Home | History | Annotate | Download | only in linux
      1 /*
      2  * Performance events:
      3  *
      4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx (at) linutronix.de>
      5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
      6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
      7  *
      8  * Data type definitions, declarations, prototypes.
      9  *
     10  *    Started by: Thomas Gleixner and Ingo Molnar
     11  *
     12  * For licencing details see kernel-base/COPYING
     13  */
     14 #ifndef _UAPI_LINUX_PERF_EVENT_H
     15 #define _UAPI_LINUX_PERF_EVENT_H
     16 
     17 #include <linux/types.h>
     18 #include <linux/ioctl.h>
     19 #include <asm/byteorder.h>
     20 
     21 /*
     22  * User-space ABI bits:
     23  */
     24 
     25 /*
     26  * attr.type
     27  */
     28 enum perf_type_id {
     29 	PERF_TYPE_HARDWARE			= 0,
     30 	PERF_TYPE_SOFTWARE			= 1,
     31 	PERF_TYPE_TRACEPOINT			= 2,
     32 	PERF_TYPE_HW_CACHE			= 3,
     33 	PERF_TYPE_RAW				= 4,
     34 	PERF_TYPE_BREAKPOINT			= 5,
     35 
     36 	PERF_TYPE_MAX,				/* non-ABI */
     37 };
     38 
     39 /*
     40  * Generalized performance event event_id types, used by the
     41  * attr.event_id parameter of the sys_perf_event_open()
     42  * syscall:
     43  */
     44 enum perf_hw_id {
     45 	/*
     46 	 * Common hardware events, generalized by the kernel:
     47 	 */
     48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
     49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
     50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
     51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
     52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
     53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
     54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
     55 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
     56 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
     57 	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
     58 
     59 	PERF_COUNT_HW_MAX,			/* non-ABI */
     60 };
     61 
     62 /*
     63  * Generalized hardware cache events:
     64  *
     65  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
     66  *       { read, write, prefetch } x
     67  *       { accesses, misses }
     68  */
     69 enum perf_hw_cache_id {
     70 	PERF_COUNT_HW_CACHE_L1D			= 0,
     71 	PERF_COUNT_HW_CACHE_L1I			= 1,
     72 	PERF_COUNT_HW_CACHE_LL			= 2,
     73 	PERF_COUNT_HW_CACHE_DTLB		= 3,
     74 	PERF_COUNT_HW_CACHE_ITLB		= 4,
     75 	PERF_COUNT_HW_CACHE_BPU			= 5,
     76 	PERF_COUNT_HW_CACHE_NODE		= 6,
     77 
     78 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
     79 };
     80 
     81 enum perf_hw_cache_op_id {
     82 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
     83 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
     84 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
     85 
     86 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
     87 };
     88 
     89 enum perf_hw_cache_op_result_id {
     90 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
     91 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
     92 
     93 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
     94 };
     95 
     96 /*
     97  * Special "software" events provided by the kernel, even if the hardware
     98  * does not support performance events. These events measure various
     99  * physical and sw events of the kernel (and allow the profiling of them as
    100  * well):
    101  */
    102 enum perf_sw_ids {
    103 	PERF_COUNT_SW_CPU_CLOCK			= 0,
    104 	PERF_COUNT_SW_TASK_CLOCK		= 1,
    105 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
    106 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
    107 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
    108 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
    109 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
    110 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
    111 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
    112 	PERF_COUNT_SW_DUMMY			= 9,
    113 	PERF_COUNT_SW_BPF_OUTPUT		= 10,
    114 
    115 	PERF_COUNT_SW_MAX,			/* non-ABI */
    116 };
    117 
    118 /*
    119  * Bits that can be set in attr.sample_type to request information
    120  * in the overflow packets.
    121  */
    122 enum perf_event_sample_format {
    123 	PERF_SAMPLE_IP				= 1U << 0,
    124 	PERF_SAMPLE_TID				= 1U << 1,
    125 	PERF_SAMPLE_TIME			= 1U << 2,
    126 	PERF_SAMPLE_ADDR			= 1U << 3,
    127 	PERF_SAMPLE_READ			= 1U << 4,
    128 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
    129 	PERF_SAMPLE_ID				= 1U << 6,
    130 	PERF_SAMPLE_CPU				= 1U << 7,
    131 	PERF_SAMPLE_PERIOD			= 1U << 8,
    132 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
    133 	PERF_SAMPLE_RAW				= 1U << 10,
    134 	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
    135 	PERF_SAMPLE_REGS_USER			= 1U << 12,
    136 	PERF_SAMPLE_STACK_USER			= 1U << 13,
    137 	PERF_SAMPLE_WEIGHT			= 1U << 14,
    138 	PERF_SAMPLE_DATA_SRC			= 1U << 15,
    139 	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
    140 	PERF_SAMPLE_TRANSACTION			= 1U << 17,
    141 	PERF_SAMPLE_REGS_INTR			= 1U << 18,
    142 
    143 	PERF_SAMPLE_MAX = 1U << 19,		/* non-ABI */
    144 };
    145 
    146 /*
    147  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
    148  *
    149  * If the user does not pass priv level information via branch_sample_type,
    150  * the kernel uses the event's priv level. Branch and event priv levels do
    151  * not have to match. Branch priv level is checked for permissions.
    152  *
    153  * The branch types can be combined, however BRANCH_ANY covers all types
    154  * of branches and therefore it supersedes all the other types.
    155  */
    156 enum perf_branch_sample_type_shift {
    157 	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
    158 	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
    159 	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
    160 
    161 	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
    162 	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
    163 	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
    164 	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
    165 	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
    166 	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
    167 	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
    168 	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
    169 
    170 	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
    171 	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
    172 	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
    173 
    174 	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
    175 	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
    176 
    177 	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
    178 };
    179 
    180 enum perf_branch_sample_type {
    181 	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
    182 	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
    183 	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
    184 
    185 	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
    186 	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
    187 	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
    188 	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
    189 	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
    190 	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
    191 	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
    192 	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
    193 
    194 	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
    195 	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
    196 	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
    197 
    198 	PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
    199 	PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
    200 
    201 	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
    202 };
    203 
    204 #define PERF_SAMPLE_BRANCH_PLM_ALL \
    205 	(PERF_SAMPLE_BRANCH_USER|\
    206 	 PERF_SAMPLE_BRANCH_KERNEL|\
    207 	 PERF_SAMPLE_BRANCH_HV)
    208 
    209 /*
    210  * Values to determine ABI of the registers dump.
    211  */
    212 enum perf_sample_regs_abi {
    213 	PERF_SAMPLE_REGS_ABI_NONE	= 0,
    214 	PERF_SAMPLE_REGS_ABI_32		= 1,
    215 	PERF_SAMPLE_REGS_ABI_64		= 2,
    216 };
    217 
    218 /*
    219  * Values for the memory transaction event qualifier, mostly for
    220  * abort events. Multiple bits can be set.
    221  */
    222 enum {
    223 	PERF_TXN_ELISION        = (1 << 0), /* From elision */
    224 	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
    225 	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
    226 	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
    227 	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
    228 	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
    229 	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
    230 	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
    231 
    232 	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
    233 
    234 	/* bits 32..63 are reserved for the abort code */
    235 
    236 	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
    237 	PERF_TXN_ABORT_SHIFT = 32,
    238 };
    239 
    240 /*
    241  * The format of the data returned by read() on a perf event fd,
    242  * as specified by attr.read_format:
    243  *
    244  * struct read_format {
    245  *	{ u64		value;
    246  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
    247  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
    248  *	  { u64		id;           } && PERF_FORMAT_ID
    249  *	} && !PERF_FORMAT_GROUP
    250  *
    251  *	{ u64		nr;
    252  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
    253  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
    254  *	  { u64		value;
    255  *	    { u64	id;           } && PERF_FORMAT_ID
    256  *	  }		cntr[nr];
    257  *	} && PERF_FORMAT_GROUP
    258  * };
    259  */
    260 enum perf_event_read_format {
    261 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
    262 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
    263 	PERF_FORMAT_ID				= 1U << 2,
    264 	PERF_FORMAT_GROUP			= 1U << 3,
    265 
    266 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
    267 };
    268 
    269 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
    270 #define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
    271 #define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
    272 #define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
    273 					/* add: sample_stack_user */
    274 #define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
    275 #define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
    276 
    277 /*
    278  * Hardware event_id to monitor via a performance monitoring event:
    279  *
    280  * @sample_max_stack: Max number of frame pointers in a callchain,
    281  *		      should be < /proc/sys/kernel/perf_event_max_stack
    282  */
    283 struct perf_event_attr {
    284 
    285 	/*
    286 	 * Major type: hardware/software/tracepoint/etc.
    287 	 */
    288 	__u32			type;
    289 
    290 	/*
    291 	 * Size of the attr structure, for fwd/bwd compat.
    292 	 */
    293 	__u32			size;
    294 
    295 	/*
    296 	 * Type specific configuration information.
    297 	 */
    298 	__u64			config;
    299 
    300 	union {
    301 		__u64		sample_period;
    302 		__u64		sample_freq;
    303 	};
    304 
    305 	__u64			sample_type;
    306 	__u64			read_format;
    307 
    308 	__u64			disabled       :  1, /* off by default        */
    309 				inherit	       :  1, /* children inherit it   */
    310 				pinned	       :  1, /* must always be on PMU */
    311 				exclusive      :  1, /* only group on PMU     */
    312 				exclude_user   :  1, /* don't count user      */
    313 				exclude_kernel :  1, /* ditto kernel          */
    314 				exclude_hv     :  1, /* ditto hypervisor      */
    315 				exclude_idle   :  1, /* don't count when idle */
    316 				mmap           :  1, /* include mmap data     */
    317 				comm	       :  1, /* include comm data     */
    318 				freq           :  1, /* use freq, not period  */
    319 				inherit_stat   :  1, /* per task counts       */
    320 				enable_on_exec :  1, /* next exec enables     */
    321 				task           :  1, /* trace fork/exit       */
    322 				watermark      :  1, /* wakeup_watermark      */
    323 				/*
    324 				 * precise_ip:
    325 				 *
    326 				 *  0 - SAMPLE_IP can have arbitrary skid
    327 				 *  1 - SAMPLE_IP must have constant skid
    328 				 *  2 - SAMPLE_IP requested to have 0 skid
    329 				 *  3 - SAMPLE_IP must have 0 skid
    330 				 *
    331 				 *  See also PERF_RECORD_MISC_EXACT_IP
    332 				 */
    333 				precise_ip     :  2, /* skid constraint       */
    334 				mmap_data      :  1, /* non-exec mmap data    */
    335 				sample_id_all  :  1, /* sample_type all events */
    336 
    337 				exclude_host   :  1, /* don't count in host   */
    338 				exclude_guest  :  1, /* don't count in guest  */
    339 
    340 				exclude_callchain_kernel : 1, /* exclude kernel callchains */
    341 				exclude_callchain_user   : 1, /* exclude user callchains */
    342 				mmap2          :  1, /* include mmap with inode data     */
    343 				comm_exec      :  1, /* flag comm events that are due to an exec */
    344 				use_clockid    :  1, /* use @clockid for time fields */
    345 				context_switch :  1, /* context switch data */
    346 				write_backward :  1, /* Write ring buffer from end to beginning */
    347 				__reserved_1   : 36;
    348 
    349 	union {
    350 		__u32		wakeup_events;	  /* wakeup every n events */
    351 		__u32		wakeup_watermark; /* bytes before wakeup   */
    352 	};
    353 
    354 	__u32			bp_type;
    355 	union {
    356 		__u64		bp_addr;
    357 		__u64		config1; /* extension of config */
    358 	};
    359 	union {
    360 		__u64		bp_len;
    361 		__u64		config2; /* extension of config1 */
    362 	};
    363 	__u64	branch_sample_type; /* enum perf_branch_sample_type */
    364 
    365 	/*
    366 	 * Defines set of user regs to dump on samples.
    367 	 * See asm/perf_regs.h for details.
    368 	 */
    369 	__u64	sample_regs_user;
    370 
    371 	/*
    372 	 * Defines size of the user stack to dump on samples.
    373 	 */
    374 	__u32	sample_stack_user;
    375 
    376 	__s32	clockid;
    377 	/*
    378 	 * Defines set of regs to dump for each sample
    379 	 * state captured on:
    380 	 *  - precise = 0: PMU interrupt
    381 	 *  - precise > 0: sampled instruction
    382 	 *
    383 	 * See asm/perf_regs.h for details.
    384 	 */
    385 	__u64	sample_regs_intr;
    386 
    387 	/*
    388 	 * Wakeup watermark for AUX area
    389 	 */
    390 	__u32	aux_watermark;
    391 	__u16	sample_max_stack;
    392 	__u16	__reserved_2;	/* align to __u64 */
    393 };
    394 
    395 #define perf_flags(attr)	(*(&(attr)->read_format + 1))
    396 
    397 /*
    398  * Ioctls that can be done on a perf event fd:
    399  */
    400 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
    401 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
    402 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
    403 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
    404 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
    405 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
    406 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
    407 #define PERF_EVENT_IOC_ID		_IOR('$', 7, __u64 *)
    408 #define PERF_EVENT_IOC_SET_BPF		_IOW('$', 8, __u32)
    409 #define PERF_EVENT_IOC_PAUSE_OUTPUT	_IOW('$', 9, __u32)
    410 
    411 enum perf_event_ioc_flags {
    412 	PERF_IOC_FLAG_GROUP		= 1U << 0,
    413 };
    414 
    415 /*
    416  * Structure of the page that can be mapped via mmap
    417  */
    418 struct perf_event_mmap_page {
    419 	__u32	version;		/* version number of this structure */
    420 	__u32	compat_version;		/* lowest version this is compat with */
    421 
    422 	/*
    423 	 * Bits needed to read the hw events in user-space.
    424 	 *
    425 	 *   u32 seq, time_mult, time_shift, index, width;
    426 	 *   u64 count, enabled, running;
    427 	 *   u64 cyc, time_offset;
    428 	 *   s64 pmc = 0;
    429 	 *
    430 	 *   do {
    431 	 *     seq = pc->lock;
    432 	 *     barrier()
    433 	 *
    434 	 *     enabled = pc->time_enabled;
    435 	 *     running = pc->time_running;
    436 	 *
    437 	 *     if (pc->cap_usr_time && enabled != running) {
    438 	 *       cyc = rdtsc();
    439 	 *       time_offset = pc->time_offset;
    440 	 *       time_mult   = pc->time_mult;
    441 	 *       time_shift  = pc->time_shift;
    442 	 *     }
    443 	 *
    444 	 *     index = pc->index;
    445 	 *     count = pc->offset;
    446 	 *     if (pc->cap_user_rdpmc && index) {
    447 	 *       width = pc->pmc_width;
    448 	 *       pmc = rdpmc(index - 1);
    449 	 *     }
    450 	 *
    451 	 *     barrier();
    452 	 *   } while (pc->lock != seq);
    453 	 *
    454 	 * NOTE: for obvious reason this only works on self-monitoring
    455 	 *       processes.
    456 	 */
    457 	__u32	lock;			/* seqlock for synchronization */
    458 	__u32	index;			/* hardware event identifier */
    459 	__s64	offset;			/* add to hardware event value */
    460 	__u64	time_enabled;		/* time event active */
    461 	__u64	time_running;		/* time event on cpu */
    462 	union {
    463 		__u64	capabilities;
    464 		struct {
    465 			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
    466 				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
    467 
    468 				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
    469 				cap_user_time		: 1, /* The time_* fields are used */
    470 				cap_user_time_zero	: 1, /* The time_zero field is used */
    471 				cap_____res		: 59;
    472 		};
    473 	};
    474 
    475 	/*
    476 	 * If cap_user_rdpmc this field provides the bit-width of the value
    477 	 * read using the rdpmc() or equivalent instruction. This can be used
    478 	 * to sign extend the result like:
    479 	 *
    480 	 *   pmc <<= 64 - width;
    481 	 *   pmc >>= 64 - width; // signed shift right
    482 	 *   count += pmc;
    483 	 */
    484 	__u16	pmc_width;
    485 
    486 	/*
    487 	 * If cap_usr_time the below fields can be used to compute the time
    488 	 * delta since time_enabled (in ns) using rdtsc or similar.
    489 	 *
    490 	 *   u64 quot, rem;
    491 	 *   u64 delta;
    492 	 *
    493 	 *   quot = (cyc >> time_shift);
    494 	 *   rem = cyc & (((u64)1 << time_shift) - 1);
    495 	 *   delta = time_offset + quot * time_mult +
    496 	 *              ((rem * time_mult) >> time_shift);
    497 	 *
    498 	 * Where time_offset,time_mult,time_shift and cyc are read in the
    499 	 * seqcount loop described above. This delta can then be added to
    500 	 * enabled and possible running (if index), improving the scaling:
    501 	 *
    502 	 *   enabled += delta;
    503 	 *   if (index)
    504 	 *     running += delta;
    505 	 *
    506 	 *   quot = count / running;
    507 	 *   rem  = count % running;
    508 	 *   count = quot * enabled + (rem * enabled) / running;
    509 	 */
    510 	__u16	time_shift;
    511 	__u32	time_mult;
    512 	__u64	time_offset;
    513 	/*
    514 	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
    515 	 * from sample timestamps.
    516 	 *
    517 	 *   time = timestamp - time_zero;
    518 	 *   quot = time / time_mult;
    519 	 *   rem  = time % time_mult;
    520 	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
    521 	 *
    522 	 * And vice versa:
    523 	 *
    524 	 *   quot = cyc >> time_shift;
    525 	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
    526 	 *   timestamp = time_zero + quot * time_mult +
    527 	 *               ((rem * time_mult) >> time_shift);
    528 	 */
    529 	__u64	time_zero;
    530 	__u32	size;			/* Header size up to __reserved[] fields. */
    531 
    532 		/*
    533 		 * Hole for extension of the self monitor capabilities
    534 		 */
    535 
    536 	__u8	__reserved[118*8+4];	/* align to 1k. */
    537 
    538 	/*
    539 	 * Control data for the mmap() data buffer.
    540 	 *
    541 	 * User-space reading the @data_head value should issue an smp_rmb(),
    542 	 * after reading this value.
    543 	 *
    544 	 * When the mapping is PROT_WRITE the @data_tail value should be
    545 	 * written by userspace to reflect the last read data, after issueing
    546 	 * an smp_mb() to separate the data read from the ->data_tail store.
    547 	 * In this case the kernel will not over-write unread data.
    548 	 *
    549 	 * See perf_output_put_handle() for the data ordering.
    550 	 *
    551 	 * data_{offset,size} indicate the location and size of the perf record
    552 	 * buffer within the mmapped area.
    553 	 */
    554 	__u64   data_head;		/* head in the data section */
    555 	__u64	data_tail;		/* user-space written tail */
    556 	__u64	data_offset;		/* where the buffer starts */
    557 	__u64	data_size;		/* data buffer size */
    558 
    559 	/*
    560 	 * AUX area is defined by aux_{offset,size} fields that should be set
    561 	 * by the userspace, so that
    562 	 *
    563 	 *   aux_offset >= data_offset + data_size
    564 	 *
    565 	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
    566 	 *
    567 	 * Ring buffer pointers aux_{head,tail} have the same semantics as
    568 	 * data_{head,tail} and same ordering rules apply.
    569 	 */
    570 	__u64	aux_head;
    571 	__u64	aux_tail;
    572 	__u64	aux_offset;
    573 	__u64	aux_size;
    574 };
    575 
    576 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
    577 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
    578 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
    579 #define PERF_RECORD_MISC_USER			(2 << 0)
    580 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
    581 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
    582 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
    583 
    584 /*
    585  * Indicates that /proc/PID/maps parsing are truncated by time out.
    586  */
    587 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
    588 /*
    589  * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
    590  * different events so can reuse the same bit position.
    591  * Ditto PERF_RECORD_MISC_SWITCH_OUT.
    592  */
    593 #define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
    594 #define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
    595 #define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
    596 /*
    597  * Indicates that the content of PERF_SAMPLE_IP points to
    598  * the actual instruction that triggered the event. See also
    599  * perf_event_attr::precise_ip.
    600  */
    601 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
    602 /*
    603  * Reserve the last bit to indicate some extended misc field
    604  */
    605 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
    606 
    607 struct perf_event_header {
    608 	__u32	type;
    609 	__u16	misc;
    610 	__u16	size;
    611 };
    612 
    613 enum perf_event_type {
    614 
    615 	/*
    616 	 * If perf_event_attr.sample_id_all is set then all event types will
    617 	 * have the sample_type selected fields related to where/when
    618 	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
    619 	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
    620 	 * just after the perf_event_header and the fields already present for
    621 	 * the existing fields, i.e. at the end of the payload. That way a newer
    622 	 * perf.data file will be supported by older perf tools, with these new
    623 	 * optional fields being ignored.
    624 	 *
    625 	 * struct sample_id {
    626 	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
    627 	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
    628 	 * 	{ u64			id;       } && PERF_SAMPLE_ID
    629 	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
    630 	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
    631 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
    632 	 * } && perf_event_attr::sample_id_all
    633 	 *
    634 	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
    635 	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
    636 	 * relative to header.size.
    637 	 */
    638 
    639 	/*
    640 	 * The MMAP events record the PROT_EXEC mappings so that we can
    641 	 * correlate userspace IPs to code. They have the following structure:
    642 	 *
    643 	 * struct {
    644 	 *	struct perf_event_header	header;
    645 	 *
    646 	 *	u32				pid, tid;
    647 	 *	u64				addr;
    648 	 *	u64				len;
    649 	 *	u64				pgoff;
    650 	 *	char				filename[];
    651 	 * 	struct sample_id		sample_id;
    652 	 * };
    653 	 */
    654 	PERF_RECORD_MMAP			= 1,
    655 
    656 	/*
    657 	 * struct {
    658 	 *	struct perf_event_header	header;
    659 	 *	u64				id;
    660 	 *	u64				lost;
    661 	 * 	struct sample_id		sample_id;
    662 	 * };
    663 	 */
    664 	PERF_RECORD_LOST			= 2,
    665 
    666 	/*
    667 	 * struct {
    668 	 *	struct perf_event_header	header;
    669 	 *
    670 	 *	u32				pid, tid;
    671 	 *	char				comm[];
    672 	 * 	struct sample_id		sample_id;
    673 	 * };
    674 	 */
    675 	PERF_RECORD_COMM			= 3,
    676 
    677 	/*
    678 	 * struct {
    679 	 *	struct perf_event_header	header;
    680 	 *	u32				pid, ppid;
    681 	 *	u32				tid, ptid;
    682 	 *	u64				time;
    683 	 * 	struct sample_id		sample_id;
    684 	 * };
    685 	 */
    686 	PERF_RECORD_EXIT			= 4,
    687 
    688 	/*
    689 	 * struct {
    690 	 *	struct perf_event_header	header;
    691 	 *	u64				time;
    692 	 *	u64				id;
    693 	 *	u64				stream_id;
    694 	 * 	struct sample_id		sample_id;
    695 	 * };
    696 	 */
    697 	PERF_RECORD_THROTTLE			= 5,
    698 	PERF_RECORD_UNTHROTTLE			= 6,
    699 
    700 	/*
    701 	 * struct {
    702 	 *	struct perf_event_header	header;
    703 	 *	u32				pid, ppid;
    704 	 *	u32				tid, ptid;
    705 	 *	u64				time;
    706 	 * 	struct sample_id		sample_id;
    707 	 * };
    708 	 */
    709 	PERF_RECORD_FORK			= 7,
    710 
    711 	/*
    712 	 * struct {
    713 	 *	struct perf_event_header	header;
    714 	 *	u32				pid, tid;
    715 	 *
    716 	 *	struct read_format		values;
    717 	 * 	struct sample_id		sample_id;
    718 	 * };
    719 	 */
    720 	PERF_RECORD_READ			= 8,
    721 
    722 	/*
    723 	 * struct {
    724 	 *	struct perf_event_header	header;
    725 	 *
    726 	 *	#
    727 	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
    728 	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
    729 	 *	# is fixed relative to header.
    730 	 *	#
    731 	 *
    732 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
    733 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
    734 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
    735 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
    736 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
    737 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
    738 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
    739 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
    740 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
    741 	 *
    742 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
    743 	 *
    744 	 *	{ u64			nr,
    745 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
    746 	 *
    747 	 *	#
    748 	 *	# The RAW record below is opaque data wrt the ABI
    749 	 *	#
    750 	 *	# That is, the ABI doesn't make any promises wrt to
    751 	 *	# the stability of its content, it may vary depending
    752 	 *	# on event, hardware, kernel version and phase of
    753 	 *	# the moon.
    754 	 *	#
    755 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
    756 	 *	#
    757 	 *
    758 	 *	{ u32			size;
    759 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
    760 	 *
    761 	 *	{ u64                   nr;
    762 	 *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
    763 	 *
    764 	 * 	{ u64			abi; # enum perf_sample_regs_abi
    765 	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
    766 	 *
    767 	 * 	{ u64			size;
    768 	 * 	  char			data[size];
    769 	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
    770 	 *
    771 	 *	{ u64			weight;   } && PERF_SAMPLE_WEIGHT
    772 	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
    773 	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
    774 	 *	{ u64			abi; # enum perf_sample_regs_abi
    775 	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
    776 	 * };
    777 	 */
    778 	PERF_RECORD_SAMPLE			= 9,
    779 
    780 	/*
    781 	 * The MMAP2 records are an augmented version of MMAP, they add
    782 	 * maj, min, ino numbers to be used to uniquely identify each mapping
    783 	 *
    784 	 * struct {
    785 	 *	struct perf_event_header	header;
    786 	 *
    787 	 *	u32				pid, tid;
    788 	 *	u64				addr;
    789 	 *	u64				len;
    790 	 *	u64				pgoff;
    791 	 *	u32				maj;
    792 	 *	u32				min;
    793 	 *	u64				ino;
    794 	 *	u64				ino_generation;
    795 	 *	u32				prot, flags;
    796 	 *	char				filename[];
    797 	 * 	struct sample_id		sample_id;
    798 	 * };
    799 	 */
    800 	PERF_RECORD_MMAP2			= 10,
    801 
    802 	/*
    803 	 * Records that new data landed in the AUX buffer part.
    804 	 *
    805 	 * struct {
    806 	 * 	struct perf_event_header	header;
    807 	 *
    808 	 * 	u64				aux_offset;
    809 	 * 	u64				aux_size;
    810 	 *	u64				flags;
    811 	 * 	struct sample_id		sample_id;
    812 	 * };
    813 	 */
    814 	PERF_RECORD_AUX				= 11,
    815 
    816 	/*
    817 	 * Indicates that instruction trace has started
    818 	 *
    819 	 * struct {
    820 	 *	struct perf_event_header	header;
    821 	 *	u32				pid;
    822 	 *	u32				tid;
    823 	 * };
    824 	 */
    825 	PERF_RECORD_ITRACE_START		= 12,
    826 
    827 	/*
    828 	 * Records the dropped/lost sample number.
    829 	 *
    830 	 * struct {
    831 	 *	struct perf_event_header	header;
    832 	 *
    833 	 *	u64				lost;
    834 	 *	struct sample_id		sample_id;
    835 	 * };
    836 	 */
    837 	PERF_RECORD_LOST_SAMPLES		= 13,
    838 
    839 	/*
    840 	 * Records a context switch in or out (flagged by
    841 	 * PERF_RECORD_MISC_SWITCH_OUT). See also
    842 	 * PERF_RECORD_SWITCH_CPU_WIDE.
    843 	 *
    844 	 * struct {
    845 	 *	struct perf_event_header	header;
    846 	 *	struct sample_id		sample_id;
    847 	 * };
    848 	 */
    849 	PERF_RECORD_SWITCH			= 14,
    850 
    851 	/*
    852 	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
    853 	 * next_prev_tid that are the next (switching out) or previous
    854 	 * (switching in) pid/tid.
    855 	 *
    856 	 * struct {
    857 	 *	struct perf_event_header	header;
    858 	 *	u32				next_prev_pid;
    859 	 *	u32				next_prev_tid;
    860 	 *	struct sample_id		sample_id;
    861 	 * };
    862 	 */
    863 	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
    864 
    865 	PERF_RECORD_MAX,			/* non-ABI */
    866 };
    867 
    868 #define PERF_MAX_STACK_DEPTH		127
    869 #define PERF_MAX_CONTEXTS_PER_STACK	  8
    870 
    871 enum perf_callchain_context {
    872 	PERF_CONTEXT_HV			= (__u64)-32,
    873 	PERF_CONTEXT_KERNEL		= (__u64)-128,
    874 	PERF_CONTEXT_USER		= (__u64)-512,
    875 
    876 	PERF_CONTEXT_GUEST		= (__u64)-2048,
    877 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
    878 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
    879 
    880 	PERF_CONTEXT_MAX		= (__u64)-4095,
    881 };
    882 
    883 /**
    884  * PERF_RECORD_AUX::flags bits
    885  */
    886 #define PERF_AUX_FLAG_TRUNCATED		0x01	/* record was truncated to fit */
    887 #define PERF_AUX_FLAG_OVERWRITE		0x02	/* snapshot from overwrite mode */
    888 
    889 #define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
    890 #define PERF_FLAG_FD_OUTPUT		(1UL << 1)
    891 #define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
    892 #define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
    893 
    894 union perf_mem_data_src {
    895 	__u64 val;
    896 	struct {
    897 		__u64   mem_op:5,	/* type of opcode */
    898 			mem_lvl:14,	/* memory hierarchy level */
    899 			mem_snoop:5,	/* snoop mode */
    900 			mem_lock:2,	/* lock instr */
    901 			mem_dtlb:7,	/* tlb access */
    902 			mem_rsvd:31;
    903 	};
    904 };
    905 
    906 /* type of opcode (load/store/prefetch,code) */
    907 #define PERF_MEM_OP_NA		0x01 /* not available */
    908 #define PERF_MEM_OP_LOAD	0x02 /* load instruction */
    909 #define PERF_MEM_OP_STORE	0x04 /* store instruction */
    910 #define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
    911 #define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
    912 #define PERF_MEM_OP_SHIFT	0
    913 
    914 /* memory hierarchy (memory level, hit or miss) */
    915 #define PERF_MEM_LVL_NA		0x01  /* not available */
    916 #define PERF_MEM_LVL_HIT	0x02  /* hit level */
    917 #define PERF_MEM_LVL_MISS	0x04  /* miss level  */
    918 #define PERF_MEM_LVL_L1		0x08  /* L1 */
    919 #define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
    920 #define PERF_MEM_LVL_L2		0x20  /* L2 */
    921 #define PERF_MEM_LVL_L3		0x40  /* L3 */
    922 #define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
    923 #define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
    924 #define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
    925 #define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
    926 #define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
    927 #define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
    928 #define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
    929 #define PERF_MEM_LVL_SHIFT	5
    930 
    931 /* snoop mode */
    932 #define PERF_MEM_SNOOP_NA	0x01 /* not available */
    933 #define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
    934 #define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
    935 #define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
    936 #define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
    937 #define PERF_MEM_SNOOP_SHIFT	19
    938 
    939 /* locked instruction */
    940 #define PERF_MEM_LOCK_NA	0x01 /* not available */
    941 #define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
    942 #define PERF_MEM_LOCK_SHIFT	24
    943 
    944 /* TLB access */
    945 #define PERF_MEM_TLB_NA		0x01 /* not available */
    946 #define PERF_MEM_TLB_HIT	0x02 /* hit level */
    947 #define PERF_MEM_TLB_MISS	0x04 /* miss level */
    948 #define PERF_MEM_TLB_L1		0x08 /* L1 */
    949 #define PERF_MEM_TLB_L2		0x10 /* L2 */
    950 #define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
    951 #define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
    952 #define PERF_MEM_TLB_SHIFT	26
    953 
    954 #define PERF_MEM_S(a, s) \
    955 	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
    956 
    957 /*
    958  * single taken branch record layout:
    959  *
    960  *      from: source instruction (may not always be a branch insn)
    961  *        to: branch target
    962  *   mispred: branch target was mispredicted
    963  * predicted: branch target was predicted
    964  *
    965  * support for mispred, predicted is optional. In case it
    966  * is not supported mispred = predicted = 0.
    967  *
    968  *     in_tx: running in a hardware transaction
    969  *     abort: aborting a hardware transaction
    970  *    cycles: cycles from last branch (or 0 if not supported)
    971  */
    972 struct perf_branch_entry {
    973 	__u64	from;
    974 	__u64	to;
    975 	__u64	mispred:1,  /* target mispredicted */
    976 		predicted:1,/* target predicted */
    977 		in_tx:1,    /* in transaction */
    978 		abort:1,    /* transaction abort */
    979 		cycles:16,  /* cycle count to last branch */
    980 		reserved:44;
    981 };
    982 
    983 #endif /* _UAPI_LINUX_PERF_EVENT_H */
    984