     64 #include "visibledigits.h"
     65 
     66 /*
     67  * On certain platforms, round is a macro defined in math.h
     68  * This undefine is to avoid conflict between the macro and
     69  * the function defined below.
     70  */
     71 #ifdef round
     72 #undef round
     73 #endif
     74 
     75 
     76 U_NAMESPACE_BEGIN
     77 
     78 #ifdef FMT_DEBUG
     79 #include <stdio.h>
     80 static void _debugout(const char *f, int l, const UnicodeString& s) {
     81     char buf[2000];
     82     s.extract((int32_t) 0, s.length(), buf, "utf-8");
     83     printf("%s:%d: %s\n", f,l, buf);
     84 }
     85 #define debugout(x) _debugout(__FILE__,__LINE__,x)
     86 #define debug(x) printf("%s:%d: %s\n", __FILE__,__LINE__, x);
     87 static const UnicodeString dbg_null("<NULL>","");
     88 #define DEREFSTR(x)   ((x!=NULL)?(*x):(dbg_null))
     89 #else
     90 #define debugout(x)
     91 #define debug(x)
     92 #endif
     93 
     94 
     95 /* For currency parsing purose,
     96  * Need to remember all prefix patterns and suffix patterns of
     97  * every currency format pattern,
     98  * including the pattern of default currecny style
     99  * and plural currency style. And the patterns are set through applyPattern.
    100  */
    101 struct AffixPatternsForCurrency : public UMemory {
    102 	// negative prefix pattern
    103 	UnicodeString negPrefixPatternForCurrency;
    104 	// negative suffix pattern
    105 	UnicodeString negSuffixPatternForCurrency;
    106 	// positive prefix pattern
    107 	UnicodeString posPrefixPatternForCurrency;
    108 	// positive suffix pattern
    109 	UnicodeString posSuffixPatternForCurrency;
    110 	int8_t patternType;
    111 
    112 	AffixPatternsForCurrency(const UnicodeString& negPrefix,
    113 							 const UnicodeString& negSuffix,
    114 							 const UnicodeString& posPrefix,
    115 							 const UnicodeString& posSuffix,
    116 							 int8_t type) {
    117 		negPrefixPatternForCurrency = negPrefix;
    118 		negSuffixPatternForCurrency = negSuffix;
    119 		posPrefixPatternForCurrency = posPrefix;
    120 		posSuffixPatternForCurrency = posSuffix;
    121 		patternType = type;
    122 	}
    123 #ifdef FMT_DEBUG
    124   void dump() const  {
    125     debugout( UnicodeString("AffixPatternsForCurrency( -=\"") +
    126               negPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
    127               negSuffixPatternForCurrency + (UnicodeString)"\" +=\"" +
    128               posPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
    129               posSuffixPatternForCurrency + (UnicodeString)"\" )");
    130   }
    131 #endif
    132 };
    133 
    134 /* affix for currency formatting when the currency sign in the pattern
    135  * equals to 3, such as the pattern contains 3 currency sign or
    136  * the formatter style is currency plural format style.
    137  */
    138 struct AffixesForCurrency : public UMemory {
    139 	// negative prefix
    140 	UnicodeString negPrefixForCurrency;
    141 	// negative suffix
    142 	UnicodeString negSuffixForCurrency;
    143 	// positive prefix
    144 	UnicodeString posPrefixForCurrency;
    145 	// positive suffix
    146 	UnicodeString posSuffixForCurrency;
    147 
    148 	int32_t formatWidth;
    149 
    150 	AffixesForCurrency(const UnicodeString& negPrefix,
    151 					   const UnicodeString& negSuffix,
    152 					   const UnicodeString& posPrefix,
    153 					   const UnicodeString& posSuffix) {
    154 		negPrefixForCurrency = negPrefix;
    155 		negSuffixForCurrency = negSuffix;
    156 		posPrefixForCurrency = posPrefix;
    157 		posSuffixForCurrency = posSuffix;
    158 	}
    159 #ifdef FMT_DEBUG
    160   void dump() const {
    161     debugout( UnicodeString("AffixesForCurrency( -=\"") +
    162               negPrefixForCurrency + (UnicodeString)"\"/\"" +
    163               negSuffixForCurrency + (UnicodeString)"\" +=\"" +
    164               posPrefixForCurrency + (UnicodeString)"\"/\"" +
    165               posSuffixForCurrency + (UnicodeString)"\" )");
    166   }
    167 #endif
    168 };
    169 
    170 U_CDECL_BEGIN
    171 
    172 /**
    173  * @internal ICU 4.2
    174  */
    175 static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
    176 
    177 
    178 static UBool
    179 U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
    180     const AffixPatternsForCurrency* affix_1 =
    181         (AffixPatternsForCurrency*)val1.pointer;
    182     const AffixPatternsForCurrency* affix_2 =
    183         (AffixPatternsForCurrency*)val2.pointer;
    184     return affix_1->negPrefixPatternForCurrency ==
    185            affix_2->negPrefixPatternForCurrency &&
    186            affix_1->negSuffixPatternForCurrency ==
    187            affix_2->negSuffixPatternForCurrency &&
    188            affix_1->posPrefixPatternForCurrency ==
    189            affix_2->posPrefixPatternForCurrency &&
    190            affix_1->posSuffixPatternForCurrency ==
    191            affix_2->posSuffixPatternForCurrency &&
    192            affix_1->patternType == affix_2->patternType;
    193 }
    194 
    195 U_CDECL_END
    196 
    197 
    198 
    199 
    200 // *****************************************************************************
    201 // class DecimalFormat
    202 // *****************************************************************************
    203 
    204 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
    205 
    206 // Constants for characters used in programmatic (unlocalized) patterns.
    207 #define kPatternZeroDigit            ((UChar)0x0030) /*'0'*/
    208 #define kPatternSignificantDigit     ((UChar)0x0040) /*'@'*/
    209 #define kPatternGroupingSeparator    ((UChar)0x002C) /*','*/
    210 #define kPatternDecimalSeparator     ((UChar)0x002E) /*'.'*/
    211 #define kPatternPerMill              ((UChar)0x2030)
    212 #define kPatternPercent              ((UChar)0x0025) /*'%'*/
    213 #define kPatternDigit                ((UChar)0x0023) /*'#'*/
    214 #define kPatternSeparator            ((UChar)0x003B) /*';'*/
    215 #define kPatternExponent             ((UChar)0x0045) /*'E'*/
    216 #define kPatternPlus                 ((UChar)0x002B) /*'+'*/
    217 #define kPatternMinus                ((UChar)0x002D) /*'-'*/
    218 #define kPatternPadEscape            ((UChar)0x002A) /*'*'*/
    219 #define kQuote                       ((UChar)0x0027) /*'\''*/
    220 /**
    221  * The CURRENCY_SIGN is the standard Unicode symbol for currency.  It
    222  * is used in patterns and substitued with either the currency symbol,
    223  * or if it is doubled, with the international currency symbol.  If the
    224  * CURRENCY_SIGN is seen in a pattern, then the decimal separator is
    225  * replaced with the monetary decimal separator.
    226  */
    227 #define kCurrencySign                ((UChar)0x00A4)
    228 #define kDefaultPad                  ((UChar)0x0020) /* */
    229 
    230 const int32_t DecimalFormat::kDoubleIntegerDigits  = 309;
    231 const int32_t DecimalFormat::kDoubleFractionDigits = 340;
    232 
    233 const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
    234 
    235 /**
    236  * These are the tags we expect to see in normal resource bundle files associated
    237  * with a locale.
    238  */
    239 const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
    240 static const char fgNumberElements[]="NumberElements";
    241 static const char fgLatn[]="latn";
    242 static const char fgPatterns[]="patterns";
    243 static const char fgDecimalFormat[]="decimalFormat";
    244 static const char fgCurrencyFormat[]="currencyFormat";
    245 
    246 inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
    247 inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
    248 
    249 //------------------------------------------------------------------------------
    250 // Constructs a DecimalFormat instance in the default locale.
    251 
    252 DecimalFormat::DecimalFormat(UErrorCode& status) {
    253     init();
    254     UParseError parseError;
    255     construct(status, parseError);
    256 }
    257 
    258 //------------------------------------------------------------------------------
    259 // Constructs a DecimalFormat instance with the specified number format
    260 // pattern in the default locale.
    261 
    262 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    263                              UErrorCode& status) {
    264     init();
    265     UParseError parseError;
    266     construct(status, parseError, &pattern);
    267 }
    268 
    269 //------------------------------------------------------------------------------
    270 // Constructs a DecimalFormat instance with the specified number format
    271 // pattern and the number format symbols in the default locale.  The
    272 // created instance owns the symbols.
    273 
    274 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    275                              DecimalFormatSymbols* symbolsToAdopt,
    276                              UErrorCode& status) {
    277     init();
    278     UParseError parseError;
    279     if (symbolsToAdopt == NULL)
    280         status = U_ILLEGAL_ARGUMENT_ERROR;
    281     construct(status, parseError, &pattern, symbolsToAdopt);
    282 }
    283 
    284 DecimalFormat::DecimalFormat(  const UnicodeString& pattern,
    285                     DecimalFormatSymbols* symbolsToAdopt,
    286                     UParseError& parseErr,
    287                     UErrorCode& status) {
    288     init();
    289     if (symbolsToAdopt == NULL)
    290         status = U_ILLEGAL_ARGUMENT_ERROR;
    291     construct(status,parseErr, &pattern, symbolsToAdopt);
    292 }
    293 
    294 //------------------------------------------------------------------------------
    295 // Constructs a DecimalFormat instance with the specified number format
    296 // pattern and the number format symbols in the default locale.  The
    297 // created instance owns the clone of the symbols.
    298 
    299 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    300                              const DecimalFormatSymbols& symbols,
    301                              UErrorCode& status) {
    302     init();
    303     UParseError parseError;
    304     construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
    305 }
    306 
    307 //------------------------------------------------------------------------------
    308 // Constructs a DecimalFormat instance with the specified number format
    309 // pattern, the number format symbols, and the number format style.
    310 // The created instance owns the clone of the symbols.
    311 
    312 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    313                              DecimalFormatSymbols* symbolsToAdopt,
    314                              UNumberFormatStyle style,
    315                              UErrorCode& status) {
    316     init();
    317     fStyle = style;
    318     UParseError parseError;
    319     construct(status, parseError, &pattern, symbolsToAdopt);
    320 }
    321 
    322 //-----------------------------------------------------------------------------
    323 // Common DecimalFormat initialization.
    324 //    Put all fields of an uninitialized object into a known state.
    325 //    Common code, shared by all constructors.
    326 //    Can not fail. Leave the object in good enough shape that the destructor
    327 //    or assignment operator can run successfully.
    328 void
    329 DecimalFormat::init() {
    330     fBoolFlags.clear();
    331     fStyle = UNUM_DECIMAL;
    332     fAffixPatternsForCurrency = NULL;
    333     fCurrencyPluralInfo = NULL;
    334 #if UCONFIG_HAVE_PARSEALLINPUT
    335     fParseAllInput = UNUM_MAYBE;
    336 #endif
    337 
    338     fStaticSets = NULL;
    339     fImpl = NULL;
    340 }
    341 
    342 //------------------------------------------------------------------------------
    343 // Constructs a DecimalFormat instance with the specified number format
    344 // pattern and the number format symbols in the desired locale.  The
    345 // created instance owns the symbols.
    346 
    347 void
    348 DecimalFormat::construct(UErrorCode&            status,
    349                          UParseError&           parseErr,
    350                          const UnicodeString*   pattern,
    351                          DecimalFormatSymbols*  symbolsToAdopt)
    352 {
    353     LocalPointer<DecimalFormatSymbols> adoptedSymbols(symbolsToAdopt);
    354     if (U_FAILURE(status))
    355         return;
    356 
    357     if (adoptedSymbols.isNull())
    358     {
    359         adoptedSymbols.adoptInstead(
    360                 new DecimalFormatSymbols(Locale::getDefault(), status));
    361         if (adoptedSymbols.isNull() && U_SUCCESS(status)) {
    362             status = U_MEMORY_ALLOCATION_ERROR;
    363         }
    364         if (U_FAILURE(status)) {
    365             return;
    366         }
    367     }
    368     fStaticSets = DecimalFormatStaticSets::getStaticSets(status);
    369     if (U_FAILURE(status)) {
    370         return;
    371     }
    372 
    373     UnicodeString str;
    374     // Uses the default locale's number format pattern if there isn't
    375     // one specified.
    376     if (pattern == NULL)
    377     {
    378         UErrorCode nsStatus = U_ZERO_ERROR;
    379         LocalPointer<NumberingSystem> ns(
    380                 NumberingSystem::createInstance(nsStatus));
    381         if (U_FAILURE(nsStatus)) {
    382             status = nsStatus;
    383             return;
    384         }
    385 
    386         int32_t len = 0;
    387         UResourceBundle *top = ures_open(NULL, Locale::getDefault().getName(), &status);
    388 
    389         UResourceBundle *resource = ures_getByKeyWithFallback(top, fgNumberElements, NULL, &status);
    390         resource = ures_getByKeyWithFallback(resource, ns->getName(), resource, &status);
    391         resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
    392         const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
    393         if ( status == U_MISSING_RESOURCE_ERROR && uprv_strcmp(fgLatn,ns->getName())) {
    394             status = U_ZERO_ERROR;
    395             resource = ures_getByKeyWithFallback(top, fgNumberElements, resource, &status);
    396             resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status);
    397             resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
    398             resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
    399         }
    400         str.setTo(TRUE, resStr, len);
    401         pattern = &str;
    402         ures_close(resource);
    403         ures_close(top);
    404     }
    405 
    406     fImpl = new DecimalFormatImpl(this, *pattern, adoptedSymbols.getAlias(), parseErr, status);
    407     if (fImpl) {
    408         adoptedSymbols.orphan();
    409     } else if (U_SUCCESS(status)) {
    410         status = U_MEMORY_ALLOCATION_ERROR;
    411     }
    412     if (U_FAILURE(status)) {
    413         return;
    414     }
    415 
    416     if (U_FAILURE(status))
    417     {
    418         return;
    419     }
    420 
    421     const UnicodeString* patternUsed;
    422     UnicodeString currencyPluralPatternForOther;
    423     // apply pattern
    424     if (fStyle == UNUM_CURRENCY_PLURAL) {
    425         fCurrencyPluralInfo = new CurrencyPluralInfo(fImpl->fSymbols->getLocale(), status);
    426         if (U_FAILURE(status)) {
    427             return;
    428         }
    429 
    430         // the pattern used in format is not fixed until formatting,
    431         // in which, the number is known and
    432         // will be used to pick the right pattern based on plural count.
    433         // Here, set the pattern as the pattern of plural count == "other".
    434         // For most locale, the patterns are probably the same for all
    435         // plural count. If not, the right pattern need to be re-applied
    436         // during format.
    437         fCurrencyPluralInfo->getCurrencyPluralPattern(UNICODE_STRING("other", 5), currencyPluralPatternForOther);
    438         // TODO(refactor): Revisit, we are setting the pattern twice.
    439         fImpl->applyPatternFavorCurrencyPrecision(
    440                 currencyPluralPatternForOther, status);
    441         patternUsed = &currencyPluralPatternForOther;
    442 
    443     } else {
    444         patternUsed = pattern;
    445     }
    446 
    447     if (patternUsed->indexOf(kCurrencySign) != -1) {
    448         // initialize for currency, not only for plural format,
    449         // but also for mix parsing
    450         handleCurrencySignInPattern(status);
    451     }
    452 }
    453 
    454 void
    455 DecimalFormat::handleCurrencySignInPattern(UErrorCode& status) {
    456     // initialize for currency, not only for plural format,
    457     // but also for mix parsing
    458     if (U_FAILURE(status)) {
    459         return;
    460     }
    461     if (fCurrencyPluralInfo == NULL) {
    462        fCurrencyPluralInfo = new CurrencyPluralInfo(fImpl->fSymbols->getLocale(), status);
    463        if (U_FAILURE(status)) {
    464            return;
    465        }
    466     }
    467     // need it for mix parsing
    468     if (fAffixPatternsForCurrency == NULL) {
    469         setupCurrencyAffixPatterns(status);
    470     }
    471 }
    472 
    473 static void
    474 applyPatternWithNoSideEffects(
    475         const UnicodeString& pattern,
    476         UParseError& parseError,
    477         UnicodeString &negPrefix,
    478         UnicodeString &negSuffix,
    479         UnicodeString &posPrefix,
    480         UnicodeString &posSuffix,
    481         UErrorCode& status) {
    482         if (U_FAILURE(status))
    483     {
    484         return;
    485     }
    486     DecimalFormatPatternParser patternParser;
    487     DecimalFormatPattern out;
    488     patternParser.applyPatternWithoutExpandAffix(
    489         pattern,
    490         out,
    491         parseError,
    492         status);
    493     if (U_FAILURE(status)) {
    494       return;
    495     }
    496     negPrefix = out.fNegPrefixPattern;
    497     negSuffix = out.fNegSuffixPattern;
    498     posPrefix = out.fPosPrefixPattern;
    499     posSuffix = out.fPosSuffixPattern;
    500 }
    501 
    502 void
    503 DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
    504     if (U_FAILURE(status)) {
    505         return;
    506     }
    507     UParseError parseErr;
    508     fAffixPatternsForCurrency = initHashForAffixPattern(status);
    509     if (U_FAILURE(status)) {
    510         return;
    511     }
    512 
    513     NumberingSystem *ns = NumberingSystem::createInstance(fImpl->fSymbols->getLocale(),status);
    514     if (U_FAILURE(status)) {
    515         return;
    516     }
    517 
    518     // Save the default currency patterns of this locale.
    519     // Here, chose onlyApplyPatternWithoutExpandAffix without
    520     // expanding the affix patterns into affixes.
    521     UnicodeString currencyPattern;
    522     UErrorCode error = U_ZERO_ERROR;
    523 
    524     UResourceBundle *resource = ures_open(NULL, fImpl->fSymbols->getLocale().getName(), &error);
    525     UResourceBundle *numElements = ures_getByKeyWithFallback(resource, fgNumberElements, NULL, &error);
    526     resource = ures_getByKeyWithFallback(numElements, ns->getName(), resource, &error);
    527     resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
    528     int32_t patLen = 0;
    529     const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
    530     if ( error == U_MISSING_RESOURCE_ERROR && uprv_strcmp(ns->getName(),fgLatn)) {
    531         error = U_ZERO_ERROR;
    532         resource = ures_getByKeyWithFallback(numElements, fgLatn, resource, &error);
    533         resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
    534         patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
    535     }
    536     ures_close(numElements);
    537     ures_close(resource);
    538     delete ns;
    539 
    540     if (U_SUCCESS(error)) {
    541         UnicodeString negPrefix;
    542         UnicodeString negSuffix;
    543         UnicodeString posPrefix;
    544         UnicodeString posSuffix;
    545         applyPatternWithNoSideEffects(UnicodeString(patResStr, patLen),
    546                                        parseErr,
    547                 negPrefix, negSuffix, posPrefix, posSuffix,  status);
    548         AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
    549                                                     negPrefix,
    550                                                     negSuffix,
    551                                                     posPrefix,
    552                                                     posSuffix,
    553                                                     UCURR_SYMBOL_NAME);
    554         fAffixPatternsForCurrency->put(UNICODE_STRING("default", 7), affixPtn, status);
    555     }
    556 
    557     // save the unique currency plural patterns of this locale.
    558     Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
    559     const UHashElement* element = NULL;
    560     int32_t pos = UHASH_FIRST;
    561     Hashtable pluralPatternSet;
    562     while ((element = pluralPtn->nextElement(pos)) != NULL) {
    563         const UHashTok valueTok = element->value;
    564         const UnicodeString* value = (UnicodeString*)valueTok.pointer;
    565         const UHashTok keyTok = element->key;
    566         const UnicodeString* key = (UnicodeString*)keyTok.pointer;
    567         if (pluralPatternSet.geti(*value) != 1) {
    568             UnicodeString negPrefix;
    569             UnicodeString negSuffix;
    570             UnicodeString posPrefix;
    571             UnicodeString posSuffix;
    572             pluralPatternSet.puti(*value, 1, status);
    573             applyPatternWithNoSideEffects(
    574                     *value, parseErr,
    575                     negPrefix, negSuffix, posPrefix, posSuffix, status);
    576             AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
    577                                                     negPrefix,
    578                                                     negSuffix,
    579                                                     posPrefix,
    580                                                     posSuffix,
    581                                                     UCURR_LONG_NAME);
    582             fAffixPatternsForCurrency->put(*key, affixPtn, status);
    583         }
    584     }
    585 }
    586 
    587 
    588 //------------------------------------------------------------------------------
    589 
    590 DecimalFormat::~DecimalFormat()
    591 {
    592     deleteHashForAffixPattern();
    593     delete fCurrencyPluralInfo;
    594     delete fImpl;
    595 }
    596 
    597 //------------------------------------------------------------------------------
    598 // copy constructor
    599 
    600 DecimalFormat::DecimalFormat(const DecimalFormat &source) :
    601     NumberFormat(source) {
    602     init();
    603     *this = source;
    604 }
    605 
    606 //------------------------------------------------------------------------------
    607 // assignment operator
    608 
    609 template <class T>
    610 static void _clone_ptr(T** pdest, const T* source) {
    611     delete *pdest;
    612     if (source == NULL) {
    613         *pdest = NULL;
    614     } else {
    615         *pdest = static_cast<T*>(source->clone());
    616     }
    617 }
    618 
    619 DecimalFormat&
    620 DecimalFormat::operator=(const DecimalFormat& rhs)
    621 {
    622     if(this != &rhs) {
    623         UErrorCode status = U_ZERO_ERROR;
    624         NumberFormat::operator=(rhs);
    625         if (fImpl == NULL) {
    626             fImpl = new DecimalFormatImpl(this, *rhs.fImpl, status);
    627         } else {
    628             fImpl->assign(*rhs.fImpl, status);
    629         }
    630         fStaticSets     = DecimalFormatStaticSets::getStaticSets(status);
    631         fStyle = rhs.fStyle;
    632         _clone_ptr(&fCurrencyPluralInfo, rhs.fCurrencyPluralInfo);
    633         deleteHashForAffixPattern();
    634         if (rhs.fAffixPatternsForCurrency) {
    635             UErrorCode status = U_ZERO_ERROR;
    636             fAffixPatternsForCurrency = initHashForAffixPattern(status);
    637             copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
    638                                     fAffixPatternsForCurrency, status);
    639         }
    640     }
    641 
    642     return *this;
    643 }
    644 
    645 //------------------------------------------------------------------------------
    646 
    647 UBool
    648 DecimalFormat::operator==(const Format& that) const
    649 {
    650     if (this == &that)
    651         return TRUE;
    652 
    653     // NumberFormat::operator== guarantees this cast is safe
    654     const DecimalFormat* other = (DecimalFormat*)&that;
    655 
    656     return (
    657         NumberFormat::operator==(that) &&
    658         fBoolFlags.getAll() == other->fBoolFlags.getAll() &&
    659         *fImpl == *other->fImpl);
    660 
    661 }
    662 
    663 //------------------------------------------------------------------------------
    664 
    665 Format*
    666 DecimalFormat::clone() const
    667 {
    668     return new DecimalFormat(*this);
    669 }
    670 
    671 
    672 FixedDecimal
    673 DecimalFormat::getFixedDecimal(double number, UErrorCode &status) const {
    674     VisibleDigitsWithExponent digits;
    675     initVisibleDigitsWithExponent(number, digits, status);
    676     if (U_FAILURE(status)) {
    677         return FixedDecimal();
    678     }
    679     return FixedDecimal(digits.getMantissa());
    680 }
    681 
    682 VisibleDigitsWithExponent &
    683 DecimalFormat::initVisibleDigitsWithExponent(
    684         double number,
    685         VisibleDigitsWithExponent &digits,
    686         UErrorCode &status) const {
    687     return fImpl->initVisibleDigitsWithExponent(number, digits, status);
    688 }
    689 
    690 FixedDecimal
    691 DecimalFormat::getFixedDecimal(const Formattable &number, UErrorCode &status) const {
    692     VisibleDigitsWithExponent digits;
    693     initVisibleDigitsWithExponent(number, digits, status);
    694     if (U_FAILURE(status)) {
    695         return FixedDecimal();
    696     }
    697     return FixedDecimal(digits.getMantissa());
    698 }
    699 
    700 VisibleDigitsWithExponent &
    701 DecimalFormat::initVisibleDigitsWithExponent(
    702         const Formattable &number,
    703         VisibleDigitsWithExponent &digits,
    704         UErrorCode &status) const {
    705     if (U_FAILURE(status)) {
    706         return digits;
    707     }
    708     if (!number.isNumeric()) {
    709         status = U_ILLEGAL_ARGUMENT_ERROR;
    710         return digits;
    711     }
    712 
    713     DigitList *dl = number.getDigitList();
    714     if (dl != NULL) {
    715         DigitList dlCopy(*dl);
    716         return fImpl->initVisibleDigitsWithExponent(
    717                 dlCopy, digits, status);
    718     }
    719 
    720     Formattable::Type type = number.getType();
    721     if (type == Formattable::kDouble || type == Formattable::kLong) {
    722         return fImpl->initVisibleDigitsWithExponent(
    723                 number.getDouble(status), digits, status);
    724     }
    725     return fImpl->initVisibleDigitsWithExponent(
    726             number.getInt64(), digits, status);
    727 }
    728 
    729 
    730 // Create a fixed decimal from a DigitList.
    731 //    The digit list may be modified.
    732 //    Internal function only.
    733 FixedDecimal
    734 DecimalFormat::getFixedDecimal(DigitList &number, UErrorCode &status) const {
    735     VisibleDigitsWithExponent digits;
    736     initVisibleDigitsWithExponent(number, digits, status);
    737     if (U_FAILURE(status)) {
    738         return FixedDecimal();
    739     }
    740     return FixedDecimal(digits.getMantissa());
    741 }
    742 
    743 VisibleDigitsWithExponent &
    744 DecimalFormat::initVisibleDigitsWithExponent(
    745         DigitList &number,
    746         VisibleDigitsWithExponent &digits,
    747         UErrorCode &status) const {
    748     return fImpl->initVisibleDigitsWithExponent(
    749             number, digits, status);
    750 }
    751 
    752 
    753 //------------------------------------------------------------------------------
    754 
    755 UnicodeString&
    756 DecimalFormat::format(int32_t number,
    757                       UnicodeString& appendTo,
    758                       FieldPosition& fieldPosition) const
    759 {
    760     UErrorCode status = U_ZERO_ERROR;
    761     return fImpl->format(number, appendTo, fieldPosition, status);
    762 }
    763 
    764 UnicodeString&
    765 DecimalFormat::format(int32_t number,
    766                       UnicodeString& appendTo,
    767                       FieldPosition& fieldPosition,
    768                       UErrorCode& status) const
    769 {
    770     return fImpl->format(number, appendTo, fieldPosition, status);
    771 }
    772 
    773 UnicodeString&
    774 DecimalFormat::format(int32_t number,
    775                       UnicodeString& appendTo,
    776                       FieldPositionIterator* posIter,
    777                       UErrorCode& status) const
    778 {
    779     return fImpl->format(number, appendTo, posIter, status);
    780 }
    781 
    782 
    783 //------------------------------------------------------------------------------
    784 
    785 UnicodeString&
    786 DecimalFormat::format(int64_t number,
    787                       UnicodeString& appendTo,
    788                       FieldPosition& fieldPosition) const
    789 {
    790     UErrorCode status = U_ZERO_ERROR; /* ignored */
    791     return fImpl->format(number, appendTo, fieldPosition, status);
    792 }
    793 
    794 UnicodeString&
    795 DecimalFormat::format(int64_t number,
    796                       UnicodeString& appendTo,
    797                       FieldPosition& fieldPosition,
    798                       UErrorCode& status) const
    799 {
    800     return fImpl->format(number, appendTo, fieldPosition, status);
    801 }
    802 
    803 UnicodeString&
    804 DecimalFormat::format(int64_t number,
    805                       UnicodeString& appendTo,
    806                       FieldPositionIterator* posIter,
    807                       UErrorCode& status) const
    808 {
    809     return fImpl->format(number, appendTo, posIter, status);
    810 }
    811 
    812 //------------------------------------------------------------------------------
    813 
    814 UnicodeString&
    815 DecimalFormat::format(  double number,
    816                         UnicodeString& appendTo,
    817                         FieldPosition& fieldPosition) const
    818 {
    819     UErrorCode status = U_ZERO_ERROR; /* ignored */
    820     return fImpl->format(number, appendTo, fieldPosition, status);
    821 }
    822 
    823 UnicodeString&
    824 DecimalFormat::format(  double number,
    825                         UnicodeString& appendTo,
    826                         FieldPosition& fieldPosition,
    827                         UErrorCode& status) const
    828 {
    829     return fImpl->format(number, appendTo, fieldPosition, status);
    830 }
    831 
    832 UnicodeString&
    833 DecimalFormat::format(  double number,
    834                         UnicodeString& appendTo,
    835                         FieldPositionIterator* posIter,
    836                         UErrorCode& status) const
    837 {
    838     return fImpl->format(number, appendTo, posIter, status);
    839 }
    840 
    841 //------------------------------------------------------------------------------
    842 
    843 
    844 UnicodeString&
    845 DecimalFormat::format(StringPiece number,
    846                       UnicodeString &toAppendTo,
    847                       FieldPositionIterator *posIter,
    848                       UErrorCode &status) const
    849 {
    850   return fImpl->format(number, toAppendTo, posIter, status);
    851 }
    852 
    853 
    854 UnicodeString&
    855 DecimalFormat::format(const DigitList &number,
    856                       UnicodeString &appendTo,
    857                       FieldPositionIterator *posIter,
    858                       UErrorCode &status) const {
    859     return fImpl->format(number, appendTo, posIter, status);
    860 }
    861 
    862 
    863 UnicodeString&
    864 DecimalFormat::format(const DigitList &number,
    865                      UnicodeString& appendTo,
    866                      FieldPosition& pos,
    867                      UErrorCode &status) const {
    868     return fImpl->format(number, appendTo, pos, status);
    869 }
    870 
    871 UnicodeString&
    872 DecimalFormat::format(const VisibleDigitsWithExponent &number,
    873                       UnicodeString &appendTo,
    874                       FieldPositionIterator *posIter,
    875                       UErrorCode &status) const {
    876     return fImpl->format(number, appendTo, posIter, status);
    877 }
    878 
    879 
    880 UnicodeString&
    881 DecimalFormat::format(const VisibleDigitsWithExponent &number,
    882                      UnicodeString& appendTo,
    883                      FieldPosition& pos,
    884                      UErrorCode &status) const {
    885     return fImpl->format(number, appendTo, pos, status);
    886 }
    887 
    888 DigitList&
    889 DecimalFormat::_round(const DigitList& number, DigitList& adjustedNum, UBool& isNegative, UErrorCode& status) const {
    890     adjustedNum = number;
    891     fImpl->round(adjustedNum, status);
    892     isNegative = !adjustedNum.isPositive();
    893     return adjustedNum;
    894 }
    895 
    896 void
    897 DecimalFormat::parse(const UnicodeString& text,
    898                      Formattable& result,
    899                      ParsePosition& parsePosition) const {
    900     parse(text, result, parsePosition, NULL);
    901 }
    902 
    903 CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text,
    904                                              ParsePosition& pos) const {
    905     Formattable parseResult;
    906     int32_t start = pos.getIndex();
    907     UChar curbuf[4] = {};
    908     parse(text, parseResult, pos, curbuf);
    909     if (pos.getIndex() != start) {
    910         UErrorCode ec = U_ZERO_ERROR;
    911         LocalPointer<CurrencyAmount> currAmt(new CurrencyAmount(parseResult, curbuf, ec), ec);
    912         if (U_FAILURE(ec)) {
    913             pos.setIndex(start); // indicate failure
    914         } else {
    915             return currAmt.orphan();
    916         }
    917     }
    918     return NULL;
    919 }
    920 
    921 /**
    922  * Parses the given text as a number, optionally providing a currency amount.
    923  * @param text the string to parse
    924  * @param result output parameter for the numeric result.
    925  * @param parsePosition input-output position; on input, the
    926  * position within text to match; must have 0 <= pos.getIndex() <
    927  * text.length(); on output, the position after the last matched
    928  * character. If the parse fails, the position in unchanged upon
    929  * output.
    930  * @param currency if non-NULL, it should point to a 4-UChar buffer.
    931  * In this case the text is parsed as a currency format, and the
    932  * ISO 4217 code for the parsed currency is put into the buffer.
    933  * Otherwise the text is parsed as a non-currency format.
    934  */
    935 void DecimalFormat::parse(const UnicodeString& text,
    936                           Formattable& result,
    937                           ParsePosition& parsePosition,
    938                           UChar* currency) const {
    939     int32_t startIdx, backup;
    940     int32_t i = startIdx = backup = parsePosition.getIndex();
    941 
    942     // clear any old contents in the result.  In particular, clears any DigitList
    943     //   that it may be holding.
    944     result.setLong(0);
    945     if (currency != NULL) {
    946         for (int32_t ci=0; ci<4; ci++) {
    947             currency[ci] = 0;
    948         }
    949     }
    950 
    951     // Handle NaN as a special case:
    952     int32_t formatWidth = fImpl->getOldFormatWidth();
    953 
    954     // Skip padding characters, if around prefix
    955     if (formatWidth > 0 && (
    956             fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadBeforePrefix ||
    957             fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadAfterPrefix)) {
    958         i = skipPadding(text, i);
    959     }
    960 
    961     if (isLenient()) {
    962         // skip any leading whitespace
    963         i = backup = skipUWhiteSpace(text, i);
    964     }
    965 
    966     // If the text is composed of the representation of NaN, returns NaN.length
    967     const UnicodeString *nan = &fImpl->getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
    968     int32_t nanLen = (text.compare(i, nan->length(), *nan)
    969                       ? 0 : nan->length());
    970     if (nanLen) {
    971         i += nanLen;
    972         if (formatWidth > 0 && (fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadBeforeSuffix || fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadAfterSuffix)) {
    973             i = skipPadding(text, i);
    974         }
    975         parsePosition.setIndex(i);
    976         result.setDouble(uprv_getNaN());
    977         return;
    978     }
    979 
    980     // NaN parse failed; start over
    981     i = backup;
    982     parsePosition.setIndex(i);
    983 
    984     // status is used to record whether a number is infinite.
    985     UBool status[fgStatusLength];
    986 
    987     DigitList *digits = result.getInternalDigitList(); // get one from the stack buffer
    988     if (digits == NULL) {
    989         return;    // no way to report error from here.
    990     }
    991 
    992     if (fImpl->fMonetary) {
    993         if (!parseForCurrency(text, parsePosition, *digits,
    994                               status, currency)) {
    995           return;
    996         }
    997     } else {
    998         if (!subparse(text,
    999                       &fImpl->fAffixes.fNegativePrefix.getOtherVariant().toString(),
   1000                       &fImpl->fAffixes.fNegativeSuffix.getOtherVariant().toString(),
   1001                       &fImpl->fAffixes.fPositivePrefix.getOtherVariant().toString(),
   1002                       &fImpl->fAffixes.fPositiveSuffix.getOtherVariant().toString(),
   1003                       FALSE, UCURR_SYMBOL_NAME,
   1004                       parsePosition, *digits, status, currency)) {
   1005             debug("!subparse(...) - rewind");
   1006             parsePosition.setIndex(startIdx);
   1007             return;
   1008         }
   1009     }
   1010 
   1011     // Handle infinity
   1012     if (status[fgStatusInfinite]) {
   1013         double inf = uprv_getInfinity();
   1014         result.setDouble(digits->isPositive() ? inf : -inf);
   1015         // TODO:  set the dl to infinity, and let it fall into the code below.
   1016     }
   1017 
   1018     else {
   1019 
   1020         if (!fImpl->fMultiplier.isZero()) {
   1021             UErrorCode ec = U_ZERO_ERROR;
   1022             digits->div(fImpl->fMultiplier, ec);
   1023         }
   1024 
   1025         if (fImpl->fScale != 0) {
   1026             DigitList ten;
   1027             ten.set((int32_t)10);
   1028             if (fImpl->fScale > 0) {
   1029                 for (int32_t i = fImpl->fScale; i > 0; i--) {
   1030                     UErrorCode ec = U_ZERO_ERROR;
   1031                     digits->div(ten,ec);
   1032                 }
   1033             } else {
   1034                 for (int32_t i = fImpl->fScale; i < 0; i++) {
   1035                     UErrorCode ec = U_ZERO_ERROR;
   1036                     digits->mult(ten,ec);
   1037                 }
   1038             }
   1039         }
   1040 
   1041         // Negative zero special case:
   1042         //    if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
   1043         //    if not parsing integerOnly, leave as -0, which a double can represent.
   1044         if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
   1045             digits->setPositive(TRUE);
   1046         }
   1047         result.adoptDigitList(digits);
   1048     }
   1049 }
   1050 
   1051 
   1052 
   1053 UBool
   1054 DecimalFormat::parseForCurrency(const UnicodeString& text,
   1055                                 ParsePosition& parsePosition,
   1056                                 DigitList& digits,
   1057                                 UBool* status,
   1058                                 UChar* currency) const {
   1059     UnicodeString positivePrefix;
   1060     UnicodeString positiveSuffix;
   1061     UnicodeString negativePrefix;
   1062     UnicodeString negativeSuffix;
   1063     fImpl->fPositivePrefixPattern.toString(positivePrefix);
   1064     fImpl->fPositiveSuffixPattern.toString(positiveSuffix);
   1065     fImpl->fNegativePrefixPattern.toString(negativePrefix);
   1066     fImpl->fNegativeSuffixPattern.toString(negativeSuffix);
   1067 
   1068     int origPos = parsePosition.getIndex();
   1069     int maxPosIndex = origPos;
   1070     int maxErrorPos = -1;
   1071     // First, parse against current pattern.
   1072     // Since current pattern could be set by applyPattern(),
   1073     // it could be an arbitrary pattern, and it may not be the one
   1074     // defined in current locale.
   1075     UBool tmpStatus[fgStatusLength];
   1076     ParsePosition tmpPos(origPos);
   1077     DigitList tmpDigitList;
   1078     UBool found;
   1079     if (fStyle == UNUM_CURRENCY_PLURAL) {
   1080         found = subparse(text,
   1081                          &negativePrefix, &negativeSuffix,
   1082                          &positivePrefix, &positiveSuffix,
   1083                          TRUE, UCURR_LONG_NAME,
   1084                          tmpPos, tmpDigitList, tmpStatus, currency);
   1085     } else {
   1086         found = subparse(text,
   1087                          &negativePrefix, &negativeSuffix,
   1088                          &positivePrefix, &positiveSuffix,
   1089                          TRUE, UCURR_SYMBOL_NAME,
   1090                          tmpPos, tmpDigitList, tmpStatus, currency);
   1091     }
   1092     if (found) {
   1093         if (tmpPos.getIndex() > maxPosIndex) {
   1094             maxPosIndex = tmpPos.getIndex();
   1095             for (int32_t i = 0; i < fgStatusLength; ++i) {
   1096                 status[i] = tmpStatus[i];
   1097             }
   1098             digits = tmpDigitList;
   1099         }
   1100     } else {
   1101         maxErrorPos = tmpPos.getErrorIndex();
   1102     }
   1103     // Then, parse against affix patterns.
   1104     // Those are currency patterns and currency plural patterns.
   1105     int32_t pos = UHASH_FIRST;
   1106     const UHashElement* element = NULL;
   1107     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
   1108         const UHashTok valueTok = element->value;
   1109         const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
   1110         UBool tmpStatus[fgStatusLength];
   1111         ParsePosition tmpPos(origPos);
   1112         DigitList tmpDigitList;
   1113 
   1114 #ifdef FMT_DEBUG
   1115         debug("trying affix for currency..");
   1116         affixPtn->dump();
   1117 #endif
   1118 
   1119         UBool result = subparse(text,
   1120                                 &affixPtn->negPrefixPatternForCurrency,
   1121                                 &affixPtn->negSuffixPatternForCurrency,
   1122                                 &affixPtn->posPrefixPatternForCurrency,
   1123                                 &affixPtn->posSuffixPatternForCurrency,
   1124                                 TRUE, affixPtn->patternType,
   1125                                 tmpPos, tmpDigitList, tmpStatus, currency);
   1126         if (result) {
   1127             found = true;
   1128             if (tmpPos.getIndex() > maxPosIndex) {
   1129                 maxPosIndex = tmpPos.getIndex();
   1130                 for (int32_t i = 0; i < fgStatusLength; ++i) {
   1131                     status[i] = tmpStatus[i];
   1132                 }
   1133                 digits = tmpDigitList;
   1134             }
   1135         } else {
   1136             maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
   1137                           tmpPos.getErrorIndex() : maxErrorPos;
   1138         }
   1139     }
   1140     // Finally, parse against simple affix to find the match.
   1141     // For example, in TestMonster suite,
   1142     // if the to-be-parsed text is "-\u00A40,00".
   1143     // complexAffixCompare will not find match,
   1144     // since there is no ISO code matches "\u00A4",
   1145     // and the parse stops at "\u00A4".
   1146     // We will just use simple affix comparison (look for exact match)
   1147     // to pass it.
   1148     //
   1149     // TODO: We should parse against simple affix first when
   1150     // output currency is not requested. After the complex currency
   1151     // parsing implementation was introduced, the default currency
   1152     // instance parsing slowed down because of the new code flow.
   1153     // I filed #10312 - Yoshito
   1154     UBool tmpStatus_2[fgStatusLength];
   1155     ParsePosition tmpPos_2(origPos);
   1156     DigitList tmpDigitList_2;
   1157 
   1158     // Disable complex currency parsing and try it again.
   1159     UBool result = subparse(text,
   1160                             &fImpl->fAffixes.fNegativePrefix.getOtherVariant().toString(),
   1161                             &fImpl->fAffixes.fNegativeSuffix.getOtherVariant().toString(),
   1162                             &fImpl->fAffixes.fPositivePrefix.getOtherVariant().toString(),
   1163                             &fImpl->fAffixes.fPositiveSuffix.getOtherVariant().toString(),
   1164                             FALSE /* disable complex currency parsing */, UCURR_SYMBOL_NAME,
   1165                             tmpPos_2, tmpDigitList_2, tmpStatus_2,
   1166                             currency);
   1167     if (result) {
   1168         if (tmpPos_2.getIndex() > maxPosIndex) {
   1169             maxPosIndex = tmpPos_2.getIndex();
   1170             for (int32_t i = 0; i < fgStatusLength; ++i) {
   1171                 status[i] = tmpStatus_2[i];
   1172             }
   1173             digits = tmpDigitList_2;
   1174         }
   1175         found = true;
   1176     } else {
   1177             maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
   1178                           tmpPos_2.getErrorIndex() : maxErrorPos;
   1179     }
   1180 
   1181     if (!found) {
   1182         //parsePosition.setIndex(origPos);
   1183         parsePosition.setErrorIndex(maxErrorPos);
   1184     } else {
   1185         parsePosition.setIndex(maxPosIndex);
   1186         parsePosition.setErrorIndex(-1);
   1187     }
   1188     return found;
   1189 }
   1190 
   1191 
   1192 /**
   1193  * Parse the given text into a number.  The text is parsed beginning at
   1194  * parsePosition, until an unparseable character is seen.
   1195  * @param text the string to parse.
   1196  * @param negPrefix negative prefix.
   1197  * @param negSuffix negative suffix.
   1198  * @param posPrefix positive prefix.
   1199  * @param posSuffix positive suffix.
   1200  * @param complexCurrencyParsing whether it is complex currency parsing or not.
   1201  * @param type the currency type to parse against, LONG_NAME only or not.
   1202  * @param parsePosition The position at which to being parsing.  Upon
   1203  * return, the first unparsed character.
   1204  * @param digits the DigitList to set to the parsed value.
   1205  * @param status output param containing boolean status flags indicating
   1206  * whether the value was infinite and whether it was positive.
   1207  * @param currency return value for parsed currency, for generic
   1208  * currency parsing mode, or NULL for normal parsing. In generic
   1209  * currency parsing mode, any currency is parsed, not just the
   1210  * currency that this formatter is set to.
   1211  */
   1212 UBool DecimalFormat::subparse(const UnicodeString& text,
   1213                               const UnicodeString* negPrefix,
   1214                               const UnicodeString* negSuffix,
   1215                               const UnicodeString* posPrefix,
   1216                               const UnicodeString* posSuffix,
   1217                               UBool complexCurrencyParsing,
   1218                               int8_t type,
   1219                               ParsePosition& parsePosition,
   1220                               DigitList& digits, UBool* status,
   1221                               UChar* currency) const
   1222 {
   1223     //  The parsing process builds up the number as char string, in the neutral format that
   1224     //  will be acceptable to the decNumber library, then at the end passes that string
   1225     //  off for conversion to a decNumber.
   1226     UErrorCode err = U_ZERO_ERROR;
   1227     CharString parsedNum;
   1228     digits.setToZero();
   1229 
   1230     int32_t position = parsePosition.getIndex();
   1231     int32_t oldStart = position;
   1232     int32_t textLength = text.length(); // One less pointer to follow
   1233     UBool strictParse = !isLenient();
   1234     UChar32 zero = fImpl->getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
   1235     const UnicodeString *groupingString = &fImpl->getConstSymbol(
   1236             !fImpl->fMonetary ?
   1237             DecimalFormatSymbols::kGroupingSeparatorSymbol : DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
   1238     UChar32 groupingChar = groupingString->char32At(0);
   1239     int32_t groupingStringLength = groupingString->length();
   1240     int32_t groupingCharLength   = U16_LENGTH(groupingChar);
   1241     UBool   groupingUsed = isGroupingUsed();
   1242 #ifdef FMT_DEBUG
   1243     UChar dbgbuf[300];
   1244     UnicodeString s(dbgbuf,0,300);;
   1245     s.append((UnicodeString)"PARSE \"").append(text.tempSubString(position)).append((UnicodeString)"\" " );
   1246 #define DBGAPPD(x) if(x) { s.append(UnicodeString(#x "="));  if(x->isEmpty()) { s.append(UnicodeString("<empty>")); } else { s.append(*x); } s.append(UnicodeString(" ")); } else { s.append(UnicodeString(#x "=NULL ")); }
   1247     DBGAPPD(negPrefix);
   1248     DBGAPPD(negSuffix);
   1249     DBGAPPD(posPrefix);
   1250     DBGAPPD(posSuffix);
   1251     debugout(s);
   1252 #endif
   1253 
   1254     UBool fastParseOk = false; /* TRUE iff fast parse is OK */
   1255     // UBool fastParseHadDecimal = FALSE; /* true if fast parse saw a decimal point. */
   1256     if((fImpl->isParseFastpath()) && !fImpl->fMonetary &&
   1257        text.length()>0 &&
   1258        text.length()<32 &&
   1259        (posPrefix==NULL||posPrefix->isEmpty()) &&
   1260        (posSuffix==NULL||posSuffix->isEmpty()) &&
   1261        //            (negPrefix==NULL||negPrefix->isEmpty()) &&
   1262        //            (negSuffix==NULL||(negSuffix->isEmpty()) ) &&
   1263        TRUE) {  // optimized path
   1264       int j=position;
   1265       int l=text.length();
   1266       int digitCount=0;
   1267       UChar32 ch = text.char32At(j);
   1268       const UnicodeString *decimalString = &fImpl->getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   1269       UChar32 decimalChar = 0;
   1270       UBool intOnly = FALSE;
   1271       UChar32 lookForGroup = (groupingUsed&&intOnly&&strictParse)?groupingChar:0;
   1272 
   1273       int32_t decimalCount = decimalString->countChar32(0,3);
   1274       if(isParseIntegerOnly()) {
   1275         decimalChar = 0; // not allowed
   1276         intOnly = TRUE; // Don't look for decimals.
   1277       } else if(decimalCount==1) {
   1278         decimalChar = decimalString->char32At(0); // Look for this decimal
   1279       } else if(decimalCount==0) {
   1280         decimalChar=0; // NO decimal set
   1281       } else {
   1282         j=l+1;//Set counter to end of line, so that we break. Unknown decimal situation.
   1283       }
   1284 
   1285 #ifdef FMT_DEBUG
   1286       printf("Preparing to do fastpath parse: decimalChar=U+%04X, groupingChar=U+%04X, first ch=U+%04X intOnly=%c strictParse=%c\n",
   1287         decimalChar, groupingChar, ch,
   1288         (intOnly)?'y':'n',
   1289         (strictParse)?'y':'n');
   1290 #endif
   1291       if(ch==0x002D) { // '-'
   1292         j=l+1;//=break - negative number.
   1293 
   1294         /*
   1295           parsedNum.append('-',err);
   1296           j+=U16_LENGTH(ch);
   1297           if(j<l) ch = text.char32At(j);
   1298         */
   1299       } else {
   1300         parsedNum.append('+',err);
   1301       }
   1302       while(j<l) {
   1303         int32_t digit = ch - zero;
   1304         if(digit >=0 && digit <= 9) {
   1305           parsedNum.append((char)(digit + '0'), err);
   1306           if((digitCount>0) || digit!=0 || j==(l-1)) {
   1307             digitCount++;
   1308           }
   1309         } else if(ch == 0) { // break out
   1310           digitCount=-1;
   1311           break;
   1312         } else if(ch == decimalChar) {
   1313           parsedNum.append((char)('.'), err);
   1314           decimalChar=0; // no more decimals.
   1315           // fastParseHadDecimal=TRUE;
   1316         } else if(ch == lookForGroup) {
   1317           // ignore grouping char. No decimals, so it has to be an ignorable grouping sep
   1318         } else if(intOnly && (lookForGroup!=0) && !u_isdigit(ch)) {
   1319           // parsing integer only and can fall through
   1320         } else {
   1321           digitCount=-1; // fail - fall through to slow parse
   1322           break;
   1323         }
   1324         j+=U16_LENGTH(ch);
   1325         ch = text.char32At(j); // for next
   1326       }
   1327       if(
   1328          ((j==l)||intOnly) // end OR only parsing integer
   1329          && (digitCount>0)) { // and have at least one digit
   1330         fastParseOk=true; // Fast parse OK!
   1331 
   1332 #ifdef SKIP_OPT
   1333         debug("SKIP_OPT");
   1334         /* for testing, try it the slow way. also */
   1335         fastParseOk=false;
   1336         parsedNum.clear();
   1337 #else
   1338         parsePosition.setIndex(position=j);
   1339         status[fgStatusInfinite]=false;
   1340 #endif
   1341       } else {
   1342         // was not OK. reset, retry
   1343 #ifdef FMT_DEBUG
   1344         printf("Fall through: j=%d, l=%d, digitCount=%d\n", j, l, digitCount);
   1345 #endif
   1346         parsedNum.clear();
   1347       }
   1348     } else {
   1349 #ifdef FMT_DEBUG
   1350       printf("Could not fastpath parse. ");
   1351       printf("text.length()=%d ", text.length());
   1352       printf("posPrefix=%p posSuffix=%p ", posPrefix, posSuffix);
   1353 
   1354       printf("\n");
   1355 #endif
   1356     }
   1357 
   1358   UnicodeString formatPattern;
   1359   toPattern(formatPattern);
   1360 
   1361   if(!fastParseOk
   1362 #if UCONFIG_HAVE_PARSEALLINPUT
   1363      && fParseAllInput!=UNUM_YES
   1364 #endif
   1365      )
   1366   {
   1367     int32_t formatWidth = fImpl->getOldFormatWidth();
   1368     // Match padding before prefix
   1369     if (formatWidth > 0 && fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadBeforePrefix) {
   1370         position = skipPadding(text, position);
   1371     }
   1372 
   1373     // Match positive and negative prefixes; prefer longest match.
   1374     int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, complexCurrencyParsing, type, currency);
   1375     int32_t negMatch = compareAffix(text, position, TRUE,  TRUE, negPrefix, complexCurrencyParsing, type, currency);
   1376     if (posMatch >= 0 && negMatch >= 0) {
   1377         if (posMatch > negMatch) {
   1378             negMatch = -1;
   1379         } else if (negMatch > posMatch) {
   1380             posMatch = -1;
   1381         }
   1382     }
   1383     if (posMatch >= 0) {
   1384         position += posMatch;
   1385         parsedNum.append('+', err);
   1386     } else if (negMatch >= 0) {
   1387         position += negMatch;
   1388         parsedNum.append('-', err);
   1389     } else if (strictParse){
   1390         parsePosition.setErrorIndex(position);
   1391         return FALSE;
   1392     } else {
   1393         // Temporary set positive. This might be changed after checking suffix
   1394         parsedNum.append('+', err);
   1395     }
   1396 
   1397     // Match padding before prefix
   1398     if (formatWidth > 0 && fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadAfterPrefix) {
   1399         position = skipPadding(text, position);
   1400     }
   1401 
   1402     if (! strictParse) {
   1403         position = skipUWhiteSpace(text, position);
   1404     }
   1405 
   1406     // process digits or Inf, find decimal position
   1407     const UnicodeString *inf = &fImpl->getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
   1408     int32_t infLen = (text.compare(position, inf->length(), *inf)
   1409         ? 0 : inf->length());
   1410     position += infLen; // infLen is non-zero when it does equal to infinity
   1411     status[fgStatusInfinite] = infLen != 0;
   1412 
   1413     if (infLen != 0) {
   1414         parsedNum.append("Infinity", err);
   1415     } else {
   1416         // We now have a string of digits, possibly with grouping symbols,
   1417         // and decimal points.  We want to process these into a DigitList.
   1418         // We don't want to put a bunch of leading zeros into the DigitList
   1419         // though, so we keep track of the location of the decimal point,
   1420         // put only significant digits into the DigitList, and adjust the
   1421         // exponent as needed.
   1422 
   1423 
   1424         UBool strictFail = FALSE; // did we exit with a strict parse failure?
   1425         int32_t lastGroup = -1; // where did we last see a grouping separator?
   1426         int32_t digitStart = position;
   1427         int32_t gs2 = fImpl->fEffGrouping.fGrouping2 == 0 ? fImpl->fEffGrouping.fGrouping : fImpl->fEffGrouping.fGrouping2;
   1428 
   1429         const UnicodeString *decimalString;
   1430         if (fImpl->fMonetary) {
   1431             decimalString = &fImpl->getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
   1432         } else {
   1433             decimalString = &fImpl->getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   1434         }
   1435         UChar32 decimalChar = decimalString->char32At(0);
   1436         int32_t decimalStringLength = decimalString->length();
   1437         int32_t decimalCharLength   = U16_LENGTH(decimalChar);
   1438 
   1439         UBool sawDecimal = FALSE;
   1440         UChar32 sawDecimalChar = 0xFFFF;
   1441         UBool sawGrouping = FALSE;
   1442         UChar32 sawGroupingChar = 0xFFFF;
   1443         UBool sawDigit = FALSE;
   1444         int32_t backup = -1;
   1445         int32_t digit;
   1446 
   1447         // equivalent grouping and decimal support
   1448         const UnicodeSet *decimalSet = NULL;
   1449         const UnicodeSet *groupingSet = NULL;
   1450 
   1451         if (decimalCharLength == decimalStringLength) {
   1452             decimalSet = DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse);
   1453         }
   1454 
   1455         if (groupingCharLength == groupingStringLength) {
   1456             if (strictParse) {
   1457                 groupingSet = fStaticSets->fStrictDefaultGroupingSeparators;
   1458             } else {
   1459                 groupingSet = fStaticSets->fDefaultGroupingSeparators;
   1460             }
   1461         }
   1462 
   1463         // We need to test groupingChar and decimalChar separately from groupingSet and decimalSet, if the sets are even initialized.
   1464         // If sawDecimal is TRUE, only consider sawDecimalChar and NOT decimalSet
   1465         // If a character matches decimalSet, don't consider it to be a member of the groupingSet.
   1466 
   1467         // We have to track digitCount ourselves, because digits.fCount will
   1468         // pin when the maximum allowable digits is reached.
   1469         int32_t digitCount = 0;
   1470         int32_t integerDigitCount = 0;
   1471 
   1472         for (; position < textLength; )
   1473         {
   1474             UChar32 ch = text.char32At(position);
   1475 
   1476             /* We recognize all digit ranges, not only the Latin digit range
   1477              * '0'..'9'.  We do so by using the Character.digit() method,
   1478              * which converts a valid Unicode digit to the range 0..9.
   1479              *
   1480              * The character 'ch' may be a digit.  If so, place its value
   1481              * from 0 to 9 in 'digit'.  First try using the locale digit,
   1482              * which may or MAY NOT be a standard Unicode digit range.  If
   1483              * this fails, try using the standard Unicode digit ranges by
   1484              * calling Character.digit().  If this also fails, digit will
   1485              * have a value outside the range 0..9.
   1486              */
   1487             digit = ch - zero;
   1488             if (digit < 0 || digit > 9)
   1489             {
   1490                 digit = u_charDigitValue(ch);
   1491             }
   1492 
   1493             // As a last resort, look through the localized digits if the zero digit
   1494             // is not a "standard" Unicode digit.
   1495             if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
   1496                 digit = 0;
   1497                 if ( fImpl->getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) {
   1498                     break;
   1499                 }
   1500                 for (digit = 1 ; digit < 10 ; digit++ ) {
   1501                     if ( fImpl->getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
   1502                         break;
   1503                     }
   1504                 }
   1505             }
   1506 
   1507             if (digit >= 0 && digit <= 9)
   1508             {
   1509                 if (strictParse && backup != -1) {
   1510                     // comma followed by digit, so group before comma is a
   1511                     // secondary group.  If there was a group separator
   1512                     // before that, the group must == the secondary group
   1513                     // length, else it can be <= the the secondary group
   1514                     // length.
   1515                     if ((lastGroup != -1 && backup - lastGroup - 1 != gs2) ||
   1516                         (lastGroup == -1 && position - digitStart - 1 > gs2)) {
   1517                         strictFail = TRUE;
   1518                         break;
   1519                     }
   1520 
   1521                     lastGroup = backup;
   1522                 }
   1523 
   1524                 // Cancel out backup setting (see grouping handler below)
   1525                 backup = -1;
   1526                 sawDigit = TRUE;
   1527 
   1528                 // Note: this will append leading zeros
   1529                 parsedNum.append((char)(digit + '0'), err);
   1530 
   1531                 // count any digit that's not a leading zero
   1532                 if (digit > 0 || digitCount > 0 || sawDecimal) {
   1533                     digitCount += 1;
   1534 
   1535                     // count any integer digit that's not a leading zero
   1536                     if (! sawDecimal) {
   1537                         integerDigitCount += 1;
   1538                     }
   1539                 }
   1540 
   1541                 position += U16_LENGTH(ch);
   1542             }
   1543             else if (groupingStringLength > 0 &&
   1544                 matchGrouping(groupingChar, sawGrouping, sawGroupingChar, groupingSet,
   1545                             decimalChar, decimalSet,
   1546                             ch) && groupingUsed)
   1547             {
   1548                 if (sawDecimal) {
   1549                     break;
   1550                 }
   1551 
   1552                 if (strictParse) {
   1553                     if ((!sawDigit || backup != -1)) {
   1554                         // leading group, or two group separators in a row
   1555                         strictFail = TRUE;
   1556                         break;
   1557                     }
   1558                 }
   1559 
   1560                 // Ignore grouping characters, if we are using them, but require
   1561                 // that they be followed by a digit.  Otherwise we backup and
   1562                 // reprocess them.
   1563                 backup = position;
   1564                 position += groupingStringLength;
   1565                 sawGrouping=TRUE;
   1566                 // Once we see a grouping character, we only accept that grouping character from then on.
   1567                 sawGroupingChar=ch;
   1568             }
   1569             else if (matchDecimal(decimalChar,sawDecimal,sawDecimalChar, decimalSet, ch))
   1570             {
   1571                 if (strictParse) {
   1572                     if (backup != -1 ||
   1573                         (lastGroup != -1 && position - lastGroup != fImpl->fEffGrouping.fGrouping + 1)) {
   1574                         strictFail = TRUE;
   1575                         break;
   1576                     }
   1577                 }
   1578 
   1579                 // If we're only parsing integers, or if we ALREADY saw the
   1580                 // decimal, then don't parse this one.
   1581                 if (isParseIntegerOnly() || sawDecimal) {
   1582                     break;
   1583                 }
   1584 
   1585                 parsedNum.append('.', err);
   1586                 position += decimalStringLength;
   1587                 sawDecimal = TRUE;
   1588                 // Once we see a decimal character, we only accept that decimal character from then on.
   1589                 sawDecimalChar=ch;
   1590                 // decimalSet is considered to consist of (ch,ch)
   1591             }
   1592             else {
   1593 
   1594                 if(!fBoolFlags.contains(UNUM_PARSE_NO_EXPONENT) || // don't parse if this is set unless..
   1595                    isScientificNotation()) { // .. it's an exponent format - ignore setting and parse anyways
   1596                     const UnicodeString *tmp;
   1597                     tmp = &fImpl->getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
   1598                     // TODO: CASE
   1599                     if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT))    // error code is set below if !sawDigit
   1600                     {
   1601                         // Parse sign, if present
   1602                         int32_t pos = position + tmp->length();
   1603                         char exponentSign = '+';
   1604 
   1605                         if (pos < textLength)
   1606                         {
   1607                             tmp = &fImpl->getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   1608                             if (!text.compare(pos, tmp->length(), *tmp))
   1609                             {
   1610                                 pos += tmp->length();
   1611                             }
   1612                             else {
   1613                                 tmp = &fImpl->getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   1614                                 if (!text.compare(pos, tmp->length(), *tmp))
   1615                                 {
   1616                                     exponentSign = '-';
   1617                                     pos += tmp->length();
   1618                                 }
   1619                             }
   1620                         }
   1621 
   1622                         UBool sawExponentDigit = FALSE;
   1623                         while (pos < textLength) {
   1624                             ch = text[(int32_t)pos];
   1625                             digit = ch - zero;
   1626 
   1627                             if (digit < 0 || digit > 9) {
   1628                                 digit = u_charDigitValue(ch);
   1629                             }
   1630                             if (0 <= digit && digit <= 9) {
   1631                                 if (!sawExponentDigit) {
   1632                                     parsedNum.append('E', err);
   1633                                     parsedNum.append(exponentSign, err);
   1634                                     sawExponentDigit = TRUE;
   1635                                 }
   1636                                 ++pos;
   1637                                 parsedNum.append((char)(digit + '0'), err);
   1638                             } else {
   1639                                 break;
   1640                             }
   1641                         }
   1642 
   1643                         if (sawExponentDigit) {
   1644                             position = pos; // Advance past the exponent
   1645                         }
   1646 
   1647                         break; // Whether we fail or succeed, we exit this loop
   1648                     } else {
   1649                         break;
   1650                     }
   1651                 } else { // not parsing exponent
   1652                     break;
   1653               }
   1654             }
   1655         }
   1656 
   1657         // if we didn't see a decimal and it is required, check to see if the pattern had one
   1658         if(!sawDecimal && isDecimalPatternMatchRequired())
   1659         {
   1660             if(formatPattern.indexOf(kPatternDecimalSeparator) != -1)
   1661             {
   1662                 parsePosition.setIndex(oldStart);
   1663                 parsePosition.setErrorIndex(position);
   1664                 debug("decimal point match required fail!");
   1665                 return FALSE;
   1666             }
   1667         }
   1668 
   1669         if (backup != -1)
   1670         {
   1671             position = backup;
   1672         }
   1673 
   1674         if (strictParse && !sawDecimal) {
   1675             if (lastGroup != -1 && position - lastGroup != fImpl->fEffGrouping.fGrouping + 1) {
   1676                 strictFail = TRUE;
   1677             }
   1678         }
   1679 
   1680         if (strictFail) {
   1681             // only set with strictParse and a grouping separator error
   1682 
   1683             parsePosition.setIndex(oldStart);
   1684             parsePosition.setErrorIndex(position);
   1685             debug("strictFail!");
   1686             return FALSE;
   1687         }
   1688 
   1689         // If there was no decimal point we have an integer
   1690 
   1691         // If none of the text string was recognized.  For example, parse
   1692         // "x" with pattern "#0.00" (return index and error index both 0)
   1693         // parse "$" with pattern "$#0.00". (return index 0 and error index
   1694         // 1).
   1695         if (!sawDigit && digitCount == 0) {
   1696 #ifdef FMT_DEBUG
   1697             debug("none of text rec");
   1698             printf("position=%d\n",position);
   1699 #endif
   1700             parsePosition.setIndex(oldStart);
   1701             parsePosition.setErrorIndex(oldStart);
   1702             return FALSE;
   1703         }
   1704     }
   1705 
   1706     // Match padding before suffix
   1707     if (formatWidth > 0 && fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadBeforeSuffix) {
   1708         position = skipPadding(text, position);
   1709     }
   1710 
   1711     int32_t posSuffixMatch = -1, negSuffixMatch = -1;
   1712 
   1713     // Match positive and negative suffixes; prefer longest match.
   1714     if (posMatch >= 0 || (!strictParse && negMatch < 0)) {
   1715         posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, complexCurrencyParsing, type, currency);
   1716     }
   1717     if (negMatch >= 0) {
   1718         negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, complexCurrencyParsing, type, currency);
   1719     }
   1720     if (posSuffixMatch >= 0 && negSuffixMatch >= 0) {
   1721         if (posSuffixMatch > negSuffixMatch) {
   1722             negSuffixMatch = -1;
   1723         } else if (negSuffixMatch > posSuffixMatch) {
   1724             posSuffixMatch = -1;
   1725         }
   1726     }
   1727 
   1728     // Fail if neither or both
   1729     if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) {
   1730         parsePosition.setErrorIndex(position);
   1731         debug("neither or both");
   1732         return FALSE;
   1733     }
   1734 
   1735     position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0));
   1736 
   1737     // Match padding before suffix
   1738     if (formatWidth > 0 && fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadAfterSuffix) {
   1739         position = skipPadding(text, position);
   1740     }
   1741 
   1742     parsePosition.setIndex(position);
   1743 
   1744     parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-';
   1745 #ifdef FMT_DEBUG
   1746 printf("PP -> %d, SLOW = [%s]!    pp=%d, os=%d, err=%s\n", position, parsedNum.data(), parsePosition.getIndex(),oldStart,u_errorName(err));
   1747 #endif
   1748   } /* end SLOW parse */
   1749   if(parsePosition.getIndex() == oldStart)
   1750     {
   1751 #ifdef FMT_DEBUG
   1752       printf(" PP didnt move, err\n");
   1753 #endif
   1754         parsePosition.setErrorIndex(position);
   1755         return FALSE;
   1756     }
   1757 #if UCONFIG_HAVE_PARSEALLINPUT
   1758   else if (fParseAllInput==UNUM_YES&&parsePosition.getIndex()!=textLength)
   1759     {
   1760 #ifdef FMT_DEBUG
   1761       printf(" PP didnt consume all (UNUM_YES), err\n");
   1762 #endif
   1763         parsePosition.setErrorIndex(position);
   1764         return FALSE;
   1765     }
   1766 #endif
   1767     // uint32_t bits = (fastParseOk?kFastpathOk:0) |
   1768     //   (fastParseHadDecimal?0:kNoDecimal);
   1769     //printf("FPOK=%d, FPHD=%d, bits=%08X\n", fastParseOk, fastParseHadDecimal, bits);
   1770     digits.set(parsedNum.toStringPiece(),
   1771                err,
   1772                0//bits
   1773                );
   1774 
   1775     if (U_FAILURE(err)) {
   1776 #ifdef FMT_DEBUG
   1777       printf(" err setting %s\n", u_errorName(err));
   1778 #endif
   1779         parsePosition.setErrorIndex(position);
   1780         return FALSE;
   1781     }
   1782 
   1783     // check if we missed a required decimal point
   1784     if(fastParseOk && isDecimalPatternMatchRequired())
   1785     {
   1786         if(formatPattern.indexOf(kPatternDecimalSeparator) != -1)
   1787         {
   1788             parsePosition.setIndex(oldStart);
   1789             parsePosition.setErrorIndex(position);
   1790             debug("decimal point match required fail!");
   1791             return FALSE;
   1792         }
   1793     }
   1794 
   1795 
   1796     return TRUE;
   1797 }
   1798 
   1799 /**
   1800  * Starting at position, advance past a run of pad characters, if any.
   1801  * Return the index of the first character after position that is not a pad
   1802  * character.  Result is >= position.
   1803  */
   1804 int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
   1805     int32_t padLen = U16_LENGTH(fImpl->fAffixes.fPadChar);
   1806     while (position < text.length() &&
   1807            text.char32At(position) == fImpl->fAffixes.fPadChar) {
   1808         position += padLen;
   1809     }
   1810     return position;
   1811 }
   1812 
   1813 /**
   1814  * Return the length matched by the given affix, or -1 if none.
   1815  * Runs of white space in the affix, match runs of white space in
   1816  * the input.  Pattern white space and input white space are
   1817  * determined differently; see code.
   1818  * @param text input text
   1819  * @param pos offset into input at which to begin matching
   1820  * @param isNegative
   1821  * @param isPrefix
   1822  * @param affixPat affix pattern used for currency affix comparison.
   1823  * @param complexCurrencyParsing whether it is currency parsing or not
   1824  * @param type the currency type to parse against, LONG_NAME only or not.
   1825  * @param currency return value for parsed currency, for generic
   1826  * currency parsing mode, or null for normal parsing. In generic
   1827  * currency parsing mode, any currency is parsed, not just the
   1828  * currency that this formatter is set to.
   1829  * @return length of input that matches, or -1 if match failure
   1830  */
   1831 int32_t DecimalFormat::compareAffix(const UnicodeString& text,
   1832                                     int32_t pos,
   1833                                     UBool isNegative,
   1834                                     UBool isPrefix,
   1835                                     const UnicodeString* affixPat,
   1836                                     UBool complexCurrencyParsing,
   1837                                     int8_t type,
   1838                                     UChar* currency) const
   1839 {
   1840     const UnicodeString *patternToCompare;
   1841     if (currency != NULL ||
   1842         (fImpl->fMonetary && complexCurrencyParsing)) {
   1843 
   1844         if (affixPat != NULL) {
   1845             return compareComplexAffix(*affixPat, text, pos, type, currency);
   1846         }
   1847     }
   1848 
   1849     if (isNegative) {
   1850         if (isPrefix) {
   1851             patternToCompare = &fImpl->fAffixes.fNegativePrefix.getOtherVariant().toString();
   1852         }
   1853         else {
   1854             patternToCompare = &fImpl->fAffixes.fNegativeSuffix.getOtherVariant().toString();
   1855         }
   1856     }
   1857     else {
   1858         if (isPrefix) {
   1859             patternToCompare = &fImpl->fAffixes.fPositivePrefix.getOtherVariant().toString();
   1860         }
   1861         else {
   1862             patternToCompare = &fImpl->fAffixes.fPositiveSuffix.getOtherVariant().toString();
   1863         }
   1864     }
   1865     return compareSimpleAffix(*patternToCompare, text, pos, isLenient());
   1866 }
   1867 
   1868 UBool DecimalFormat::equalWithSignCompatibility(UChar32 lhs, UChar32 rhs) const {
   1869     if (lhs == rhs) {
   1870         return TRUE;
   1871     }
   1872     U_ASSERT(fStaticSets != NULL); // should already be loaded
   1873     const UnicodeSet *minusSigns = fStaticSets->fMinusSigns;
   1874     const UnicodeSet *plusSigns = fStaticSets->fPlusSigns;
   1875     return (minusSigns->contains(lhs) && minusSigns->contains(rhs)) ||
   1876         (plusSigns->contains(lhs) && plusSigns->contains(rhs));
   1877 }
   1878 
   1879 // check for LRM 0x200E, RLM 0x200F, ALM 0x061C
   1880 #define IS_BIDI_MARK(c) (c==0x200E || c==0x200F || c==0x061C)
   1881 
   1882 #define TRIM_BUFLEN 32
   1883 UnicodeString& DecimalFormat::trimMarksFromAffix(const UnicodeString& affix, UnicodeString& trimmedAffix) {
   1884     UChar trimBuf[TRIM_BUFLEN];
   1885     int32_t affixLen = affix.length();
   1886     int32_t affixPos, trimLen = 0;
   1887 
   1888     for (affixPos = 0; affixPos < affixLen; affixPos++) {
   1889         UChar c = affix.charAt(affixPos);
   1890         if (!IS_BIDI_MARK(c)) {
   1891             if (trimLen < TRIM_BUFLEN) {
   1892                 trimBuf[trimLen++] = c;
   1893             } else {
   1894                 trimLen = 0;
   1895                 break;
   1896             }
   1897         }
   1898     }
   1899     return (trimLen > 0)? trimmedAffix.setTo(trimBuf, trimLen): trimmedAffix.setTo(affix);
   1900 }
   1901 
   1902 /**
   1903  * Return the length matched by the given affix, or -1 if none.
   1904  * Runs of white space in the affix, match runs of white space in
   1905  * the input.  Pattern white space and input white space are
   1906  * determined differently; see code.
   1907  * @param affix pattern string, taken as a literal
   1908  * @param input input text
   1909  * @param pos offset into input at which to begin matching
   1910  * @return length of input that matches, or -1 if match failure
   1911  */
   1912 int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
   1913                                           const UnicodeString& input,
   1914                                           int32_t pos,
   1915                                           UBool lenient) const {
   1916     int32_t start = pos;
   1917     UnicodeString trimmedAffix;
   1918     // For more efficiency we should keep lazily-created trimmed affixes around in
   1919     // instance variables instead of trimming each time they are used (the next step)
   1920     trimMarksFromAffix(affix, trimmedAffix);
   1921     UChar32 affixChar = trimmedAffix.char32At(0);
   1922     int32_t affixLength = trimmedAffix.length();
   1923     int32_t inputLength = input.length();
   1924     int32_t affixCharLength = U16_LENGTH(affixChar);
   1925     UnicodeSet *affixSet;
   1926     UErrorCode status = U_ZERO_ERROR;
   1927 
   1928     U_ASSERT(fStaticSets != NULL); // should already be loaded
   1929 
   1930     if (U_FAILURE(status)) {
   1931         return -1;
   1932     }
   1933     if (!lenient) {
   1934         affixSet = fStaticSets->fStrictDashEquivalents;
   1935 
   1936         // If the trimmedAffix is exactly one character long and that character
   1937         // is in the dash set and the very next input character is also
   1938         // in the dash set, return a match.
   1939         if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
   1940             UChar32 ic = input.char32At(pos);
   1941             if (affixSet->contains(ic)) {
   1942                 pos += U16_LENGTH(ic);
   1943                 pos = skipBidiMarks(input, pos); // skip any trailing bidi marks
   1944                 return pos - start;
   1945             }
   1946         }
   1947 
   1948         for (int32_t i = 0; i < affixLength; ) {
   1949             UChar32 c = trimmedAffix.char32At(i);
   1950             int32_t len = U16_LENGTH(c);
   1951             if (PatternProps::isWhiteSpace(c)) {
   1952                 // We may have a pattern like: \u200F \u0020
   1953                 //        and input text like: \u200F \u0020
   1954                 // Note that U+200F and U+0020 are Pattern_White_Space but only
   1955                 // U+0020 is UWhiteSpace.  So we have to first do a direct
   1956                 // match of the run of Pattern_White_Space in the pattern,
   1957                 // then match any extra characters.
   1958                 UBool literalMatch = FALSE;
   1959                 while (pos < inputLength) {
   1960                     UChar32 ic = input.char32At(pos);
   1961                     if (ic == c) {
   1962                         literalMatch = TRUE;
   1963                         i += len;
   1964                         pos += len;
   1965                         if (i == affixLength) {
   1966                             break;
   1967                         }
   1968                         c = trimmedAffix.char32At(i);
   1969                         len = U16_LENGTH(c);
   1970                         if (!PatternProps::isWhiteSpace(c)) {
   1971                             break;
   1972                         }
   1973                     } else if (IS_BIDI_MARK(ic)) {
   1974                         pos ++; // just skip over this input text
   1975                     } else {
   1976                         break;
   1977                     }
   1978                 }
   1979 
   1980                 // Advance over run in pattern
   1981                 i = skipPatternWhiteSpace(trimmedAffix, i);
   1982 
   1983                 // Advance over run in input text
   1984                 // Must see at least one white space char in input,
   1985                 // unless we've already matched some characters literally.
   1986                 int32_t s = pos;
   1987                 pos = skipUWhiteSpace(input, pos);
   1988                 if (pos == s && !literalMatch) {
   1989                     return -1;
   1990                 }
   1991 
   1992                 // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
   1993                 // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
   1994                 // is also in the trimmedAffix.
   1995                 i = skipUWhiteSpace(trimmedAffix, i);
   1996             } else {
   1997                 UBool match = FALSE;
   1998                 while (pos < inputLength) {
   1999                     UChar32 ic = input.char32At(pos);
   2000                     if (!match && ic == c) {
   2001                         i += len;
   2002                         pos += len;
   2003                         match = TRUE;
   2004                     } else if (IS_BIDI_MARK(ic)) {
   2005                         pos++; // just skip over this input text
   2006                     } else {
   2007                         break;
   2008                     }
   2009                 }
   2010                 if (!match) {
   2011                     return -1;
   2012                 }
   2013             }
   2014         }
   2015     } else {
   2016         UBool match = FALSE;
   2017 
   2018         affixSet = fStaticSets->fDashEquivalents;
   2019 
   2020         if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
   2021             pos = skipUWhiteSpaceAndMarks(input, pos);
   2022             UChar32 ic = input.char32At(pos);
   2023 
   2024             if (affixSet->contains(ic)) {
   2025                 pos += U16_LENGTH(ic);
   2026                 pos = skipBidiMarks(input, pos);
   2027                 return pos - start;
   2028             }
   2029         }
   2030 
   2031         for (int32_t i = 0; i < affixLength; )
   2032         {
   2033             //i = skipRuleWhiteSpace(trimmedAffix, i);
   2034             i = skipUWhiteSpace(trimmedAffix, i);
   2035             pos = skipUWhiteSpaceAndMarks(input, pos);
   2036 
   2037             if (i >= affixLength || pos >= inputLength) {
   2038                 break;
   2039             }
   2040 
   2041             UChar32 c = trimmedAffix.char32At(i);
   2042             UChar32 ic = input.char32At(pos);
   2043 
   2044             if (!equalWithSignCompatibility(ic, c)) {
   2045                 return -1;
   2046             }
   2047 
   2048             match = TRUE;
   2049             i += U16_LENGTH(c);
   2050             pos += U16_LENGTH(ic);
   2051             pos = skipBidiMarks(input, pos);
   2052         }
   2053 
   2054         if (affixLength > 0 && ! match) {
   2055             return -1;
   2056         }
   2057     }
   2058     return pos - start;
   2059 }
   2060 
   2061 /**
   2062  * Skip over a run of zero or more Pattern_White_Space characters at
   2063  * pos in text.
   2064  */
   2065 int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) {
   2066     const UChar* s = text.getBuffer();
   2067     return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
   2068 }
   2069 
   2070 /**
   2071  * Skip over a run of zero or more isUWhiteSpace() characters at pos
   2072  * in text.
   2073  */
   2074 int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
   2075     while (pos < text.length()) {
   2076         UChar32 c = text.char32At(pos);
   2077         if (!u_isUWhiteSpace(c)) {
   2078             break;
   2079         }
   2080         pos += U16_LENGTH(c);
   2081     }
   2082     return pos;
   2083 }
   2084 
   2085 /**
   2086  * Skip over a run of zero or more isUWhiteSpace() characters or bidi marks at pos
   2087  * in text.
   2088  */
   2089 int32_t DecimalFormat::skipUWhiteSpaceAndMarks(const UnicodeString& text, int32_t pos) {
   2090     while (pos < text.length()) {
   2091         UChar32 c = text.char32At(pos);
   2092         if (!u_isUWhiteSpace(c) && !IS_BIDI_MARK(c)) { // u_isUWhiteSpace doesn't include LRM,RLM,ALM
   2093             break;
   2094         }
   2095         pos += U16_LENGTH(c);
   2096     }
   2097     return pos;
   2098 }
   2099 
   2100 /**
   2101  * Skip over a run of zero or more bidi marks at pos in text.
   2102  */
   2103 int32_t DecimalFormat::skipBidiMarks(const UnicodeString& text, int32_t pos) {
   2104     while (pos < text.length()) {
   2105         UChar c = text.charAt(pos);
   2106         if (!IS_BIDI_MARK(c)) {
   2107             break;
   2108         }
   2109         pos++;
   2110     }
   2111     return pos;
   2112 }
   2113 
   2114 /**
   2115  * Return the length matched by the given affix, or -1 if none.
   2116  * @param affixPat pattern string
   2117  * @param input input text
   2118  * @param pos offset into input at which to begin matching
   2119  * @param type the currency type to parse against, LONG_NAME only or not.
   2120  * @param currency return value for parsed currency, for generic
   2121  * currency parsing mode, or null for normal parsing. In generic
   2122  * currency parsing mode, any currency is parsed, not just the
   2123  * currency that this formatter is set to.
   2124  * @return length of input that matches, or -1 if match failure
   2125  */
   2126 int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
   2127                                            const UnicodeString& text,
   2128                                            int32_t pos,
   2129                                            int8_t type,
   2130                                            UChar* currency) const
   2131 {
   2132     int32_t start = pos;
   2133     U_ASSERT(currency != NULL || fImpl->fMonetary);
   2134 
   2135     for (int32_t i=0;
   2136          i<affixPat.length() && pos >= 0; ) {
   2137         UChar32 c = affixPat.char32At(i);
   2138         i += U16_LENGTH(c);
   2139 
   2140         if (c == kQuote) {
   2141             U_ASSERT(i <= affixPat.length());
   2142             c = affixPat.char32At(i);
   2143             i += U16_LENGTH(c);
   2144 
   2145             const UnicodeString* affix = NULL;
   2146 
   2147             switch (c) {
   2148             case kCurrencySign: {
   2149                 // since the currency names in choice format is saved
   2150                 // the same way as other currency names,
   2151                 // do not need to do currency choice parsing here.
   2152                 // the general currency parsing parse against all names,
   2153                 // including names in choice format.
   2154                 UBool intl = i<affixPat.length() &&
   2155                     affixPat.char32At(i) == kCurrencySign;
   2156                 if (intl) {
   2157                     ++i;
   2158                 }
   2159                 UBool plural = i<affixPat.length() &&
   2160                     affixPat.char32At(i) == kCurrencySign;
   2161                 if (plural) {
   2162                     ++i;
   2163                     intl = FALSE;
   2164                 }
   2165                 // Parse generic currency -- anything for which we
   2166                 // have a display name, or any 3-letter ISO code.
   2167                 // Try to parse display name for our locale; first
   2168                 // determine our locale.
   2169                 const char* loc = fCurrencyPluralInfo->getLocale().getName();
   2170                 ParsePosition ppos(pos);
   2171                 UChar curr[4];
   2172                 UErrorCode ec = U_ZERO_ERROR;
   2173                 // Delegate parse of display name => ISO code to Currency
   2174                 uprv_parseCurrency(loc, text, ppos, type, curr, ec);
   2175 
   2176                 // If parse succeeds, populate currency[0]
   2177                 if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
   2178                     if (currency) {
   2179                         u_strcpy(currency, curr);
   2180                     } else {
   2181                         // The formatter is currency-style but the client has not requested
   2182                         // the value of the parsed currency. In this case, if that value does
   2183                         // not match the formatter's current value, then the parse fails.
   2184                         UChar effectiveCurr[4];
   2185                         getEffectiveCurrency(effectiveCurr, ec);
   2186                         if ( U_FAILURE(ec) || u_strncmp(curr,effectiveCurr,4) != 0 ) {
   2187                             pos = -1;
   2188                             continue;
   2189                         }
   2190                     }
   2191                     pos = ppos.getIndex();
   2192                 } else if (!isLenient()){
   2193                     pos = -1;
   2194                 }
   2195                 continue;
   2196             }
   2197             case kPatternPercent:
   2198                 affix = &fImpl->getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   2199                 break;
   2200             case kPatternPerMill:
   2201                 affix = &fImpl->getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   2202                 break;
   2203             case kPatternPlus:
   2204                 affix = &fImpl->getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   2205                 break;
   2206             case kPatternMinus:
   2207                 affix = &fImpl->getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   2208                 break;
   2209             default:
   2210                 // fall through to affix!=0 test, which will fail
   2211                 break;
   2212             }
   2213 
   2214             if (affix != NULL) {
   2215                 pos = match(text, pos, *affix);
   2216                 continue;
   2217             }
   2218         }
   2219 
   2220         pos = match(text, pos, c);
   2221         if (PatternProps::isWhiteSpace(c)) {
   2222             i = skipPatternWhiteSpace(affixPat, i);
   2223         }
   2224     }
   2225     return pos - start;
   2226 }
   2227 
   2228 /**
   2229  * Match a single character at text[pos] and return the index of the
   2230  * next character upon success.  Return -1 on failure.  If
   2231  * ch is a Pattern_White_Space then match a run of white space in text.
   2232  */
   2233 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
   2234     if (PatternProps::isWhiteSpace(ch)) {
   2235         // Advance over run of white space in input text
   2236         // Must see at least one white space char in input
   2237         int32_t s = pos;
   2238         pos = skipPatternWhiteSpace(text, pos);
   2239         if (pos == s) {
   2240             return -1;
   2241         }
   2242         return pos;
   2243     }
   2244     return (pos >= 0 && text.char32At(pos) == ch) ?
   2245         (pos + U16_LENGTH(ch)) : -1;
   2246 }
   2247 
   2248 /**
   2249  * Match a string at text[pos] and return the index of the next
   2250  * character upon success.  Return -1 on failure.  Match a run of
   2251  * white space in str with a run of white space in text.
   2252  */
   2253 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
   2254     for (int32_t i=0; i<str.length() && pos >= 0; ) {
   2255         UChar32 ch = str.char32At(i);
   2256         i += U16_LENGTH(ch);
   2257         if (PatternProps::isWhiteSpace(ch)) {
   2258             i = skipPatternWhiteSpace(str, i);
   2259         }
   2260         pos = match(text, pos, ch);
   2261     }
   2262     return pos;
   2263 }
   2264 
   2265 UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol,
   2266                          UnicodeSet *sset, UChar32 schar)
   2267 {
   2268     if (sset != NULL) {
   2269         return sset->contains(schar);
   2270     }
   2271 
   2272     return text.compare(position, length, symbol) == 0;
   2273 }
   2274 
   2275 UBool DecimalFormat::matchDecimal(UChar32 symbolChar,
   2276                             UBool sawDecimal,  UChar32 sawDecimalChar,
   2277                              const UnicodeSet *sset, UChar32 schar) {
   2278    if(sawDecimal) {
   2279        return schar==sawDecimalChar;
   2280    } else if(schar==symbolChar) {
   2281        return TRUE;
   2282    } else if(sset!=NULL) {
   2283         return sset->contains(schar);
   2284    } else {
   2285        return FALSE;
   2286    }
   2287 }
   2288 
   2289 UBool DecimalFormat::matchGrouping(UChar32 groupingChar,
   2290                             UBool sawGrouping, UChar32 sawGroupingChar,
   2291                              const UnicodeSet *sset,
   2292                              UChar32 /*decimalChar*/, const UnicodeSet *decimalSet,
   2293                              UChar32 schar) {
   2294     if(sawGrouping) {
   2295         return schar==sawGroupingChar;  // previously found
   2296     } else if(schar==groupingChar) {
   2297         return TRUE; // char from symbols
   2298     } else if(sset!=NULL) {
   2299         return sset->contains(schar) &&  // in groupingSet but...
   2300            ((decimalSet==NULL) || !decimalSet->contains(schar)); // Exclude decimalSet from groupingSet
   2301     } else {
   2302         return FALSE;
   2303     }
   2304 }
   2305 
   2306 
   2307 
   2308 //------------------------------------------------------------------------------
   2309 // Gets the pointer to the localized decimal format symbols
   2310 
   2311 const DecimalFormatSymbols*
   2312 DecimalFormat::getDecimalFormatSymbols() const
   2313 {
   2314     return &fImpl->getDecimalFormatSymbols();
   2315 }
   2316 
   2317 //------------------------------------------------------------------------------
   2318 // De-owning the current localized symbols and adopt the new symbols.
   2319 
   2320 void
   2321 DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
   2322 {
   2323     if (symbolsToAdopt == NULL) {
   2324         return; // do not allow caller to set fSymbols to NULL
   2325     }
   2326     fImpl->adoptDecimalFormatSymbols(symbolsToAdopt);
   2327 }
   2328 //------------------------------------------------------------------------------
   2329 // Setting the symbols is equlivalent to adopting a newly created localized
   2330 // symbols.
   2331 
   2332 void
   2333 DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
   2334 {
   2335     adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
   2336 }
   2337 
   2338 
   2339 const CurrencyPluralInfo*
   2340 DecimalFormat::getCurrencyPluralInfo(void) const
   2341 {
   2342     return fCurrencyPluralInfo;
   2343 }
   2344 
   2345 
   2346 void
   2347 DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
   2348 {
   2349     if (toAdopt != NULL) {
   2350         delete fCurrencyPluralInfo;
   2351         fCurrencyPluralInfo = toAdopt;
   2352         // re-set currency affix patterns and currency affixes.
   2353         if (fImpl->fMonetary) {
   2354             UErrorCode status = U_ZERO_ERROR;
   2355             if (fAffixPatternsForCurrency) {
   2356                 deleteHashForAffixPattern();
   2357             }
   2358             setupCurrencyAffixPatterns(status);
   2359         }
   2360     }
   2361 }
   2362 
   2363 void
   2364 DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
   2365 {
   2366     adoptCurrencyPluralInfo(info.clone());
   2367 }
   2368 
   2369 
   2370 //------------------------------------------------------------------------------
   2371 // Gets the positive prefix of the number pattern.
   2372 
   2373 UnicodeString&
   2374 DecimalFormat::getPositivePrefix(UnicodeString& result) const
   2375 {
   2376     return fImpl->getPositivePrefix(result);
   2377 }
   2378 
   2379 //------------------------------------------------------------------------------
   2380 // Sets the positive prefix of the number pattern.
   2381 
   2382 void
   2383 DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
   2384 {
   2385     fImpl->setPositivePrefix(newValue);
   2386 }
   2387 
   2388 //------------------------------------------------------------------------------
   2389 // Gets the negative prefix  of the number pattern.
   2390 
   2391 UnicodeString&
   2392 DecimalFormat::getNegativePrefix(UnicodeString& result) const
   2393 {
   2394     return fImpl->getNegativePrefix(result);
   2395 }
   2396 
   2397 //------------------------------------------------------------------------------
   2398 // Gets the negative prefix  of the number pattern.
   2399 
   2400 void
   2401 DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
   2402 {
   2403     fImpl->setNegativePrefix(newValue);
   2404 }
   2405 
   2406 //------------------------------------------------------------------------------
   2407 // Gets the positive suffix of the number pattern.
   2408 
   2409 UnicodeString&
   2410 DecimalFormat::getPositiveSuffix(UnicodeString& result) const
   2411 {
   2412     return fImpl->getPositiveSuffix(result);
   2413 }
   2414 
   2415 //------------------------------------------------------------------------------
   2416 // Sets the positive suffix of the number pattern.
   2417 
   2418 void
   2419 DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
   2420 {
   2421     fImpl->setPositiveSuffix(newValue);
   2422 }
   2423 
   2424 //------------------------------------------------------------------------------
   2425 // Gets the negative suffix of the number pattern.
   2426 
   2427 UnicodeString&
   2428 DecimalFormat::getNegativeSuffix(UnicodeString& result) const
   2429 {
   2430     return fImpl->getNegativeSuffix(result);
   2431 }
   2432 
   2433 //------------------------------------------------------------------------------
   2434 // Sets the negative suffix of the number pattern.
   2435 
   2436 void
   2437 DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
   2438 {
   2439     fImpl->setNegativeSuffix(newValue);
   2440 }
   2441 
   2442 //------------------------------------------------------------------------------
   2443 // Gets the multiplier of the number pattern.
   2444 //   Multipliers are stored as decimal numbers (DigitLists) because that
   2445 //      is the most convenient for muliplying or dividing the numbers to be formatted.
   2446 //   A NULL multiplier implies one, and the scaling operations are skipped.
   2447 
   2448 int32_t
   2449 DecimalFormat::getMultiplier() const
   2450 {
   2451     return fImpl->getMultiplier();
   2452 }
   2453 
   2454 //------------------------------------------------------------------------------
   2455 // Sets the multiplier of the number pattern.
   2456 void
   2457 DecimalFormat::setMultiplier(int32_t newValue)
   2458 {
   2459     fImpl->setMultiplier(newValue);
   2460 }
   2461 
   2462 /**
   2463  * Get the rounding increment.
   2464  * @return A positive rounding increment, or 0.0 if rounding
   2465  * is not in effect.
   2466  * @see #setRoundingIncrement
   2467  * @see #getRoundingMode
   2468  * @see #setRoundingMode
   2469  */
   2470 double DecimalFormat::getRoundingIncrement() const {
   2471     return fImpl->getRoundingIncrement();
   2472 }
   2473 
   2474 /**
   2475  * Set the rounding increment.  This method also controls whether
   2476  * rounding is enabled.
   2477  * @param newValue A positive rounding increment, or 0.0 to disable rounding.
   2478  * Negative increments are equivalent to 0.0.
   2479  * @see #getRoundingIncrement
   2480  * @see #getRoundingMode
   2481  * @see #setRoundingMode
   2482  */
   2483 void DecimalFormat::setRoundingIncrement(double newValue) {
   2484     fImpl->setRoundingIncrement(newValue);
   2485 }
   2486 
   2487 /**
   2488  * Get the rounding mode.
   2489  * @return A rounding mode
   2490  * @see #setRoundingIncrement
   2491  * @see #getRoundingIncrement
   2492  * @see #setRoundingMode
   2493  */
   2494 DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
   2495     return fImpl->getRoundingMode();
   2496 }
   2497 
   2498 /**
   2499  * Set the rounding mode.  This has no effect unless the rounding
   2500  * increment is greater than zero.
   2501  * @param roundingMode A rounding mode
   2502  * @see #setRoundingIncrement
   2503  * @see #getRoundingIncrement
   2504  * @see #getRoundingMode
   2505  */
   2506 void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
   2507     fImpl->setRoundingMode(roundingMode);
   2508 }
   2509 
   2510 /**
   2511  * Get the width to which the output of <code>format()</code> is padded.
   2512  * @return the format width, or zero if no padding is in effect
   2513  * @see #setFormatWidth
   2514  * @see #getPadCharacter
   2515  * @see #setPadCharacter
   2516  * @see #getPadPosition
   2517  * @see #setPadPosition
   2518  */
   2519 int32_t DecimalFormat::getFormatWidth() const {
   2520     return fImpl->getFormatWidth();
   2521 }
   2522 
   2523 /**
   2524  * Set the width to which the output of <code>format()</code> is padded.
   2525  * This method also controls whether padding is enabled.
   2526  * @param width the width to which to pad the result of
   2527  * <code>format()</code>, or zero to disable padding.  A negative
   2528  * width is equivalent to 0.
   2529  * @see #getFormatWidth
   2530  * @see #getPadCharacter
   2531  * @see #setPadCharacter
   2532  * @see #getPadPosition
   2533  * @see #setPadPosition
   2534  */
   2535 void DecimalFormat::setFormatWidth(int32_t width) {
   2536     int32_t formatWidth = (width > 0) ? width : 0;
   2537     fImpl->setFormatWidth(formatWidth);
   2538 }
   2539 
   2540 UnicodeString DecimalFormat::getPadCharacterString() const {
   2541     return UnicodeString(fImpl->getPadCharacter());
   2542 }
   2543 
   2544 void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
   2545     UChar pad;
   2546     if (padChar.length() > 0) {
   2547         pad = padChar.char32At(0);
   2548     }
   2549     else {
   2550         pad = kDefaultPad;
   2551     }
   2552     fImpl->setPadCharacter(pad);
   2553 }
   2554 
   2555 static DecimalFormat::EPadPosition fromPadPosition(DigitAffixesAndPadding::EPadPosition padPos) {
   2556     switch (padPos) {
   2557     case DigitAffixesAndPadding::kPadBeforePrefix:
   2558         return DecimalFormat::kPadBeforePrefix;
   2559     case DigitAffixesAndPadding::kPadAfterPrefix:
   2560         return DecimalFormat::kPadAfterPrefix;
   2561     case DigitAffixesAndPadding::kPadBeforeSuffix:
   2562         return DecimalFormat::kPadBeforeSuffix;
   2563     case DigitAffixesAndPadding::kPadAfterSuffix:
   2564         return DecimalFormat::kPadAfterSuffix;
   2565     default:
   2566         U_ASSERT(FALSE);
   2567         break;
   2568     }
   2569     return DecimalFormat::kPadBeforePrefix;
   2570 }
   2571 
   2572 /**
   2573  * Get the position at which padding will take place.  This is the location
   2574  * at which padding will be inserted if the result of <code>format()</code>
   2575  * is shorter than the format width.
   2576  * @return the pad position, one of <code>kPadBeforePrefix</code>,
   2577  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
   2578  * <code>kPadAfterSuffix</code>.
   2579  * @see #setFormatWidth
   2580  * @see #getFormatWidth
   2581  * @see #setPadCharacter
   2582  * @see #getPadCharacter
   2583  * @see #setPadPosition
   2584  * @see #kPadBeforePrefix
   2585  * @see #kPadAfterPrefix
   2586  * @see #kPadBeforeSuffix
   2587  * @see #kPadAfterSuffix
   2588  */
   2589 DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
   2590     return fromPadPosition(fImpl->getPadPosition());
   2591 }
   2592 
   2593 static DigitAffixesAndPadding::EPadPosition toPadPosition(DecimalFormat::EPadPosition padPos) {
   2594     switch (padPos) {
   2595     case DecimalFormat::kPadBeforePrefix:
   2596         return DigitAffixesAndPadding::kPadBeforePrefix;
   2597     case DecimalFormat::kPadAfterPrefix:
   2598         return DigitAffixesAndPadding::kPadAfterPrefix;
   2599     case DecimalFormat::kPadBeforeSuffix:
   2600         return DigitAffixesAndPadding::kPadBeforeSuffix;
   2601     case DecimalFormat::kPadAfterSuffix:
   2602         return DigitAffixesAndPadding::kPadAfterSuffix;
   2603     default:
   2604         U_ASSERT(FALSE);
   2605         break;
   2606     }
   2607     return DigitAffixesAndPadding::kPadBeforePrefix;
   2608 }
   2609 
   2610 /**
   2611  * <strong><font face=helvetica color=red>NEW</font></strong>
   2612  * Set the position at which padding will take place.  This is the location
   2613  * at which padding will be inserted if the result of <code>format()</code>
   2614  * is shorter than the format width.  This has no effect unless padding is
   2615  * enabled.
   2616  * @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
   2617  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
   2618  * <code>kPadAfterSuffix</code>.
   2619  * @see #setFormatWidth
   2620  * @see #getFormatWidth
   2621  * @see #setPadCharacter
   2622  * @see #getPadCharacter
   2623  * @see #getPadPosition
   2624  * @see #kPadBeforePrefix
   2625  * @see #kPadAfterPrefix
   2626  * @see #kPadBeforeSuffix
   2627  * @see #kPadAfterSuffix
   2628  */
   2629 void DecimalFormat::setPadPosition(EPadPosition padPos) {
   2630     fImpl->setPadPosition(toPadPosition(padPos));
   2631 }
   2632 
   2633 /**
   2634  * Return whether or not scientific notation is used.
   2635  * @return TRUE if this object formats and parses scientific notation
   2636  * @see #setScientificNotation
   2637  * @see #getMinimumExponentDigits
   2638  * @see #setMinimumExponentDigits
   2639  * @see #isExponentSignAlwaysShown
   2640  * @see #setExponentSignAlwaysShown
   2641  */
   2642 UBool DecimalFormat::isScientificNotation() const {
   2643     return fImpl->isScientificNotation();
   2644 }
   2645 
   2646 /**
   2647  * Set whether or not scientific notation is used.
   2648  * @param useScientific TRUE if this object formats and parses scientific
   2649  * notation
   2650  * @see #isScientificNotation
   2651  * @see #getMinimumExponentDigits
   2652  * @see #setMinimumExponentDigits
   2653  * @see #isExponentSignAlwaysShown
   2654  * @see #setExponentSignAlwaysShown
   2655  */
   2656 void DecimalFormat::setScientificNotation(UBool useScientific) {
   2657     fImpl->setScientificNotation(useScientific);
   2658 }
   2659 
   2660 /**
   2661  * Return the minimum exponent digits that will be shown.
   2662  * @return the minimum exponent digits that will be shown
   2663  * @see #setScientificNotation
   2664  * @see #isScientificNotation
   2665  * @see #setMinimumExponentDigits
   2666  * @see #isExponentSignAlwaysShown
   2667  * @see #setExponentSignAlwaysShown
   2668  */
   2669 int8_t DecimalFormat::getMinimumExponentDigits() const {
   2670     return fImpl->getMinimumExponentDigits();
   2671 }
   2672 
   2673 /**
   2674  * Set the minimum exponent digits that will be shown.  This has no
   2675  * effect unless scientific notation is in use.
   2676  * @param minExpDig a value >= 1 indicating the fewest exponent digits
   2677  * that will be shown.  Values less than 1 will be treated as 1.
   2678  * @see #setScientificNotation
   2679  * @see #isScientificNotation
   2680  * @see #getMinimumExponentDigits
   2681  * @see #isExponentSignAlwaysShown
   2682  * @see #setExponentSignAlwaysShown
   2683  */
   2684 void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
   2685     int32_t minExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
   2686     fImpl->setMinimumExponentDigits(minExponentDigits);
   2687 }
   2688 
   2689 /**
   2690  * Return whether the exponent sign is always shown.
   2691  * @return TRUE if the exponent is always prefixed with either the
   2692  * localized minus sign or the localized plus sign, false if only negative
   2693  * exponents are prefixed with the localized minus sign.
   2694  * @see #setScientificNotation
   2695  * @see #isScientificNotation
   2696  * @see #setMinimumExponentDigits
   2697  * @see #getMinimumExponentDigits
   2698  * @see #setExponentSignAlwaysShown
   2699  */
   2700 UBool DecimalFormat::isExponentSignAlwaysShown() const {
   2701     return fImpl->isExponentSignAlwaysShown();
   2702 }
   2703 
   2704 /**
   2705  * Set whether the exponent sign is always shown.  This has no effect
   2706  * unless scientific notation is in use.
   2707  * @param expSignAlways TRUE if the exponent is always prefixed with either
   2708  * the localized minus sign or the localized plus sign, false if only
   2709  * negative exponents are prefixed with the localized minus sign.
   2710  * @see #setScientificNotation
   2711  * @see #isScientificNotation
   2712  * @see #setMinimumExponentDigits
   2713  * @see #getMinimumExponentDigits
   2714  * @see #isExponentSignAlwaysShown
   2715  */
   2716 void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
   2717     fImpl->setExponentSignAlwaysShown(expSignAlways);
   2718 }
   2719 
   2720 //------------------------------------------------------------------------------
   2721 // Gets the grouping size of the number pattern.  For example, thousand or 10
   2722 // thousand groupings.
   2723 
   2724 int32_t
   2725 DecimalFormat::getGroupingSize() const
   2726 {
   2727     return fImpl->getGroupingSize();
   2728 }
   2729 
   2730 //------------------------------------------------------------------------------
   2731 // Gets the grouping size of the number pattern.
   2732 
   2733 void
   2734 DecimalFormat::setGroupingSize(int32_t newValue)
   2735 {
   2736     fImpl->setGroupingSize(newValue);
   2737 }
   2738 
   2739 //------------------------------------------------------------------------------
   2740 
   2741 int32_t
   2742 DecimalFormat::getSecondaryGroupingSize() const
   2743 {
   2744     return fImpl->getSecondaryGroupingSize();
   2745 }
   2746 
   2747 //------------------------------------------------------------------------------
   2748 
   2749 void
   2750 DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
   2751 {
   2752     fImpl->setSecondaryGroupingSize(newValue);
   2753 }
   2754 
   2755 //------------------------------------------------------------------------------
   2756 
   2757 int32_t
   2758 DecimalFormat::getMinimumGroupingDigits() const
   2759 {
   2760     return fImpl->getMinimumGroupingDigits();
   2761 }
   2762 
   2763 //------------------------------------------------------------------------------
   2764 
   2765 void
   2766 DecimalFormat::setMinimumGroupingDigits(int32_t newValue)
   2767 {
   2768     fImpl->setMinimumGroupingDigits(newValue);
   2769 }
   2770 
   2771 //------------------------------------------------------------------------------
   2772 // Checks if to show the decimal separator.
   2773 
   2774 UBool
   2775 DecimalFormat::isDecimalSeparatorAlwaysShown() const
   2776 {
   2777     return fImpl->isDecimalSeparatorAlwaysShown();
   2778 }
   2779 
   2780 //------------------------------------------------------------------------------
   2781 // Sets to always show the decimal separator.
   2782 
   2783 void
   2784 DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
   2785 {
   2786     fImpl->setDecimalSeparatorAlwaysShown(newValue);
   2787 }
   2788 
   2789 //------------------------------------------------------------------------------
   2790 // Checks if decimal point pattern match is required
   2791 UBool
   2792 DecimalFormat::isDecimalPatternMatchRequired(void) const
   2793 {
   2794     return fBoolFlags.contains(UNUM_PARSE_DECIMAL_MARK_REQUIRED);
   2795 }
   2796 
   2797 //------------------------------------------------------------------------------
   2798 // Checks if decimal point pattern match is required
   2799 
   2800 void
   2801 DecimalFormat::setDecimalPatternMatchRequired(UBool newValue)
   2802 {
   2803     fBoolFlags.set(UNUM_PARSE_DECIMAL_MARK_REQUIRED, newValue);
   2804 }
   2805 
   2806 
   2807 //------------------------------------------------------------------------------
   2808 // Emits the pattern of this DecimalFormat instance.
   2809 
   2810 UnicodeString&
   2811 DecimalFormat::toPattern(UnicodeString& result) const
   2812 {
   2813     return fImpl->toPattern(result);
   2814 }
   2815 
   2816 //------------------------------------------------------------------------------
   2817 // Emits the localized pattern this DecimalFormat instance.
   2818 
   2819 UnicodeString&
   2820 DecimalFormat::toLocalizedPattern(UnicodeString& result) const
   2821 {
   2822     // toLocalizedPattern is deprecated, so we just make it the same as
   2823     // toPattern.
   2824     return fImpl->toPattern(result);
   2825 }
   2826 
   2827 //------------------------------------------------------------------------------
   2828 
   2829 void
   2830 DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
   2831 {
   2832     if (pattern.indexOf(kCurrencySign) != -1) {
   2833         handleCurrencySignInPattern(status);
   2834     }
   2835     fImpl->applyPattern(pattern, status);
   2836 }
   2837 
   2838 //------------------------------------------------------------------------------
   2839 
   2840 void
   2841 DecimalFormat::applyPattern(const UnicodeString& pattern,
   2842                             UParseError& parseError,
   2843                             UErrorCode& status)
   2844 {
   2845     if (pattern.indexOf(kCurrencySign) != -1) {
   2846         handleCurrencySignInPattern(status);
   2847     }
   2848     fImpl->applyPattern(pattern, parseError, status);
   2849 }
   2850 //------------------------------------------------------------------------------
   2851 
   2852 void
   2853 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
   2854 {
   2855     if (pattern.indexOf(kCurrencySign) != -1) {
   2856         handleCurrencySignInPattern(status);
   2857     }
   2858     fImpl->applyLocalizedPattern(pattern, status);
   2859 }
   2860 
   2861 //------------------------------------------------------------------------------
   2862 
   2863 void
   2864 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
   2865                                      UParseError& parseError,
   2866                                      UErrorCode& status)
   2867 {
   2868     if (pattern.indexOf(kCurrencySign) != -1) {
   2869         handleCurrencySignInPattern(status);
   2870     }
   2871     fImpl->applyLocalizedPattern(pattern, parseError, status);
   2872 }
   2873 
   2874 //------------------------------------------------------------------------------
   2875 
   2876 /**
   2877  * Sets the maximum number of digits allowed in the integer portion of a
   2878  * number.
   2879  * @see NumberFormat#setMaximumIntegerDigits
   2880  */
   2881 void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
   2882     newValue = _min(newValue, gDefaultMaxIntegerDigits);
   2883     NumberFormat::setMaximumIntegerDigits(newValue);
   2884     fImpl->updatePrecision();
   2885 }
   2886 
   2887 /**
   2888  * Sets the minimum number of digits allowed in the integer portion of a
   2889  * number. This override limits the integer digit count to 309.
   2890  * @see NumberFormat#setMinimumIntegerDigits
   2891  */
   2892 void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
   2893     newValue = _min(newValue, kDoubleIntegerDigits);
   2894     NumberFormat::setMinimumIntegerDigits(newValue);
   2895     fImpl->updatePrecision();
   2896 }
   2897 
   2898 /**
   2899  * Sets the maximum number of digits allowed in the fraction portion of a
   2900  * number. This override limits the fraction digit count to 340.
   2901  * @see NumberFormat#setMaximumFractionDigits
   2902  */
   2903 void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
   2904     newValue = _min(newValue, kDoubleFractionDigits);
   2905     NumberFormat::setMaximumFractionDigits(newValue);
   2906     fImpl->updatePrecision();
   2907 }
   2908 
   2909 /**
   2910  * Sets the minimum number of digits allowed in the fraction portion of a
   2911  * number. This override limits the fraction digit count to 340.
   2912  * @see NumberFormat#setMinimumFractionDigits
   2913  */
   2914 void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
   2915     newValue = _min(newValue, kDoubleFractionDigits);
   2916     NumberFormat::setMinimumFractionDigits(newValue);
   2917     fImpl->updatePrecision();
   2918 }
   2919 
   2920 int32_t DecimalFormat::getMinimumSignificantDigits() const {
   2921     return fImpl->getMinimumSignificantDigits();
   2922 }
   2923 
   2924 int32_t DecimalFormat::getMaximumSignificantDigits() const {
   2925     return fImpl->getMaximumSignificantDigits();
   2926 }
   2927 
   2928 void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
   2929     if (min < 1) {
   2930         min = 1;
   2931     }
   2932     // pin max sig dig to >= min
   2933     int32_t max = _max(fImpl->fMaxSigDigits, min);
   2934     fImpl->setMinMaxSignificantDigits(min, max);
   2935 }
   2936 
   2937 void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
   2938     if (max < 1) {
   2939         max = 1;
   2940     }
   2941     // pin min sig dig to 1..max
   2942     U_ASSERT(fImpl->fMinSigDigits >= 1);
   2943     int32_t min = _min(fImpl->fMinSigDigits, max);
   2944     fImpl->setMinMaxSignificantDigits(min, max);
   2945 }
   2946 
   2947 UBool DecimalFormat::areSignificantDigitsUsed() const {
   2948     return fImpl->areSignificantDigitsUsed();
   2949 }
   2950 
   2951 void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
   2952     fImpl->setSignificantDigitsUsed(useSignificantDigits);
   2953 }
   2954 
   2955 void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
   2956     // set the currency before compute affixes to get the right currency names
   2957     NumberFormat::setCurrency(theCurrency, ec);
   2958     fImpl->updateCurrency(ec);
   2959 }
   2960 
   2961 void DecimalFormat::setCurrencyUsage(UCurrencyUsage newContext, UErrorCode* ec){
   2962     fImpl->setCurrencyUsage(newContext, *ec);
   2963 }
   2964 
   2965 UCurrencyUsage DecimalFormat::getCurrencyUsage() const {
   2966     return fImpl->getCurrencyUsage();
   2967 }
   2968 
   2969 // Deprecated variant with no UErrorCode parameter
   2970 void DecimalFormat::setCurrency(const UChar* theCurrency) {
   2971     UErrorCode ec = U_ZERO_ERROR;
   2972     setCurrency(theCurrency, ec);
   2973 }
   2974 
   2975 void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
   2976     if (fImpl->fSymbols == NULL) {
   2977         ec = U_MEMORY_ALLOCATION_ERROR;
   2978         return;
   2979     }
   2980     ec = U_ZERO_ERROR;
   2981     const UChar* c = getCurrency();
   2982     if (*c == 0) {
   2983         const UnicodeString &intl =
   2984             fImpl->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
   2985         c = intl.getBuffer(); // ok for intl to go out of scope
   2986     }
   2987     u_strncpy(result, c, 3);
   2988     result[3] = 0;
   2989 }
   2990 
   2991 Hashtable*
   2992 DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
   2993     if ( U_FAILURE(status) ) {
   2994         return NULL;
   2995     }
   2996     Hashtable* hTable;
   2997     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
   2998         status = U_MEMORY_ALLOCATION_ERROR;
   2999         return NULL;
   3000     }
   3001     if ( U_FAILURE(status) ) {
   3002         delete hTable;
   3003         return NULL;
   3004     }
   3005     hTable->setValueComparator(decimfmtAffixPatternValueComparator);
   3006     return hTable;
   3007 }
   3008 
   3009 void
   3010 DecimalFormat::deleteHashForAffixPattern()
   3011 {
   3012     if ( fAffixPatternsForCurrency == NULL ) {
   3013         return;
   3014     }
   3015     int32_t pos = UHASH_FIRST;
   3016     const UHashElement* element = NULL;
   3017     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
   3018         const UHashTok valueTok = element->value;
   3019         const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
   3020         delete value;
   3021     }
   3022     delete fAffixPatternsForCurrency;
   3023     fAffixPatternsForCurrency = NULL;
   3024 }
   3025 
   3026 
   3027 void
   3028 DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
   3029                                        Hashtable* target,
   3030                                        UErrorCode& status) {
   3031     if ( U_FAILURE(status) ) {
   3032         return;
   3033     }
   3034     int32_t pos = UHASH_FIRST;
   3035     const UHashElement* element = NULL;
   3036     if ( source ) {
   3037         while ( (element = source->nextElement(pos)) != NULL ) {
   3038             const UHashTok keyTok = element->key;
   3039             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
   3040             const UHashTok valueTok = element->value;
   3041             const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
   3042             AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
   3043                 value->negPrefixPatternForCurrency,
   3044                 value->negSuffixPatternForCurrency,
   3045                 value->posPrefixPatternForCurrency,
   3046                 value->posSuffixPatternForCurrency,
   3047                 value->patternType);
   3048             target->put(UnicodeString(*key), copy, status);
   3049             if ( U_FAILURE(status) ) {
   3050                 return;
   3051             }
   3052         }
   3053     }
   3054 }
   3055 
   3056 void
   3057 DecimalFormat::setGroupingUsed(UBool newValue) {
   3058   NumberFormat::setGroupingUsed(newValue);
   3059   fImpl->updateGrouping();
   3060 }
   3061 
   3062 void
   3063 DecimalFormat::setParseIntegerOnly(UBool newValue) {
   3064   NumberFormat::setParseIntegerOnly(newValue);
   3065 }
   3066 
   3067 void
   3068 DecimalFormat::setContext(UDisplayContext value, UErrorCode& status) {
   3069   NumberFormat::setContext(value, status);
   3070 }
   3071 
   3072 DecimalFormat& DecimalFormat::setAttribute( UNumberFormatAttribute attr,
   3073                                             int32_t newValue,
   3074                                             UErrorCode &status) {
   3075   if(U_FAILURE(status)) return *this;
   3076 
   3077   switch(attr) {
   3078   case UNUM_LENIENT_PARSE:
   3079     setLenient(newValue!=0);
   3080     break;
   3081 
   3082     case UNUM_PARSE_INT_ONLY:
   3083       setParseIntegerOnly(newValue!=0);
   3084       break;
   3085 
   3086     case UNUM_GROUPING_USED:
   3087       setGroupingUsed(newValue!=0);
   3088       break;
   3089 
   3090     case UNUM_DECIMAL_ALWAYS_SHOWN:
   3091       setDecimalSeparatorAlwaysShown(newValue!=0);
   3092         break;
   3093 
   3094     case UNUM_MAX_INTEGER_DIGITS:
   3095       setMaximumIntegerDigits(newValue);
   3096         break;
   3097 
   3098     case UNUM_MIN_INTEGER_DIGITS:
   3099       setMinimumIntegerDigits(newValue);
   3100         break;
   3101 
   3102     case UNUM_INTEGER_DIGITS:
   3103       setMinimumIntegerDigits(newValue);
   3104       setMaximumIntegerDigits(newValue);
   3105         break;
   3106 
   3107     case UNUM_MAX_FRACTION_DIGITS:
   3108       setMaximumFractionDigits(newValue);
   3109         break;
   3110 
   3111     case UNUM_MIN_FRACTION_DIGITS:
   3112       setMinimumFractionDigits(newValue);
   3113         break;
   3114 
   3115     case UNUM_FRACTION_DIGITS:
   3116       setMinimumFractionDigits(newValue);
   3117       setMaximumFractionDigits(newValue);
   3118       break;
   3119 
   3120     case UNUM_SIGNIFICANT_DIGITS_USED:
   3121       setSignificantDigitsUsed(newValue!=0);
   3122         break;
   3123 
   3124     case UNUM_MAX_SIGNIFICANT_DIGITS:
   3125       setMaximumSignificantDigits(newValue);
   3126         break;
   3127 
   3128     case UNUM_MIN_SIGNIFICANT_DIGITS:
   3129       setMinimumSignificantDigits(newValue);
   3130         break;
   3131 
   3132     case UNUM_MULTIPLIER:
   3133       setMultiplier(newValue);
   3134        break;
   3135 
   3136     case UNUM_GROUPING_SIZE:
   3137       setGroupingSize(newValue);
   3138         break;
   3139 
   3140     case UNUM_ROUNDING_MODE:
   3141       setRoundingMode((DecimalFormat::ERoundingMode)newValue);
   3142         break;
   3143 
   3144     case UNUM_FORMAT_WIDTH:
   3145       setFormatWidth(newValue);
   3146         break;
   3147 
   3148     case UNUM_PADDING_POSITION:
   3149         /** The position at which padding will take place. */
   3150       setPadPosition((DecimalFormat::EPadPosition)newValue);
   3151         break;
   3152 
   3153     case UNUM_SECONDARY_GROUPING_SIZE:
   3154       setSecondaryGroupingSize(newValue);
   3155         break;
   3156 
   3157 #if UCONFIG_HAVE_PARSEALLINPUT
   3158     case UNUM_PARSE_ALL_INPUT:
   3159       setParseAllInput((UNumberFormatAttributeValue)newValue);
   3160         break;
   3161 #endif
   3162 
   3163     /* These are stored in fBoolFlags */
   3164     case UNUM_PARSE_NO_EXPONENT:
   3165     case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
   3166     case UNUM_PARSE_DECIMAL_MARK_REQUIRED:
   3167       if(!fBoolFlags.isValidValue(newValue)) {
   3168           status = U_ILLEGAL_ARGUMENT_ERROR;
   3169       } else {
   3170           if (attr == UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS) {
   3171               fImpl->setFailIfMoreThanMaxDigits((UBool) newValue);
   3172           }
   3173           fBoolFlags.set(attr, newValue);
   3174       }
   3175       break;
   3176 
   3177     case UNUM_SCALE:
   3178         fImpl->setScale(newValue);
   3179         break;
   3180 
   3181     case UNUM_CURRENCY_USAGE:
   3182         setCurrencyUsage((UCurrencyUsage)newValue, &status);
   3183         break;
   3184 
   3185     case UNUM_MINIMUM_GROUPING_DIGITS:
   3186         setMinimumGroupingDigits(newValue);
   3187         break;
   3188 
   3189     default:
   3190       status = U_UNSUPPORTED_ERROR;
   3191       break;
   3192   }
   3193   return *this;
   3194 }
   3195 
   3196 int32_t DecimalFormat::getAttribute( UNumberFormatAttribute attr,
   3197                                      UErrorCode &status ) const {
   3198   if(U_FAILURE(status)) return -1;
   3199   switch(attr) {
   3200     case UNUM_LENIENT_PARSE:
   3201         return isLenient();
   3202 
   3203     case UNUM_PARSE_INT_ONLY:
   3204         return isParseIntegerOnly();
   3205 
   3206     case UNUM_GROUPING_USED:
   3207         return isGroupingUsed();
   3208 
   3209     case UNUM_DECIMAL_ALWAYS_SHOWN:
   3210         return isDecimalSeparatorAlwaysShown();
   3211 
   3212     case UNUM_MAX_INTEGER_DIGITS:
   3213         return getMaximumIntegerDigits();
   3214 
   3215     case UNUM_MIN_INTEGER_DIGITS:
   3216         return getMinimumIntegerDigits();
   3217 
   3218     case UNUM_INTEGER_DIGITS:
   3219         // TBD: what should this return?
   3220         return getMinimumIntegerDigits();
   3221 
   3222     case UNUM_MAX_FRACTION_DIGITS:
   3223         return getMaximumFractionDigits();
   3224 
   3225     case UNUM_MIN_FRACTION_DIGITS:
   3226         return getMinimumFractionDigits();
   3227 
   3228     case UNUM_FRACTION_DIGITS:
   3229         // TBD: what should this return?
   3230         return getMinimumFractionDigits();
   3231 
   3232     case UNUM_SIGNIFICANT_DIGITS_USED:
   3233         return areSignificantDigitsUsed();
   3234 
   3235     case UNUM_MAX_SIGNIFICANT_DIGITS:
   3236         return getMaximumSignificantDigits();
   3237 
   3238     case UNUM_MIN_SIGNIFICANT_DIGITS:
   3239         return getMinimumSignificantDigits();
   3240 
   3241     case UNUM_MULTIPLIER:
   3242         return getMultiplier();
   3243 
   3244     case UNUM_GROUPING_SIZE:
   3245         return getGroupingSize();
   3246 
   3247     case UNUM_ROUNDING_MODE:
   3248         return getRoundingMode();
   3249 
   3250     case UNUM_FORMAT_WIDTH:
   3251         return getFormatWidth();
   3252 
   3253     case UNUM_PADDING_POSITION:
   3254         return getPadPosition();
   3255 
   3256     case UNUM_SECONDARY_GROUPING_SIZE:
   3257         return getSecondaryGroupingSize();
   3258 
   3259     /* These are stored in fBoolFlags */
   3260     case UNUM_PARSE_NO_EXPONENT:
   3261     case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
   3262     case UNUM_PARSE_DECIMAL_MARK_REQUIRED:
   3263       return fBoolFlags.get(attr);
   3264 
   3265     case UNUM_SCALE:
   3266         return fImpl->fScale;
   3267 
   3268     case UNUM_CURRENCY_USAGE:
   3269         return fImpl->getCurrencyUsage();
   3270 
   3271     case UNUM_MINIMUM_GROUPING_DIGITS:
   3272         return getMinimumGroupingDigits();
   3273 
   3274     default:
   3275         status = U_UNSUPPORTED_ERROR;
   3276         break;
   3277   }
   3278 
   3279   return -1; /* undefined */
   3280 }
   3281 
   3282 #if UCONFIG_HAVE_PARSEALLINPUT
   3283 void DecimalFormat::setParseAllInput(UNumberFormatAttributeValue value) {
   3284   fParseAllInput = value;
   3285 }
   3286 #endif
   3287 
   3288 U_NAMESPACE_END
   3289 
   3290 #endif /* #if !UCONFIG_NO_FORMATTING */
   3291 
   3292 //eof
   3293